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m Communication model: Alice sends a message m to Bob

Bob

m Passive adversary

Eve
» can read the message

m Active adversary

» can modify the message
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Bob

(ss]

m Confidentiality (a.k.a., privacy): Alice wants to make sure that
only Bob sees the message

m Authentication: Bob wants to make sure that the message he
reads was exactly what Alice wrote
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What is Privacy, Exactly?

Bob

m Alice wants to make sure that only Bob “sees” the message

m What if Eve can guess the message?
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“Shift” Cipher

m The ciphertext is
BUUBDL BU EBXO

m Plaintext is
ATTACK AT DAWN

m How many possible ciphers?

» How many key bits?



Problem
m Decrypt this ciphertext which is an Italian phrase encrypted
with a shift-cipher:

ulsgtlffvgklsgjhttpugkpguvz yhgbp hgtpgyp
yvbhpgwlygauhgzlsbhgvzjayh
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Substitution Cipher

m Substitution cipher
» alphabet > = {‘A’,‘B’,...,'Z"," '}

» encryption function: a permutation

E:¥-%

Example:

ABCDEFGHIIJKLMNOPQRSTUVWXY Z_
VZLQXT_RDUCOIJNFMGEHWPISYABK
How many possible permutations?

27! = 10888869450418352160768000000 ~ 273
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Substitution Cipher

m Encrypting some text using a substitution cipher

plaintext C T AO _MAMMA
GEEEER
ciphertext L D V F K J V

m Problems?

» easy to break just by guessing!
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Symmetric Encryption

K K
M C M
E D R
randomness
or state A
S sender
R receiver
A adversary
E encryption algorithm
D dencryption algorithm
M plaintext message
C ciphertext message
K key
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m Assumptions: the message M and the key K are two n-bit
strings

Me {0,117  K3{0,1}1"

the key K is chosen uniformly at random from {0, 1}"

m Scheme

» encryption:
E(K,M) :=Me K

the key K is then thrown away an never reused

» decryption:
D(K,C):=CeoK

m Example: M 0110010110111011
K 1011000101000101



One-Time Pad

m Assumptions: the message M and the key K are two n-bit
strings

Me {0,117  K3{0,1}1"

the key K is chosen uniformly at random from {0, 1}"

m Scheme

» encryption:
E(K,M) := Mo K
the key K is then thrown away an never reused

» decryption:
D(K,C):=CeoK

m Example: M 0110010110111011
K 1011000101000101
C 1101010011111110
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So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let KiIK; for every my # my € M, and for any C
Prkex[Exk(my) = C] = Prgex[Ex(my) = C]

Given a ciphertext C, every plaintext m is equiprobable

» 50, seeing any particular C = Ex(M) tells us nothing about M

Is a shift cipher perfectly secure?
Is a substitution cipher perfectly secure?

Is one-time-pad perfectly secure?
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The Cost of Perfect Privacy

m Perfect privacy implies that

|K] = M|

m Proof: assume not.
Fix a possible ciphertext C, i.e., there is a message m and a
key k such that Ex(m) = C, and Prxex[Ex(m) = C] > 0

Let Pc = {m € M such that Ex(m) = C for some k}

Since every k maps exactly one message mto C, and since we
have fewer keys than messages, then there is an m’ ¢ P¢ such
that no key k maps m’ to C; therefore Prgcx [Ex(m’) = C] = 0,
which violates the perfect-secrecy condition that for all m and
m', Prgex [Ex(m) = C] = Prgex [Ex(m") = C]
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Message Authenticity

M m
S ) R
L MAC| o o' MAC| _ | accept
gen. ver. reject
$ or state K I K
A
o message authentication code (MAC)
K key
$ randomness

MAC gen. MAC generation algorithm
MAC ver. MAC verification algorithm
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Asymmetric Encryption

PKR SKR
E D
$

A
PKr receiver’s public key
SKgr receiver’s secret key
M plaintext message
C ciphertext message
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Digital Signatures

