
Transmission Control Protocol (TCP)

Antonio Carzaniga

Faculty of Informatics
University of Lugano

November 5, 2014

© 2005–2007 Antonio Carzaniga

Outline

Introduction to TCP

Sequence numbers and acknowledgment numbers

Timeouts and RTT estimation

Reliable data transfer in TCP

Connection management

© 2005–2007 Antonio Carzaniga

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

© 2005–2007 Antonio Carzaniga

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

© 2005–2007 Antonio Carzaniga

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

Full-duplex service

◮ both endpoints can both send and receive, at the same time

© 2005–2007 Antonio Carzaniga

Preliminary Definitions

© 2005–2007 Antonio Carzaniga

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

© 2005–2007 Antonio Carzaniga

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS): maximum amount of

application data transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid

network-level fragmentation (we’ll talk about all of this later)

© 2005–2007 Antonio Carzaniga

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS): maximum amount of

application data transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid

network-level fragmentation (we’ll talk about all of this later)

Maximum transmission unit (MTU): largest link-layer frame

available to the sender host

◮ path MTU: largest link-layer frame that can be sent on all links

from the sender host to the receiver host

© 2005–2007 Antonio Carzaniga

TCP Segment Format

0 31

source port destination port

sequence number

acknowledgment number

hdrlen unused U A P R S F receive window

Internet checksum urgent data pointer

options field

data

© 2005–2007 Antonio Carzaniga

TCP Header Fields

© 2005–2007 Antonio Carzaniga

TCP Header Fields

Source and destination ports: (16-bit each) application

identifiers

© 2005–2007 Antonio Carzaniga

TCP Header Fields

Source and destination ports: (16-bit each) application

identifiers

Sequence number: (32-bit) used to implement reliable data

transfer

Acknowledgment number: (32-bit) used to implement reliable

data transfer

© 2005–2007 Antonio Carzaniga

TCP Header Fields

Source and destination ports: (16-bit each) application

identifiers

Sequence number: (32-bit) used to implement reliable data

transfer

Acknowledgment number: (32-bit) used to implement reliable

data transfer

Receive window: (16-bit) size of the “window” on the receiver

end

© 2005–2007 Antonio Carzaniga

TCP Header Fields

Source and destination ports: (16-bit each) application

identifiers

Sequence number: (32-bit) used to implement reliable data

transfer

Acknowledgment number: (32-bit) used to implement reliable

data transfer

Receive window: (16-bit) size of the “window” on the receiver

end

Header length: (4-bit) size of the TCP header in 32-bit words

© 2005–2007 Antonio Carzaniga

TCP Header Fields

Source and destination ports: (16-bit each) application

identifiers

Sequence number: (32-bit) used to implement reliable data

transfer

Acknowledgment number: (32-bit) used to implement reliable

data transfer

Receive window: (16-bit) size of the “window” on the receiver

end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to

negotiate protocol parameters

© 2005–2007 Antonio Carzaniga

TCP Header Fields

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass

the data to the application immediately

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass

the data to the application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that

the sender has marked some data as “urgent”. The location of

this urgent data is marked by the urgent data pointer field

© 2005–2007 Antonio Carzaniga

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the

acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass

the data to the application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that

the sender has marked some data as “urgent”. The location of

this urgent data is marked by the urgent data pointer field

Checksum: (16-bit) used to detect transmission errors

© 2005–2007 Antonio Carzaniga

Sequence Numbers

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . .2048 2049. . .3072 3073. . .4096

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . .2048 2049. . .3072 3073. . .4096

a TCP segment

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . .2048 2049. . .3072 3073. . .4096

a TCP segment

2
0
4
9

© 2005–2007 Antonio Carzaniga

Sequence Numbers

Sequence numbers are associated with bytes in the data
stream

◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the

sequence number of the first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . .2048 2049. . .3072 3073. . .4096

a TCP segment

2
0
4
9

sequence number

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

An acknowledgment number represents the first sequence

number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

An acknowledgment number represents the first sequence

number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

An acknowledgment number represents the first sequence

number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

An acknowledgment number represents the first sequence

number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

© 2005–2007 Antonio Carzaniga

Acknowledgment Numbers

An acknowledgment number represents the first sequence

number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

[Seq# = . . . ,Ack# = 2700]

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100,Data =“C”]

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100,Data =“C”]

[Ack# = 101, Seq# = 200,Data =“C”]

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100,Data =“C”]

[Ack# = 101, Seq# = 200,Data =“C”]

[Seq# = 101,Ack# = 201,Data =“i”]

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100,Data =“C”]

[Ack# = 101, Seq# = 200,Data =“C”]

[Seq# = 101,Ack# = 201,Data =“i”]

[Seq# = 201,Ack# = 102,Data =“i”]

© 2005–2007 Antonio Carzaniga

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100,Data =“C”]

[Ack# = 101, Seq# = 200,Data =“C”]

[Seq# = 101,Ack# = 201,Data =“i”]

[Seq# = 201,Ack# = 102,Data =“i”]

Acknowledgments are “piggybacked” on data segments

© 2005–2007 Antonio Carzaniga

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost

segments

◮ timeout without an ACK → lost packet → retransmission

© 2005–2007 Antonio Carzaniga

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost

segments

◮ timeout without an ACK → lost packet → retransmission

How long to wait for acknowledgments?

