Reliable Data Transfer II

Antonio Carzaniga

Faculty of Informatics
University of Lugano

October 1, 2014

Outline

m Performance of the stop-and-wait protocol
m Go-Back-N

m Selective repeat

Back to Reliable Data Tranfer

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Back to Reliable Data Tranfer

r_send(data) timeout
data_pkt = [0, datal* u_send(data_pkt)
u_send(data_pkt) start_timer()

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 1))
u_send(data_pkt)
start_timer()

start_timer()

u_recv(pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

and (pkt is corrupted
or pkt = (ACK, 0))
u_send(data_pkt)
start_timer()

r_send(data)

timeout data_pkt = [1, datal*

) u_send(data_pkt)
start_timer()

u_send(data_pkt
start_timer()

Network Usage

sender receiver
r_send(pkt,)

Network Usage

sender receiver
r_send(pkt,)

u_send([pkt;,0])

sender
r_send(pkt,)

u_send([pkt;,0])

[pk{]’oj

Network Usage

receiver

sender
r_send(pkt,)

u_send([pkt;,0])

[pk{]’oj

Network Usage

receiver

u_send([ACK,0])
r_recv(pkt)

sender
r_send(pkt,)

u_send([pkt;,0])

[pk{]’oj

\ Ac\(,0\

Network Usage

receiver

u_send([ACK,0])
r_recv(pkt)

sender
r_send(pkt,)

u_send([pkt;,0])

r_send(pkt,)

[pk{]’oj

\ Ac\(,0\

Network Usage

receiver

u_send([ACK,0])
r_recv(pkt)

sender
r_send(pkt;)

u_send([pkt;,0])

r_send(pkt;)
u_send([pkt;,1])

[pk{]’oj

\ Ac\(,0\

Network Usage

receiver

u_send([ACK,0])
r_recv(pkt)

Network Usage

sender receiver
r_send(pkt;)

u_send([pkt;,0])

u_send([ACK,0])
r_send(pkt;) r_recv(pkt)

u_send([pkt;,1])

Network Usage

sender receiver
r_send(pkt;)

u_send([pkt;,0])

u_send([ACK,0])
r_send(pkt;) r_recv(pkt)

u_send([pkt;,1])

u_send([ACK,1])
r_recv(pkt,)

Network Usage

sender receiver
r_send(pkt;)

u_send([pkt;,0])

u_send([ACK,0])
r_send(pkt;) r_recv(pkt)

u_send([pkt;,1])

u_send([ACK,1])
r_recv(pkt,)

Network Usage

sender receiver

Network Usage

sender receiver

Network Usage

sender receiver

[

Network Usage

sender receiver

d

ypkt] / R

Network Usage

sender receiver

Network Usage

sender receiver

utilization 4
factor 1
_ypkt] /R
__Lpe/R
U= 3t r J

Improving Network Usage

m How do we achieve a better utilization factor?

Improving Network Usage

m How do we achieve a better utilization factor?
sender receiver

[ﬁ/(fl,O]

< \ACK‘O\

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

%

[ﬁ/(tw’ W =5

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement
(base)

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable
first pending next available
acknowledgement sequence number

(base) (next_seq_num)

Go-Back-N

m Idea: the sender transmits multiple packets without waiting
for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

» the sender’s state machine gets very complex
» we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable
first pending next available
acknowledgement sequence number
(base) (next_seq_num)

window size (W)

Sliding Window Protocol: Sender

A

base next_seq_num
I

sliding window

Sliding Window Protocol: Sender

A

base next_seq_num
I

sliding window

m r_send(pkt,)

Sliding Window Protocol: Sender

A

base next_seq_num
I

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])

Sliding Window Protocol: Sender

A A

base next_seq_num
I |

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])
> next_seq_num = next_seq_num + 1

Sliding Window Protocol: Sender

A
v

A A

base next_seq_num
I |

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])
> next_seq_num = next_seq_num + 1

m u_recv([ACK,A])

Sliding Window Protocol: Sender

A

T il

A A

base next_seq_num
I

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])
> next_seq_num = next_seq_num + 1

m u_recv([ACK,A])

> base = A+ 1

Sliding Window Protocol: Sender

A

A A

base next_seq_num
I

sliding window

m r_send(pkt,)

» u_send([pkt,,next_seq_num])
> next_seq_num = next_seq_num + 1

m u_recv([ACK,A])
» base = A+ 1

» notice that acknewledgements are “cumulative”

Sliding Window Protocol: Sender

Sliding Window Protocol: Sender

m The sender remembers the first sequence number that has not
yet been acknowledged

