Antonio Carzaniga

Faculty of Informatics University of Lugano

December 5, 2014

Outline

- Recap on link-state routing
- Distance-vector routing
- Bellman-Ford equation
- Distance-vector algorithm
- Examples

■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v*

■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v*

■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v*

Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v

Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links

- Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network

- Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network
- With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router

- Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network
- With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router
- In essence
 - broadcast transmission of topology information
 - global knowledge of the network
 - local computation

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol
- The measured costs are used to build LSAs, which are issued also at regular intervals

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol
- The measured costs are used to build LSAs, which are issued also at regular intervals
- Changes in link costs are propagated quickly to all routers
- Routers can then react by recomputing paths and by updating their forwarding tables accordingly
 - in fact, this "reaction" is not different from the normal behavior of the protocol

- Every router u maintains a "distance vector"
 - v is a destination node in the network
 - \triangleright $D_u[v]$ is the best known distance between u and v
 - \triangleright $n_u[v]$ is the next-hop router on the best known path to v

- Every router u maintains a "distance vector"
 - v is a destination node in the network
 - \triangleright $D_u[v]$ is the best known distance between u and v
 - \triangleright $n_{u}[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors

- Every router u maintains a "distance vector"
 - v is a destination node in the network
 - \triangleright $D_u[v]$ is the best known distance between u and v
 - \triangleright $n_{\mu}[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors
- If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors

- Every router u maintains a "distance vector"
 - v is a destination node in the network
 - \triangleright $D_u[v]$ is the best known distance between u and v
 - \triangleright $n_u[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors
- If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors
- After a number of iterations, the algorithm converges to a point where every router has a minimal distance vector

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a *local broadcast* can be useful)

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a local broadcast can be useful)
- Local knowledge of the network
 - router u knows its distance $D_u[v]$ and the first step along that path
 - router u does not know about any link cost except its adjacent links

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a local broadcast can be useful)
- Local knowledge of the network
 - router u knows its distance $D_u[v]$ and the first step along that path
 - router u does not know about any link cost except its adjacent links
- Global computation
 - the computation is actually distributed

The main idea behind the distance-vector algorithm is expressed well by the Bellman-Ford equation

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation*

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation*

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

Executing locally at node u

- Executing locally at node u
- Variables storing values known at each iteration

- Executing locally at node u
- Variables storing values known at each iteration
 - $D_u[v]$, cost of the least-cost path from u to v (distance vector)

- Executing locally at node u
- Variables storing values known at each iteration
 - \triangleright $D_u[v]$, cost of the least-cost path from u to v (distance vector)
 - $n_u[v]$, next-hop node (neighbor of u) on the least-cost path from u to v

- Executing locally at node u
- Variables storing values known at each iteration
 - \triangleright $D_u[v]$, cost of the least-cost path from u to v (distance vector)
 - n_u[v], next-hop node (neighbor of u) on the least-cost path from u to v
 - ▶ $D_x[v]$, distance vectors of every neighbor node x

Distance-Vector Algorithm: Initialization

```
▷ Initialization
    for v \in V
           do if v \in neighbors(u)
3
                  then D_u[v] \leftarrow c(u,v)
                          n_{u}[v] \leftarrow v
4
                  else D_{u}[v] \leftarrow \infty
6
    for x \in neighbors(u)
           do for v \in V
8
                     do D_x[v] \leftarrow \infty
    send D_{\mu} to all neighbor nodes
9
```

Distance-Vector Algorithm: Loop

```
when D'_x is received from neighbor x
           do D_x \leftarrow D_y'
               for v \in N
                    do D_u[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_x[v])
 5
               if D_{\mu} was updated
 6
                  then send D_u to all neighbor nodes
     when link cost c(u, x) changes
 8
           do for v \in N
                    do D_{u}[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])
 9
10
               if D_{\mu} was updated
11
                  then send D_{\mu} to all neighbor nodes
```

Distance-Vector Algorithm: *Du* Update

a	a	b	С	d
Da	0	2	∞	4
D_a D_b	∞	∞	∞	∞
D_d	∞	∞	∞	∞
b	a	b	С	d
D_b D_a	2	0	1	∞
D_a	∞	∞	∞	∞
D_c	∞	∞	∞	∞
(c)	a	b	С	d
\sim				
\sim	∞	1	0	6
D_c D_b	∞ ∞	1 ∞	0 ∞	6 ∞
\sim		-	-	
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $	∞	∞	∞	∞
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $	∞ ∞	∞ ∞	∞ ∞	∞ ∞
D _c D _b D _d	∞ ∞ a	∞ ∞ b	∞ ∞	∞ ∞ d

a	a	b	С	d	a	a
Da	0	2	∞	4	Da	0
D_b	∞	∞	∞	∞	D_b	2
D_d	∞	∞	∞	∞	D_d	4
b	a	b	С	d	b	a
D_b	2	0	1	∞	D_b	2
D_a	∞	∞	∞	∞	D_a	0
D_c	∞	∞	∞	∞	D_c	ox.
C	a	b	С	d	<u>C</u>	a
	a ∞	b 1	c 0	d 6	<u>C</u>	
D_c D_b					C D_c D_b	3
D_c	∞	1	0	6	<u>C</u>	
D _c D _b D _d	∞ ∞	1 ∞	0 ∞	6 ∞	C D_c D_b	3 2 4
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \end{array} $	& & & &	1 ∞ ∞	0 ∞ ∞	6 ∞ ∞	$ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \end{array} $	3 2 4
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \\ D_d \\ D_a \end{array} $	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	6 ∞ ∞	$ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \\ \hline D_d \\ D_a \end{array} $	3 2 4
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \end{array} $	∞ ∞ ∞ a 4	1 ∞ ∞ b ∞	0 ∞ ∞ c 6	6 ∞ ∞ d 0	$ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \end{array} $	3 2 4 a

