Antonio Carzaniga Faculty of Informatics University of Lugano December 5, 2014 #### **Outline** - Recap on link-state routing - Distance-vector routing - Bellman-Ford equation - Distance-vector algorithm - Examples ■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v* ■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v* ■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v* Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links - Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links - Routers use LSAs from other routers to compile an image of the entire network - Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links - Routers use LSAs from other routers to compile an image of the entire network - With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router - Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links - Routers use LSAs from other routers to compile an image of the entire network - With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router - In essence - broadcast transmission of topology information - global knowledge of the network - local computation - Routers monitor the state of their adjacent links - e.g., measuring the round-trip time using a local "ping" protocol - Routers monitor the state of their adjacent links - e.g., measuring the round-trip time using a local "ping" protocol - The measured costs are used to build LSAs, which are issued also at regular intervals - Routers monitor the state of their adjacent links - e.g., measuring the round-trip time using a local "ping" protocol - The measured costs are used to build LSAs, which are issued also at regular intervals - Changes in link costs are propagated quickly to all routers - Routers can then react by recomputing paths and by updating their forwarding tables accordingly - in fact, this "reaction" is not different from the normal behavior of the protocol - Every router u maintains a "distance vector" - v is a destination node in the network - \triangleright $D_u[v]$ is the best known distance between u and v - \triangleright $n_u[v]$ is the next-hop router on the best known path to v - Every router u maintains a "distance vector" - v is a destination node in the network - \triangleright $D_u[v]$ is the best known distance between u and v - \triangleright $n_{u}[v]$ is the next-hop router on the best known path to v - Routers exchange their distance vectors with their neighbors - Every router u maintains a "distance vector" - v is a destination node in the network - \triangleright $D_u[v]$ is the best known distance between u and v - \triangleright $n_{\mu}[v]$ is the next-hop router on the best known path to v - Routers exchange their distance vectors with their neighbors - If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors - Every router u maintains a "distance vector" - v is a destination node in the network - \triangleright $D_u[v]$ is the best known distance between u and v - \triangleright $n_u[v]$ is the next-hop router on the best known path to v - Routers exchange their distance vectors with their neighbors - If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors - After a number of iterations, the algorithm