» or the highest acknowledged sequence number

m The sender remembers the first available sequence number

» or the highest used sequence number (i.e., sent to the receiver)

m The sender responds to three types of events

Sliding Window Protocol: Sender

m The sender remembers the first sequence number that has not
yet been acknowledged

» or the highest acknowledged sequence number

m The sender remembers the first available sequence number

» or the highest used sequence number (i.e., sent to the receiver)

m The sender responds to three types of events

» r_send(): invocation from the application layer: send more data
if a sequence number is available

Sliding Window Protocol: Sender

m The sender remembers the first sequence number that has not
yet been acknowledged

» or the highest acknowledged sequence number

m The sender remembers the first available sequence number

» or the highest used sequence number (i.e., sent to the receiver)

m The sender responds to three types of events

» r_send(): invocation from the application layer: send more data
if a sequence number is available

» ACK: receipt of an acknowledgement: shift the window (it’s a
“cumulative” ACK)

Sliding Window Protocol: Sender

m The sender remembers the first sequence number that has not
yet been acknowledged

» or the highest acknowledged sequence number

m The sender remembers the first available sequence number

» or the highest used sequence number (i.e., sent to the receiver)

m The sender responds to three types of events
» r_send(): invocation from the application layer: send more data
if a sequence number is available

» ACK: receipt of an acknowledgement: shift the window (it’s a
“cumulative” ACK)

» timeout: “Go-Back-N.” l.e., resend all the packets that have
been sent but not acknowledged

Sliding Window Protocol: Sender

m init
base = 1
next_seq_num = 1

Sliding Window Protocol: Sender

m init
base = 1
next_seq_num = 1

m r_send(data)

if next_seq_num < base + W:
pkt[next_seq_num) =[next_seq_num, datal*
u_send(pkt[next_seq_num])
if next_seq_num == base:

start_timer()

next_seq_num = next_seq_num + 1

else:
refuse_data(data) // block the sender

Sliding Window Protocol: Sender

m u_recv(pkt) and pkt is corrupted

Sliding Window Protocol: Sender

m u_recv(pkt) and pkt is corrupted

m u_recv(ACK,ack_num)
base = ack_num + 1 // resume the sender
if next_seq_num == base:
stop_timer()
else:
start_timer()

Sliding Window Protocol: Sender

m u_recv(pkt) and pkt is corrupted

m u_recv(ACK,ack_num)
base = ack_num + 1 // resume the sender
if next_seq_num == base:
stop_timer()
else:
start_timer()

m timeout
start_timer()
foreach i in base... next_seq_num—1:
u_send(pkt[i])

Sliding Window Protocol: Receiver

Sliding Window Protocol: Receiver

m Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

Sliding Window Protocol: Receiver

m Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

m The receiver waits for a (good) data packet with the expected
sequence number

Sliding Window Protocol: Receiver

m Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

m The receiver waits for a (good) data packet with the expected
sequence number

» acknowledges the expected sequence number

Sliding Window Protocol: Receiver

m Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

m The receiver waits for a (good) data packet with the expected
sequence number

» acknowledges the expected sequence number
» delivers the data to the application

Sliding Window Protocol: Receiver

m init
expected_seq_num = 1
ackpkt = [ACK,0]1*

Sliding Window Protocol: Receiver

m init
expected_seq_num = 1
ackpkt = [ACK,0]1*

m u_recv([data, seq_num]) and good
and seq_num = expected_seq_num
r_recv(data)
ackpkt = [ACK, expected_seq_num]l*
expected_seq_num = expected_seq_num + 1
u_send(ackpkt)

Sliding Window Protocol: Receiver

m init
expected_seq_num = 1
ackpkt = [ACK,0]1*

m u_recv([data, seq_num]) and good
and seq_num = expected_seq_num
r_recv(data)
ackpkt = [ACK, expected_seq_num]l*
expected_seq_num = expected_seq_num + 1
u_send(ackpkt)

m u_recv([data, seq_num))
and (corrupted or seq_num + expected_seq_num)
u_send(ackpkt)

Comments

m Concepts

Comments

m Concepts

> Ssequence numbers

Comments

m Concepts

> Ssequence numbers
» sliding window

Comments

m Concepts
> Ssequence numbers
» sliding window
» cumulative acknowledgements

Comments

m Concepts

> Ssequence numbers

» sliding window

» cumulative acknowledgements

» checksums, timeouts, and sender-initiated retransmission

Comments

m Concepts
> Ssequence numbers
» sliding window
» cumulative acknowledgements
» checksums, timeouts, and sender-initiated retransmission

m Advantages: simple

Comments

m Concepts
> Ssequence numbers
» sliding window
» cumulative acknowledgements
» checksums, timeouts, and sender-initiated retransmission

m Advantages: simple

» the sender maintains two counters and a one timer
» the receiver maintains one counter