(a)	a	b	C	d	
Da	0	2	3	4	-
D_b	2	0	1	∞	
D _a D _b D _d	4	∞	6	0	_
b	a	b	С	d	(
D_b	2	0	1	6	-
D_a	0	2	∞	4	•
D _b D _a D _c	∞	1	0	6	_ (
(0)	a	b	С	d	- '
D_c	3	1	0	6	
D,	_	_	-		
Db	2	0	1	∞	
C D_c D_b D_d	4	0 ∞	1 6	0	_
d		-			=
	4	∞	6	0	=

6

										$\overline{}$				
(a)	a	b	C	d	(a)	a	b	C	d	(a)	a	b	C	d
D_a	0	2	∞	4	Da	0	2	3	4	Da	0	2	3	4
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	6	0	D_d	4	6	6	0
b	a	b	С	d	b	a	b	С	d	b	a	b	С	d
D_b	2	0	1	∞	D_b	2	0	1	6	D_b	2	0	1	6
D_a	∞	∞	∞	∞	D_a	0	2	∞	4	D_a	0	2	3	4
D_c	8	∞	∞	∞	D_c	∞	1	0	6	D_c	3	1	0	6
(C)	a	b	С	d	(0)	a	b	С	d	(C)	a	b	С	d
D_c	∞	1	0	6	D_c	3	1	0	6	D_c	3	1	0	6
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	6	0	D_d	4	6	6	0
d	a	b	С	d	d	a	b	С	d	d	a	b	С	d
D_d	4	∞	6	0	D_d	4	6	6	0	D_d	4	6	6	0
D_a	∞	∞	∞	∞	D_a	0	2	∞	4	D_a	0	2	3	4
D_c	∞	∞	∞	∞	D_c	∞	1	0	6	D_c	3	1	0	6

(a)	a	b	С	d
Da	0	2	∞	4
D _a D _b	∞	∞	∞	∞
D_d	∞	∞	∞	∞
b	a	b	С	d
D_b D_a	2	0	1	∞
D_a	∞	∞	∞	∞
D_c	∞	∞	∞	∞
<u>c</u>	a	b	С	d
C				
=	a	b	С	d
C	a ∞	b 1	c	d 9
С D _c D _b	a ∞ ∞	b 1 ∞	c 0 ∞	d 9 ∞
D _c D _b D _d	a ∞ ∞ ∞	b 1 ∞ ∞	C 0 ∞ ∞	d 9 ∞ ∞
D _c D _b D _d	a ∞ ∞ ∞	b 1 ∞ ∞	c 0 ∞ ∞	d 9 ∞ ∞

(a)	a	b	С	d	(
Da	0	2	∞	4	D
D_b	∞	∞	∞	∞	D
D_d	∞	∞	∞	∞	D
(b)	a	b	С	d	
D_b	2	0	1	∞	D
D_a	∞	∞	∞	∞	D
D_c	∞	∞	∞	∞	D
<u>C</u>	a	b	С	d	(
D_c	a ∞	b 1	c 0	d 9	D
D_c D_b					D
D_c	∞	1	0	9	
D_c D_b D_d	∞ ∞	1 ∞	0 ∞	9 ∞	
D_c D_b D_d	⊗ ⊗ ⊗	1 ∞ ∞	0 ∞ ∞	9 ∞ ∞	D
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \\ D_d \\ D_a \end{array} $	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	9 ∞ ∞	
D_c D_b D_d	∞ ∞ ∞ a 4	1 ∞ ∞ b ∞	0 ∞ ∞ c 9	9 ∞ ∞ d 0	

a	a	b	С	d	-
Da	0	2	3	4	-
D_b	2	0	1	∞	
D _a D _b D _d	4	∞	9	0	_
b	a	b	С	d	(
D_b	2	0	1	6	-
D_a	0	2	∞	4	
D _b D _a D _c	∞	1	0	9	_
D _c D _b D _d	a	b	С	d	-
D_c	3	1	0	9	•
D_b	2	0	1	∞	
D_d	4	∞	9	0	_
d	a	b	С	d	•
D_d D_a	4	6	9	0	
D_{α}	0	2	∞	4	

$\overline{}$	1				$\overline{}$									
(a)	a	b	C	d	(a)	a	b	C	d	(a)	a	b	C	d
D_a	0	2	∞	4	Da	0	2	3	4	Da	0	2	3	4
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	9	0	D_d	4	6	9	0
b	a	b	С	d	b	a	b	С	d	b	a	b	С	d
D_b	2	0	1	∞	D_b	2	0	1	6	D_b	2	0	1	6
D_a	∞	∞	∞	∞	D_a	0	2	∞	4	D_a	0	2	3	4
D_c	∞	∞	∞	∞	D_c	∞	1	0	9	D_c	3	1	0	9
(c)	a	b	С	d	(c)	a	b	С	d	(C)	a	b	С	d
D_c	∞	1	0	9	D_c	3	1	0	9	D_c	3	1	0	7
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	9	0	D_d	4	6	9	0
(d)	a	b	С	d	d	a	b	С	d	d	a	b	С	d
			9	0	D_d	4	6	9	0	D_d	4	6	7	0
D_d	4	∞	9	U	OI .									
$\overline{}$	4 ∞	∞	∞	∞	D_a	0	2	∞	4	D_a	0	2	3	4