M m
S ) R
o o’ accept
L sign verify»{ ) p
reject
$ SKs I PKs
A
o digital signature
SKs sender’s secret key
PKs sender’s public key
$ randomness
sign signing algorithm
verify verification algorithm
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Primitives vs. Protocols

m Protocol

» an algorithm

» solves a specific security problem (e.g., signing a message)

m Primitive

» also an algorithm
» the elementary subroutines of protocols

» implement (try to approximate) well-defined mathematical
object

» embody “hard problems”
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Stream Ciphers

m A stream cipher is a generator of a pseudo-random streams

» given an initialization key K

» generates an infinite pseudo-random sequence of bits

m E.g., RC4



Padding with a Stream Cipher



Padding with a Stream Cipher

m Assumptions: S and R share a secret key K and agree to use a
stream cipher Sk

» S and R maintain some state: position s initialized to s =0



Padding with a Stream Cipher

m Assumptions: S and R share a secret key K and agree to use a
stream cipher Sk

» S and R maintain some state: position s initialized to s =0

m Encryption protocol

1. Scomputes C — M@® Sk[s...s+ [M]| — 1]

2. S updates its position s — s+ |M]|



Padding with a Stream Cipher

m Assumptions: S and R share a secret key K and agree to use a
stream cipher Sk

» S and R maintain some state: position s initialized to s =0

m Encryption protocol

1. Scomputes C — M@® Sk[s...s+ [M]| — 1]

2. S updates its position s — s+ |M]|

m Dencryption protocol

1. Rcomputes M — C & S[s...s+ |C|—1]

2. Rupdates its position s — s+ |C]|
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Block Ciphers

m Block Cipher: E : {0,1}K x {0,1}" - {0,1}"
M

in
K E

%

Ex (M)

» Ex(-) is a permutation, so E,Z] (-) is always defined
» fixed-length input and output (n)

fixed-length key (k)

e.g., DES, AES

v

v
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An Encryption Protocol

m Symmetric encryption
» Input: k-bit key K, N-bit message M
» Output: N-bit ciphertext C

m Cipher Block Chaining (CBC)
» use a block cipher E: {0,1}Kx {0,1}" — {0,1}"
» split M into n-bit blocks M = My|IMy||...[IMp (£ =|N/n])
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Exercise

m Write the decryption algorithm for CBC

CBC-Decrypt(K, C)

1 x<0"

2 fori—O0to||C]|/n]

3 do M[ni...ni+n—1] < x®E (Clni...ni+n—-1J)
4 X<—Clni...ni+n-1]

5 return M
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An Encryption Protocol (2)

m Is this CBC protocol secure?

» any deterministic stateless protocol is insecure

» we need state and/or randomness

m What if |[M| # 0 mod n?

m Is CBC parallelizable?



CBC With Random IV

m CBCS$: cipher block chaining with random IV



CBC With Random IV

m CBCS$: cipher block chaining with random IV

CBCS$-Encrypt(K, M)
if M| =0V M| #0 mod n
then return L
M[1]-M[2]---M[¥] M

1

2

3

4 vEfo,1yn

5 C[0] < IV

6 fori—1tod

7 do C[i] < Ex(C[i—1] & M[i])
8 C—C[1]-C[2]---C[¥]

9 return (/V,C)
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CBC With Random IV (2)

m CBCS$: cipher block chaining with random 1V (decryption)

CBCS$-Decrypt(K, 1V, C)
1 if|C/|=0Vv|C|#0 modn

2 then return L

3 C[1]1-C[2]---C[¥]-C

4 C[0] < IV

5 fori—1tod

6 do M[i] — C[i— 1] & Ex(C[i])
7 M—M[1]-M[2]---M[L]

8 return M
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CBC With Stateful Counter

m CBCC: cipher block chaining with stateful counter

CBCC-Encrypt(K, M)
static ctr — 0
ifctr=2"v|M =0V |M #0 modn
then return L
M[1]-M[2]---M[{L] - M
IV — [ctr],
C[O] < [ctr]n
fori—1to?l
do C[i] < Ex(C[i— 1] ® M[i])
C—C[1]-C[2]---C[¥]
ctr — ctr +1
return (IV, C)

— QO LVWoKONOUVID~WN-—-
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CBC With Stateful Counter (2)

m CBCC: cipher block chaining with stateful counter

CBCC-Decrypt(K, 1V, C)
1 ifIV+|C| 22"V |C|=0V|C|#0 modn
2 then return L

3 C[1]-C[2]---C[¥]-C

4 |V — [ctr],

5 C[0] < IV

6 fori—1to?