© 2005–2007 Antonio Carzaniga

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost

segments

◮ timeout without an ACK → lost packet → retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip

time RTT = 2L

◮ as close as possible to the RTT

© 2005–2007 Antonio Carzaniga

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost

segments

◮ timeout without an ACK → lost packet → retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip

time RTT = 2L

◮ as close as possible to the RTT

TCP controls its timeout by continuously estimating the

current RTT

© 2005–2007 Antonio Carzaniga

Round-Trip Time Estimation

© 2005–2007 Antonio Carzaniga

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

© 2005–2007 Antonio Carzaniga

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

◮ RFC 2988 recommends α = 0.125

© 2005–2007 Antonio Carzaniga

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1− β)DevRTT
′
+ β|RTT

′
− S|

© 2005–2007 Antonio Carzaniga

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1− β)DevRTT
′
+ β|RTT

′
− S|

◮ RFC 2988 recommends β = 0.25

© 2005–2007 Antonio Carzaniga

Timeout Value

© 2005–2007 Antonio Carzaniga

Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as

possible

© 2005–2007 Antonio Carzaniga

Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as

possible

TCP sets its timeouts using the estimated RTT (RTT) and the

variability estimate DevRTT :

T = RTT + 4DevRTT

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)

start_timer()

u_send([data,next_seq_num])

next_seq_num ← next_seq_num+ length(data)

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)

start_timer()

u_send([data,next_seq_num])

next_seq_num ← next_seq_num+ length(data)

timeout

u_send(pending segment with smallest sequence number)

start_timer()

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)

start_timer()

u_send([data,next_seq_num])

next_seq_num ← next_seq_num+ length(data)

timeout

u_send(pending segment with smallest sequence number)

start_timer()

u_recv([ACK,y])

if (y > base)

base← y

if (there are pending segments)

start_timer()

else . . .

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both

segments)

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both

segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both

segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

◮ Duplicate ACK: immediately send duplicate ACK

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both

segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in
the received data

© 2005–2007 Antonio Carzaniga

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number;
all data up to expected sequence number already
acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment; If that

does not arrive, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both

segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in
the received data

◮ Immediate ACK: immediately send ACK if the packet start at

the lower end of the gap

© 2005–2007 Antonio Carzaniga

Reaction to ACKs (Sender)

© 2005–2007 Antonio Carzaniga

Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)

base← y

if (there are pending segments)

start_timer()

© 2005–2007 Antonio Carzaniga

Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)

base← y

if (there are pending segments)

start_timer()

else

ack_counter[y]← ack_counter[y]+ 1

if (ack_counter[y] = 3)

u_send(segment with sequence number y)

© 2005–2007 Antonio Carzaniga

Connection Setup

© 2005–2007 Antonio Carzaniga

Connection Setup

Three-way handshake

© 2005–2007 Antonio Carzaniga

Connection Setup

Three-way handshake

client server

© 2005–2007 Antonio Carzaniga

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

© 2005–2007 Antonio Carzaniga

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN,ACK ,Ack# = cli_init_seq+ 1, Seq# = srv_init_seq]

© 2005–2007 Antonio Carzaniga

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN,ACK ,Ack# = cli_init_seq+ 1, Seq# = srv_init_seq]

[ACK , Seq# = cli_init_seq+ 1,Ack# = srv_init_seq+ 1]

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

client server

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

client server

[FIN]

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK]

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK]

[FIN]

© 2005–2007 Antonio Carzaniga

Connection Shutdown

“This is it.”

“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK]

[FIN]

[ACK]

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application

closes connection

send FIN

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application

closes connection

send FIN

FIN_WAIT_2

receive ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application

closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Client)

CLOSED

SYN_SENT

application

opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application

closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

wait 30 seconds

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

LAST_ACK

send FIN

© 2005–2007 Antonio Carzaniga

The TCP State Machine (Server)

CLOSED

LISTEN

application

opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

LAST_ACK

send FIN

receive ACK

© 2005–2007 Antonio Carzaniga