Comments

m Concepts

> Ssequence numbers

» sliding window

» cumulative acknowledgements

» checksums, timeouts, and sender-initiated retransmission

m Advantages: simple

» the sender maintains two counters and a one timer
» the receiver maintains one counter

m Disadvantages: not optimal, not adaptive

Comments

m Concepts

> Ssequence numbers

» sliding window

» cumulative acknowledgements

» checksums, timeouts, and sender-initiated retransmission

m Advantages: simple
» the sender maintains two counters and a one timer

» the receiver maintains one counter

m Disadvantages: not optimal, not adaptive

» the sender can fill the window without filling the pipeline

Comments

m Concepts
> Ssequence numbers
» sliding window
» cumulative acknowledgements
» checksums, timeouts, and sender-initiated retransmission

m Advantages: simple

» the sender maintains two counters and a one timer
» the receiver maintains one counter

m Disadvantages: not optimal, not adaptive

» the sender can fill the window without filling the pipeline
» the receiver may buffer out-of-order packets. ..

Performance Analysis

m What is a good value for W?

Performance Analysis

m What is a good value for W?

» W that achieves the maximum utilization of the connection

Performance Analysis

m What is a good value for W?

» W that achieves the maximum utilization of the connection

= Stream
= 500ms

1Mb/s
?

Sxa s
I

m What is a good value for W?

Performance Analysis

» W that achieves the maximum utilization of the connection

Sxa s

stream
500ms
1Mb/s

?

m The problem may seem a bit underspecified. What is the
(average) packet size?

'3 pkt
d
R

w

1Kb

500ms
1Mb/s

2dxR = 1000

ﬁpkt

Performance Analysis

m The RTT-throughput product (2d x R) is the crucial factor

Performance Analysis

m The RTT-throughput product (2d x R) is the crucial factor

» Wx ¥y <2d xR

» why W X €y > 2d X R doesn’t make much sense?

Performance Analysis

m The RTT-throughput product (2d x R) is the crucial factor

» Wx ¥y <2d xR

» why W X €y > 2d X R doesn’t make much sense?

» maximum channel utilization when W x €,,kt =2d xR

» 2d X R can be thought of as the capacity of a connection

Problems with Go-Back-N

m Let’s consider a fully utilized connection

Problems with Go-Back-N

m Let’s consider a fully utilized connection

d = 500ms
R = 1Mb/s

w = B4 _1000
pkt

Problems with Go-Back-N

m Let’s consider a fully utilized connection

epkt =]Kb
d = 500ms
R = 1Mb/s
w = B4 _1000
pkt

m What happens if the first packet (or acknowledgement) is lost?

Problems with Go-Back-N

m Let’s consider a fully utilized connection

epkt =]Kb
d = 500ms
R = 1Mb/s
w = B4 _1000
pkt

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers

Problems with Go-Back-N

m Let’s consider a fully utilized connection

epkt =]Kb
d = 500ms
R = 1Mb/s
w = £4_1000
pkt

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers

» Wx Ay =2dxR=1Mb

» retransmitting 1Mb to recover 1Kb worth of data isn’t exactly
the best solution. Not to mention conjestions. ..

Problems with Go-Back-N

m Let’s consider a fully utilized connection

epkt =]Kb
d = 500ms
R = 1Mb/s
w = £4_1000
pkt

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers

» Wx Ay =2dxR=1Mb

» retransmitting 1Mb to recover 1Kb worth of data isn’t exactly
the best solution. Not to mention conjestions. ..

m Is there a better way to deal with retransmissions?

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

» sender maintains a vector of acknowledgement flags

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

» sender maintains a vector of acknowledgement flags

» receiver maintains a vector of acknowledged falgs

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted
» sender maintains a vector of acknowledgement flags
» receiver maintains a vector of acknowledged falgs

» in fact, receiver maintains a buffer of out-of-order packets

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

>

>

sender maintains a vector of acknowledgement flags
receiver maintains a vector of acknowledged falgs
in fact, receiver maintains a buffer of out-of-order packets

sender maintains a timer for each pending packet

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

>

>

sender maintains a vector of acknowledgement flags
receiver maintains a vector of acknowledged falgs

in fact, receiver maintains a buffer of out-of-order packets
sender maintains a timer for each pending packet

sender resends a packet when its timer expires

Selective Repeat

m Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

>

>

sender maintains a vector of acknowledgement flags
receiver maintains a vector of acknowledged falgs

in fact, receiver maintains a buffer of out-of-order packets
sender maintains a timer for each pending packet

sender resends a packet when its timer expires

sender slides the window when the lowest pending sequence
number is acknowledged

Selective Repeat: Sender

A A

base next_seq_num
I

sliding window

Selective Repeat: Sender

A A

base next_seq_num
I

sliding window I
m r_send(pkt,)