7 do M[i] — Cl[i—1]e E¢' (C[i])

8 M~ M[1]-M[2]---M[¥]

9 return M
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Counter Mode

m CTRS$: counter mode with random initial counter
» family of functions: F: {0,1}K x {0,1}" — {0,1}"

CTRS$-Encrypt(K, M)

RE{0,1}"
Pad — Fi([R]n)
fori—1to[|M|/n] -1

do Pad — Pad -Fx([R + ilp)
Pad — first |M| bits of Pad
C - Mo Pad
return (R, C)

NOuvuibdh wWwnN —~
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Counter Mode (2)

m CTR$: counter mode with random initial counter (decryption)
» family of functions: F: {0,1}K x {0,1}" — {0,1}"

CTRS$-Decrypt(K, R, C)
Pad — Fx([R]n)
fori—1to[|C|/n] -1

do Pad — Pad -Fx([R + ilp)
Pad — first |C| bits of Pad
M — C o Pad
return VM

OOV A WN—
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Counter Mode (3)

m CTRC: counter mode with stateful counter
» family of functions: F: {0,1}K x {0,1}" — {0,1}"

CTRC(K, M)
1 staticR-—0
2 £ —[IM|/n]
3 ifR+f-1=2"
4 then return L
5 Pad — Fk([R]n)
6 fori—1tof -1
7 do Pad — Pad -Fx([R + iln)
8 Pad — first |M| bits of Pad
9 C~ Mo Pad
10 R—R+Y?
11 return{(R-72,C)
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Counter Mode (4)

m CTRC: counter mode with stateful counter (decryption)
» family of functions: F: {0,1}K x {0,1}" — {0,1}"

CTRC-Decrypt(K, R, C)
Pad — Fx([R]n)
fori—1to[|C|/n] -1

do Pad — Pad -Fx([R + ilp)
Pad — first |C| bits of Pad
M — C o Pad
return

OOV WN—
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m MAC generation
» Input: k-bit key K, N-bit message M
» Output: n-bit message authentication code o

m CBC with random IV
» use a block cipher E: {0,1}Kx {0,1}" — {0,1}"
» split M into n-bit blocks M = My|IMy||...[IMp (£ =|N/n])

MAC(K, M)

1 viio,1}n

2 C—1Iv

3 fori—O0to|[|M|/n]

4 do C - Ex(Co M[ni...ni+n-1]))
5 return (/V,C)




Authentication Protocol

m MAC generation
» Input: k-bit key K, N-bit message M
» Output: n-bit message authentication code o

m CBC with random IV
» use a block cipher E: {0,1}Kx {0,1}" — {0,1}"
» split M into n-bit blocks M = My|IMy||...[IMp (£ =|N/n])
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CBC MAC: Generation

m CBC MAC: cipher block chaining MAC with random IV

CBC-MACS$ (K, M)
if M| =0V |M|#0 modn
then return L
M[1]-M[2]---M[¥] M

1

2

3

4 viio, 1

5 C<1IV

6 fori—1tod

7 do C — Ex(C & M[i])
8 return (IV,C)
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CBC MAC: Verification

m CBC MAC: cipher block chaining MAC with random IV

CBC-MACS$-Verify(K, IV, 0, M)

1 ifIM =0V |M #0 modn
2 then return L
3 M[1]-M[2]---M[¥] M
4 C+—1IV

5 fori—1to?
6 do C — Ex(C & M[i])
7 ifC=0

8 then return Accept

9 else return Reject
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Cryptographic Hash Functions

m Cryptographic Hash: H: {0,1}* — {0,1}"

» H(-) is a good hash function when (informally)

Vme {0,1}*, he {0,137, PriH(m) = h] = %

» it is “difficult” to find collisions
find my,my € {0,1}*:my # my, Himy) = H(my)
» it is “difficult” to find a preimage
given me {0,1}*, find m : Hm') = m

» e.g., SHA-1
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Summary

m Basic ingredients: cryptographic primitives
» secret-key (symmetric) cryptography (e.g., AES)
» public-key (asymmetric) cryptography (e.g., RSA)
» cryptographic hash functions (e.g., SHA-1)
» stream ciphers (e.g., RC4)

m Recipes: cryptographic protocols
» certificates (e.g., X.509)
» secure transport (e.g., TLS, IPSec)

>---

m Applications

» electronic commerce
secure shell
secure electronic mail
virtual private networks

vy vV v Vv