converges to a point where every router has a minimal distance vector - Local transmission of topology information - routers exchange their distance vectors only with their neighbors - no broadcast protocol needed (a *local broadcast* can be useful) - Local transmission of topology information - routers exchange their distance vectors only with their neighbors - no broadcast protocol needed (a local broadcast can be useful) - Local knowledge of the network - router u knows its distance $D_u[v]$ and the first step along that path - router u does not know about any link cost except its adjacent links - Local transmission of topology information - routers exchange their distance vectors only with their neighbors - no broadcast protocol needed (a local broadcast can be useful) - Local knowledge of the network - router u knows its distance $D_u[v]$ and the first step along that path - router u does not know about any link cost except its adjacent links - Global computation - the computation is actually distributed The main idea behind the distance-vector algorithm is expressed well by the Bellman-Ford equation $$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$ ■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation* $$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$ ■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation* $$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$ Executing locally at node u - Executing locally at node u - Variables storing values known at each iteration - Executing locally at node u - Variables storing values known at each iteration - $D_u[v]$, cost of the least-cost path from u to v (distance vector) - Executing locally at node u - Variables storing values known at each iteration - \triangleright $D_u[v]$, cost of the least-cost path from u to v (distance vector) - $n_u[v]$, next-hop node (neighbor of u) on the least-cost path from u to v - Executing locally at node u - Variables storing values known at each iteration - \triangleright $D_u[v]$, cost of the least-cost path from u to v (distance vector) - n_u[v], next-hop node (neighbor of u) on the least-cost path from u to v - ▶ $D_x[v]$, distance vectors of every neighbor node x #### **Distance-Vector Algorithm: Initialization** ``` ▷ Initialization for v \in V do if v \in neighbors(u) 3 then D_u[v] \leftarrow c(u,v) n_{u}[v] \leftarrow v 4 else D_{u}[v] \leftarrow \infty 6 for x \in neighbors(u) do for v \in V 8 do D_x[v] \leftarrow \infty send D_{\mu} to all neighbor nodes 9 ``` #### Distance-Vector Algorithm: Loop ``` when D'_x is received from neighbor x do D_x \leftarrow D_y' for v \in N do D_u[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_x[v]) 5 if D_{\mu} was updated 6 then send D_u to all neighbor nodes when link cost c(u, x) changes 8 do for v \in N do D_{u}[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v]) 9 10 if D_{\mu} was updated 11 then send D_{\mu} to all neighbor nodes ``` ### Distance-Vector Algorithm: *Du* Update | a | a | b | С | d | |--|-------------|-------------|----------|-------------| | Da | 0 | 2 | ∞ | 4 | | D_a D_b | ∞ | ∞ | ∞ | ∞ | | D_d | ∞ | ∞ | ∞ | ∞ | | b | a | b | С | d | | D_b D_a | 2 | 0 | 1 | ∞ | | D_a | ∞ | ∞ | ∞ | ∞ | | D_c | ∞ | ∞ | ∞ | ∞ | | (c) | a | b | С | d | | \sim | | | | | | \sim | ∞ | 1 | 0 | 6 | | D_c D_b | ∞