Selective Repeat: Sender

A A

base next_seq_num
I

sliding window I
m r_send(pkt,)
» u_send([pkt,,next_seq_num])
» start_timer(next_seq_num)

Selective Repeat: Sender

A A
Ibase

next_seq_num
]

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])
» start_timer(next_seq_num)

» next_seq_num = next_seq_num + 1

Selective Repeat: Sender

<— >

A A

base next_seq_num
I |

sliding window
m r_send(pkt,)
» u_send([pkt,,next_seq_num])
» start_timer(next_seq_num)
» next_seq_num = next_seq_num + 1

m u_recv([ACK,A])

Selective Repeat: Sender

A

next_seq_num
]

base
1

sliding window
m r_send(pkt,)
» u_send([pkt,,next_seq_num])
» start_timer(next_seq_num)

» next_seq_num = next_seq_num + 1

m u_recv([ACK,A])

» acks[A] = 1 // remember that A was ACK’d

Selective Repeat: Sender

base next_seq_num
I |

A

sliding window
m r_send(pkt,)

» u_send([pkt,,next_seq_num])
» start_timer(next_seq_num)
» next_seq_num = next_seq_num + 1

m u_recv([ACK,A])

» acks[A] = 1 // remember that A was ACK’d
» acknewledgements are no longer “cumulative”

Selective Repeat: Receiver

Selective Repeat: Receiver

received acceptable not usable

rcv_base
1

sliding window

Selective Repeat: Receiver

X
received \l, acceptable not usable

rcv_base
1

sliding window

m u_recv([pkt;,X1]) and rcv_base < Xy < rcv_base + W

Selective Repeat: Receiver

X
received \l, acceptable not usable

rcv_base
1

sliding window

m u_recv([pkt;,X1]) and rcv_base < Xy < rcv_base + W
> buffer[Xi] = pkt
» u_send([ACK, X;1%) // no longer a “cumulative” ACK

Selective Repeat: Receiver

received acceptable not usable

rcv_base
1

sliding window

Selective Repeat: Receiver

X2
received \l, acceptable

not usable

rcv_base
1

sliding window

m u_recv([pkt,X2]) and rcv_base < X, < rcv_base + W

> buffer[Xo] = pkt;
» u_send([ACK, X>1%)

Selective Repeat: Receiver

X2
received \l, acceptable not usable

rcv_base
1

sliding window

m u_recv([pkt,X2]) and rcv_base < X, < rcv_base + W
> buffer[Xo] = pkt;
» u_send([ACK, X21%)
» if X == rcv_base:

Selective Repeat: Receiver

X B
received \l, \l, acceptable not usable

rcv_base
1

sliding window

m u_recv([pkt,X2]) and rcv_base < X, < rcv_base + W
> buffer[Xo] = pkt;
» u_send([ACK, X21%)
» if Xo == rcv_base:
B = first_missing_seq_num()
foreach iin rcv_base...B—1:
r_recv(buffer(i])

Selective Repeat: Receiver

received acceptable not usable

rcv_base
1

sliding window

m u_recv([pkt,X2]) and rcv_base < X, < rcv_base + W

> buffer[Xo] = pkt;
» u_send([ACK, X21%)
» if Xo == rcv_base:

B = first_missing_seq_num()

foreach iin rcv_base...B—1:

r_recv(buffer(i])
rcv_base = B

Selective Repeat: Sender

Selective Repeat: Sender

B T 77 1

base next_seq_num
I |

sliding window

Selective Repeat: Sender

A

base next_seq_num
I |

sliding window

m Timeout for sequence number T

Selective Repeat: Sender

A

base next_seq_num
I |

sliding window

m Timeout for sequence number T
» u_send([pkt[T], T1*)

Selective Repeat: Sender

B T 77 1

base next_seq_num
I |

sliding window

Selective Repeat: Sender

A

base next_seq_num
I |

sliding window

m u_recv([ACK,A])

Selective Repeat: Sender

A

base next_seq_num
I |

sliding window

m u_recv([ACK,A])
» acks[A] = 1

Selective Repeat: Sender

A

base next_seq_num
I |

sliding window

m u_recv([ACK,A])
» acks[A] = 1
» if A== base:

Selective Repeat: Sender

A A

base next_seq_num
I

sliding window

m u_recv([ACK,A])

» acks[A] = 1

» if A== base:
base = first_missing_ack_num()

