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Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

m In essence

» broadcast transmission of topology information
» global knowledge of the network

» local computation
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Changes in Link Costs

m Routers monitor the state of their adjacent links

» e.g., measuring the round-trip time using a local “ping”
protocol

B The measured costs are used to build LSAs, which are issued
also at reqgular intervals

m Changes in link costs are propagated quickly to all routers

m Routers can then react by recomputing paths and by updating
their forwarding tables accordingly

» in fact, this “reaction” is not different from the normal behavior
of the protocol
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m Every router u maintains a “distance vector”

» v is a destination node in the network
» D,[v] is the best known distance between u and v
» nylv] is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

m After a number of iterations, the algorithm converges to a
point where every router has a minimal distance vector
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m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

m Global computation

» the computation is actually distributed
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Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» D,[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

» Dy[v], distance vectors of every neighbor node x



Distance-Vector Algorithm: Initialization

> Initialization
forveVv
do if v € neighbors(u)
then D,[v] < c(u, v)
nylv] < v
else D,[v] « o
for x € neighbors(u)
doforveV
do Dy[V] <« o
send D, to all neighbor nodes
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Distance-Vector Algorithm: Loop

when D; is received from neighbor x
do Dy — D;,
forveN
do Dy[v] — minxeneighbors(u)(c(b’, x) + Dx[v])
if D, was updated
then send D, to all neighbor nodes

when link cost ¢(u, x) changes
doforveN
do Dy[v] — minxeneighbors(u)(c(b’, Xx) + Dx[v])
if D, was updated
then send D, to all neighbor nodes
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Distance-Vector Algorithm: D, Update

> updating Dy:
> VveN:Dylv] — minxeneighbors(u)(C(U, x) + Dx[v])
updated — false
forve N
do for x € neighbors(u)
do if D,[v] > c(u,x) + Dx[Vv]
then D,[v] < c(u, x) + Dx[v]
nylvl] < x
updated — true
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