∞ | 1
∞ | 0
∞ | 6
∞ | | \sim | | - | - | | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ | ∞ | ∞ | ∞ | ∞ | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ | ∞
∞ | ∞
∞ | ∞
∞ | ∞
∞ | | D _c
D _b
D _d | ∞
∞
a | ∞
∞
b | ∞
∞ | ∞
∞
d | | a | a | b | С | d | a | a | |---|-----------------------|-----------------------|-----------------------|-----------------------|---|------------------| | Da | 0 | 2 | ∞ | 4 | Da | 0 | | D_b | ∞ | ∞ | ∞ | ∞ | D_b | 2 | | D_d | ∞ | ∞ | ∞ | ∞ | D_d | 4 | | b | a | b | С | d | b | a | | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | | D_a | ∞ | ∞ | ∞ | ∞ | D_a | 0 | | D_c | ∞ | ∞ | ∞ | ∞ | D_c | ox. | | | | | | | | | | C | a | b | С | d | <u>C</u> | a | | | a
∞ | b
1 | c
0 | d
6 | <u>C</u> | | | D_c D_b | | | | | C D_c D_b | 3 | | D_c | ∞ | 1 | 0 | 6 | <u>C</u> | | | D _c
D _b
D _d | ∞
∞ | 1
∞ | 0
∞ | 6
∞ | C D_c D_b | 3
2
4 | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \end{array} $ | &
&
&
& | 1
∞
∞ | 0
∞
∞ | 6
∞
∞ | $ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \end{array} $ | 3
2
4 | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \\ D_d \\ D_a \end{array} $ | ∞
∞
∞ | 1
∞
∞ | 0
∞
∞ | 6
∞
∞ | $ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \\ \hline D_d \\ D_a \end{array} $ | 3
2
4 | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \end{array} $ | ∞
∞
∞
a
4 | 1
∞
∞
b
∞ | 0
∞
∞
c
6 | 6
∞
∞
d
0 | $ \begin{array}{c c} \hline C \\ D_c \\ D_b \\ D_d \end{array} $ | 3
2
4
a | | (a) | a | b | C | d | | |--|----------|----------|----------|----------|-----| | Da | 0 | 2 | 3 | 4 | - | | D_b | 2 | 0 | 1 | ∞ | | | D _a
D _b
D _d | 4 | ∞ | 6 | 0 | _ | | b | a | b | С | d | (| | D_b | 2 | 0 | 1 | 6 | - | | D_a | 0 | 2 | ∞ | 4 | • | | D _b
D _a
D _c | ∞ | 1 | 0 | 6 | _ (| | (0) | a | b | С | d | - ' | | D_c | 3 | 1 | 0 | 6 | | | D, | _ | _ | - | | | | Db | 2 | 0 | 1 | ∞ | | | C D_c D_b D_d | 4 | 0
∞ | 1
6 | 0 | _ | | d | | - | | | = | | | 4 | ∞ | 6 | 0 | = | 6 | | | | | | | | | | | $\overline{}$ | | | | | |-------|----------|----------|----------|----------|-------|----------|---|----------|----------|---------------|---|---|---|---| | (a) | a | b | C | d | (a) | a | b | C | d | (a) | a | b | C | d | | D_a | 0 | 2 | ∞ | 4 | Da | 0 | 2 | 3 | 4 | Da | 0 | 2 | 3 | 4 | | D_b | ∞ | ∞ | ∞ | ∞ | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | | D_d | ∞ | ∞ | ∞ | ∞ | D_d | 4 | ∞ | 6 | 0 | D_d | 4 | 6 | 6 | 0 | | b | a | b | С | d | b | a | b | С | d | b | a | b | С | d | | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | D_b | 2 | 0 | 1 | 6 | | D_a | ∞ | ∞ | ∞ | ∞ | D_a | 0 | 2 | ∞ | 4 | D_a | 0 | 2 | 3 | 4 | | D_c | 8 | ∞ | ∞ | ∞ | D_c | ∞ | 1 | 0 | 6 | D_c | 3 | 1 | 0 | 6 | | (C) | a | b | С | d | (0) | a | b | С | d | (C) | a | b | С | d | | D_c | ∞ | 1 | 0 | 6 | D_c | 3 | 1 | 0 | 6 | D_c | 3 | 1 | 0 | 6 | | D_b | ∞ | ∞ | ∞ | ∞ | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | | D_d | ∞ | ∞ | ∞ | ∞ | D_d | 4 | ∞ | 6 | 0 | D_d | 4 | 6 | 6 | 0 | | d | a | b | С | d | d | a | b | С | d | d | a | b | С | d | | D_d | 4 | ∞ | 6 | 0 | D_d | 4 | 6 | 6 | 0 | D_d | 4 | 6 | 6 | 0 | | D_a | ∞ | ∞ | ∞ | ∞ | D_a | 0 | 2 | ∞ | 4 | D_a | 0 | 2 | 3 | 4 | | D_c | ∞ | ∞ | ∞ | ∞ | D_c | ∞ | 1 | 0 | 6 | D_c | 3 | 1 | 0 | 6 | | (a) | a | b | С | d | |--|------------------|------------------|------------------|------------------| | Da | 0 | 2 | ∞ | 4 | | D _a
