Distance-Vector Routing

Antonio Carzaniga

Faculty of Informatics
University of Lugano

December 5, 2014

Recap on link-state routing
Distance-vector routing
Bellman-Ford equation
Distance-vector algorithm

Examples

Outline

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost path
from uto v

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost path

from uto v

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost path

from uto v

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost path

from uto v
O,
"

o
4

L4
[
[}
|
|]
|)
)
\)
)

|
|
]
...--'

Recap on Link-State Routing

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

m In essence

» broadcast transmission of topology information
» global knowledge of the network

» local computation

Changes in Link Costs

Changes in Link Costs

m Routers monitor the state of their adjacent links

» e.g., measuring the round-trip time using a local “ping”
protocol

Changes in Link Costs

m Routers monitor the state of their adjacent links

» e.g., measuring the round-trip time using a local “ping”
protocol

B The measured costs are used to build LSAs, which are issued
also at reqgular intervals

Changes in Link Costs

m Routers monitor the state of their adjacent links

» e.g., measuring the round-trip time using a local “ping”
protocol

B The measured costs are used to build LSAs, which are issued
also at reqgular intervals

m Changes in link costs are propagated quickly to all routers

m Routers can then react by recomputing paths and by updating
their forwarding tables accordingly

» in fact, this “reaction” is not different from the normal behavior
of the protocol

Distance-Vector Routing

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» D,[v] is the best known distance between u and v
» nylv] is the next-hop router on the best known path to v

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» D,[v] is the best known distance between u and v
» nylv] is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» D,[v] is the best known distance between u and v
» nylv] is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» D,[v] is the best known distance between u and v
» nylv] is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

m After a number of iterations, the algorithm converges to a
point where every router has a minimal distance vector

Distance-Vector Routing

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

m Global computation

» the computation is actually distributed

Intuition

Intuition

m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D,lv] = min (c(u, x) + Dx[v])
XEneighbors(u)

Intuition

m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D,lv] = min (c(u, x) + D[v])

XEneighbors(u)

Intuition

m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D,lv] = min (c(u, x) + Dx[v])
XEneighbors(u)

-y
-
-

Distance-Vector Algorithm

m Executing locally at node u

Distance-Vector Algorithm

m Executing locally at node u

m Variables storing values known at each iteration

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» D,[v], cost of the least-cost path from u to v (distance vector)

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» D,[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» D,[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

» Dy[v], distance vectors of every neighbor node x

Distance-Vector Algorithm: Initialization

> Initialization
forveVv
do if v € neighbors(u)
then D,[v] < c(u, v)
nylv] < v
else D,[v] « o
for x € neighbors(u)
doforveV
do Dy[V] <« o
send D, to all neighbor nodes

O 0O NO UL DA WN —

OOV A WN—

— O O 00

—_—

Distance-Vector Algorithm: Loop

when D; is received from neighbor x
do Dy — D;,
forveN
do Dy[v] — minxeneighbors(u)(c(b’, x) + Dx[v])
if D, was updated
then send D, to all neighbor nodes

when link cost ¢(u, x) changes
doforveN
do Dy[v] — minxeneighbors(u)(c(b’, Xx) + Dx[v])
if D, was updated
then send D, to all neighbor nodes

NOuvIh WN —

Distance-Vector Algorithm: D, Update

> updating Dy:
> VveN:Dylv] — minxeneighbors(u)(C(U, x) + Dx[v])
updated — false
forve N
do for x € neighbors(u)
do if D,[v] > c(u,x) + Dx[Vv]
then D,[v] < c(u, x) + Dx[v]
nylvl] < x
updated — true

Example

Example

v 238 g8 gllologelolosgs
gggl|lv|l-ggllvjogglviosgs
~ggllajloggllal-2e g 8 8
cgg|m|nga|lclee sl slves
YY) SN) [N W N (S gy

Example

T+ 8 © O <t o o 8 o o <t
Ulm—o© — g8 o o -0 ©o g8 o
oNO 3 O N — — O 3 o N —
T O N < ZOw M N < 40w
O NN O O NN O N
T+ 8 8 3 8 8 ©o 3 3 o 3 8
v|ig 8 38 — 3 3 o 3 3 ©o 3 3
on 8 3 o 3 8 — 3 8 3 8 8
<O 3 3 N 3 3 3 8 8 <+ 38 8
O NS O N O NS © NS

Example

<+ © o ©o < © © o o < ©
Mm — O — Mo o - o mo
~N O O o N — — O O © N —
o N < N O m M N < <t O m
S QT S 8 o O DT S .8 0
QQQ QAQQ QQQ [agaya)
<+ 3 © O <t © ©o 3 o o < ©
m — © — 38 O o — © 3 o
N O 3 O N — — O 3 o N —
O N < N O 3 MmN < <+ o 3
S Q. R RS} O S .8 v
[agajya) QAQQ QaQQ QAQQ
<+ 3 8 8 8 8 ©o 8 8 © 8 8
83 8 3 — 8 8 o 8 8 © 8 3
~N 8 8 © 8 8 — 38 8 8 8 8
o 8 8 ~N 8 8 8 38 8 <+ 8 8
S QT S 8 o O N S 8 0
QQQ QAQQ QQQ QAQQ

Example (2)

Example (2)
X

Dy

Dq

Dc

Example (2)

T+ 8 © O < o o 3 o [« e}
Ulme—o - 8 o o —o o 8o
oNO 3 O N — — O 3 o N —
© O N < N O 3 MmN < <t O 3
O NSNS O N O © S~
T+ 8 3 8 8 8 o 38 8 o 8 8
vig 8 8 — 8 8 o 3 8 o 3 8
o N 8 3 o 8 8 — 8 8 8 8 8
<o 3 8 ~N 3 38 8 8 3 <+ 8 8
Esss@sses|Pess|@Pssa

Example (2)

<+ 0 o o T o0 N © o o T o
Mm — O — Mo o - O N mn o
~N O O o N — — O O © N —
o N < N O m MmN < <t O m
S QT S 8 o O D' S8 0
QQQ QAQQ QQQ QQQ
<+ 3 © O < o o 3 o [« e}
Mm — o — 3 O o — O o 3 o
N O 3 O N — — O 3 o N —
O N < N O 3 MmN < <+ o 3
S Q. R RS} O S .8 v
[agajya) QAQQ QaQQ QAQQ
<+ 3 8 8 8 8 o 8 8 © 8 8
83 8 3 — 8 8 o 8 8 o 8 8
~N 8 8 © 8 8 — 38 8 8 8 8
o 8 8 ~N 8 8 8 8 3 <+ 8 8
S QT S 8 o O N S 8 0
QQQ QAQQ QQQ QAQQ