D _b | ∞ | ∞ | ∞ | ∞ | | D_d | ∞ | ∞ | ∞ | ∞ | | b | a | b | С | d | | D_b D_a | 2 | 0 | 1 | ∞ | | D_a | ∞ | ∞ | ∞ | ∞ | | D_c | ∞ | ∞ | ∞ | ∞ | | | | | | | | <u>c</u> | a | b | С | d | | C | | | | | | = | a | b | С | d | | C | a
∞ | b
1 | c | d
9 | | С
D _c
D _b | a
∞
∞ | b
1
∞ | c
0
∞ | d
9
∞ | | D _c
D _b
D _d | a
∞
∞
∞ | b
1
∞
∞ | C
0
∞
∞ | d
9
∞
∞ | | D _c
D _b
D _d | a
∞
∞
∞ | b
1
∞
∞ | c
0
∞
∞ | d
9
∞
∞ | | (a) | a | b | С | d | (| |---|-----------------------|-----------------------|-----------------------|-----------------------|---| | Da | 0 | 2 | ∞ | 4 | D | | D_b | ∞ | ∞ | ∞ | ∞ | D | | D_d | ∞ | ∞ | ∞ | ∞ | D | | (b) | a | b | С | d | | | D_b | 2 | 0 | 1 | ∞ | D | | D_a | ∞ | ∞ | ∞ | ∞ | D | | D_c | ∞ | ∞ | ∞ | ∞ | D | | | | | | | | | <u>C</u> | a | b | С | d | (| | D_c | a
∞ | b
1 | c
0 | d
9 | D | | D_c D_b | | | | | D | | D_c | ∞ | 1 | 0 | 9 | | | D_c D_b D_d | ∞ ∞ | 1
∞ | 0
∞ | 9
∞ | | | D_c D_b D_d | ⊗
⊗
⊗ | 1
∞
∞ | 0
∞
∞ | 9
∞
∞ | D | | $ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \\ D_d \\ D_a \end{array} $ | ∞
∞
∞ | 1
∞
∞ | 0
∞
∞ | 9
∞
∞ | | | D_c D_b D_d | ∞
∞
∞
a
4 | 1
∞
∞
b
∞ | 0
∞
∞
c
9 | 9
∞
∞
d
0 | | | a | a | b | С | d | - | |--|----------|----------|----------|----------|---| | Da | 0 | 2 | 3 | 4 | - | | D_b | 2 | 0 | 1 | ∞ | | | D _a
D _b
D _d | 4 | ∞ | 9 | 0 | _ | | b | a | b | С | d | (| | D_b | 2 | 0 | 1 | 6 | - | | D_a | 0 | 2 | ∞ | 4 | | | D _b
D _a
D _c | ∞ | 1 | 0 | 9 | _ | | D _c
D _b
D _d | a | b | С | d | - | | D_c | 3 | 1 | 0 | 9 | • | | D_b | 2 | 0 | 1 | ∞ | | | D_d | 4 | ∞ | 9 | 0 | _ | | d | a | b | С | d | • | | D_d D_a | 4 | 6 | 9 | 0 | | | D_{α} | 0 | 2 | ∞ | 4 | | | $\overline{}$ | 1 | | | | $\overline{}$ | | | | | | | | | | |---------------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|-------|---|---|---|---| | (a) | a | b | C | d | (a) | a | b | C | d | (a) | a | b | C | d | | D_a | 0 | 2 | ∞ | 4 | Da | 0 | 2 | 3 | 4 | Da | 0 | 2 | 3 | 4 | | D_b | ∞ | ∞ | ∞ | ∞ | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | | D_d | ∞ | ∞ | ∞ | ∞ | D_d | 4 | ∞ | 9 | 0 | D_d | 4 | 6 | 9 | 0 | | b | a | b | С | d | b | a | b | С | d | b | a | b | С | d | | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | D_b | 2 | 0 | 1 | 6 | | D_a | ∞ | ∞ | ∞ | ∞ | D_a | 0 | 2 | ∞ | 4 | D_a | 0 | 2 | 3 | 4 | | D_c | ∞ | ∞ | ∞ | ∞ | D_c | ∞ | 1 | 0 | 9 | D_c | 3 | 1 | 0 | 9 | | (c) | a | b | С | d | (c) | a | b | С | d | (C) | a | b | С | d | | D_c | ∞ | 1 | 0 | 9 | D_c | 3 | 1 | 0 | 9 | D_c | 3 | 1 | 0 | 7 | | D_b | ∞ | ∞ | ∞ | ∞ | D_b | 2 | 0 | 1 | ∞ | D_b | 2 | 0 | 1 | 6 | | D_d | ∞ | ∞ | ∞ | ∞ | D_d | 4 | ∞ | 9 | 0 | D_d | 4 | 6 | 9 | 0 | | (d) | a | b | С | d | d | a | b | С | d | d | a | b | С | d | | | | | 9 | 0 | D_d | 4 | 6 | 9 | 0 | D_d | 4 | 6 | 7 | 0 | | D_d | 4 | ∞ | 9 | U | OI . | | | | | | | | | | | $\overline{}$ | 4
∞ | ∞ | ∞ | ∞ | D_a | 0 | 2 | ∞ | 4 | D_a | 0 | 2 | 3 | 4 |