
Reliable Data Transfer

Antonio Carzaniga

Faculty of Informatics
University of Lugano

October 29, 2014

© 2005–2007 Antonio Carzaniga

Outline

Finite-state machines

Using FSMs to specify protocols

Principles of reliable data transfer

Reliability over noisy channels

ACKs/NACKs

© 2005–2007 Antonio Carzaniga

Finite-State Machines

© 2005–2007 Antonio Carzaniga

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state

automaton (DFA), non-deterministic finite-state automaton

(NFA)

© 2005–2007 Antonio Carzaniga

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state

automaton (DFA), non-deterministic finite-state automaton

(NFA)

FSMs are a very useful formalism to specify and implement

network protocols

© 2005–2007 Antonio Carzaniga

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state

automaton (DFA), non-deterministic finite-state automaton

(NFA)

FSMs are a very useful formalism to specify and implement

network protocols

Ubiquitous in computer science

◮ theory of formal languages

◮ compiler design

◮ theory of computation

◮ text processing

◮ behavior specification

◮ . . .

© 2005–2007 Antonio Carzaniga

Finite-State Machines

S1 S2

x

x

© 2005–2007 Antonio Carzaniga

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

© 2005–2007 Antonio Carzaniga

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

© 2005–2007 Antonio Carzaniga

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

◮ an edge labeled x going from state S1 to state S2 says that

when the machine is in state S1 and event x occurs, the

machine switches to state S2

© 2005–2007 Antonio Carzaniga

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

◮ an edge labeled x going from state S1 to state S2 says that

when the machine is in state S1 and event x occurs, the

machine switches to state S2

On Off

button-pushed

button-pushed

© 2005–2007 Antonio Carzaniga

Finite-State Machines

1 0

reset

reset

set

set

© 2005–2007 Antonio Carzaniga

Finite-State Machines

1 0

reset

reset

set

set

unlockedlocked

try-unlock

1s timeout

button-1 button-2

30s timeout

© 2005–2007 Antonio Carzaniga

Finite-State Machines

0/0

15/0

0/15

30/0

0/30

40/0

0/40

15/15

30/15

15/30

30/30

40/15

15/40

40/30

30/40

game A

game B

deuce

adv. A

adv. B

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
b

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a
b

b

© 2005–2007 Antonio Carzaniga

FSMs to Specify Protocols

© 2005–2007 Antonio Carzaniga

FSMs to Specify Protocols

States represent the state of a protocol

© 2005–2007 Antonio Carzaniga

FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout

◮ action: typically consists of an output message

© 2005–2007 Antonio Carzaniga

FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout

◮ action: typically consists of an output message

E.g., here’s a specification of a “simple conversation protocol”

input (or event)

output (or action)

S C

“Hello!”

“Yo”

“Bye.”

“Okay. Bye.”
30s

“Gotta go. Bye.”

“bla”

“aha”

© 2005–2007 Antonio Carzaniga

Example

E.g., a subset of a server-side, SMTP-like protocol

S A

accept
“220 Ok”

60sec
close

R

“RCPT TO”
“250 Ok”

T

“MAIL FROM”
“250 Ok”

D

“MAIL FROM”
“250 Ok”

“RCPT TO”
“250 Ok”

30sec
close

30sec
close

M

“DATA”
“354 end with .”

line

60s
close

“.”
“250 accepted”

“QUIT”
“221 bye”,close

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

n
e
tw

o
rk

best-effort (i.e., unreliable) network

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

n
e
tw

o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp

o
rt

reliable-transfer
protocol

reliable-transfer
protocol

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

n
e
tw

o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp

o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

n
e
tw

o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp

o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

u_send() u_recv()

© 2005–2007 Antonio Carzaniga

Back to Reliable Data Transfer
a
p
p
li
c
a
ti

o
n

Web
browser

Web
server

n
e
tw

o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp

o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

u_send() u_recv()

r_send() r_recv()

u_send() u_recv()

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer Model

sender receiver

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer Model

sender receiver

reliable-transfer

protocol

(sender)

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer Model

sender receiver

reliable-transfer

protocol

(sender)

r_send()

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer Model

sender receiver

reliable-transfer

protocol

(sender)

r_send()

u_send() u_recv()

network

© 2005–2007 Antonio Carzaniga

Reliable Data Transfer Model

sender receiver

reliable-transfer

protocol

(sender)

r_send()

u_send() u_recv()

network

r_recv()

reliable-transfer

protocol

(receiver)

u_send() u_recv()

© 2005–2007 Antonio Carzaniga

Baseline Protocol

Reliable transport protocol that uses a reliable network

(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

© 2005–2007 Antonio Carzaniga

Baseline Protocol

Reliable transport protocol that uses a reliable network

(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

receiver

R
u_recv(data)

r_recv(data)

© 2005–2007 Antonio Carzaniga

Baseline Protocol

Reliable transport protocol that uses a reliable network

(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

receiver

R
u_recv(data)

r_recv(data)

© 2005–2007 Antonio Carzaniga

Noisy Channel

© 2005–2007 Antonio Carzaniga

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

© 2005–2007 Antonio Carzaniga

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?

(Think of a phone call over a noisy line)

© 2005–2007 Antonio Carzaniga

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?

(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a

received packet is corrupted (i.e., when it contains flipped bits)

© 2005–2007 Antonio Carzaniga

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?

(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a

received packet is corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender

that a corrupted packet was received

© 2005–2007 Antonio Carzaniga

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?

(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a

received packet is corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender

that a corrupted packet was received

◮ retransmission: the sender retransmits corrupted packets

© 2005–2007 Antonio Carzaniga

Error Detection

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that

there was an error if the result is not 0 (i.e., if it is 1)

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that

there was an error if the result is not 0 (i.e., if it is 1)

Sender:

message is 1001011011101000

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that

there was an error if the result is not 0 (i.e., if it is 1)

Sender:

message is 1001011011101000 ⇒ send 10010110111010000

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that

there was an error if the result is not 0 (i.e., if it is 1)

Sender:

message is 1001011011101000 ⇒ send 10010110111010000

Receiver:

receives 10010110101010000

© 2005–2007 Antonio Carzaniga

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are

better error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that

there was an error if the result is not 0 (i.e., if it is 1)

Sender:

message is 1001011011101000 ⇒ send 10010110111010000

Receiver:

receives 10010110101010000 ⇒ error!

© 2005–2007 Antonio Carzaniga

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an

error-detection code (i.e., a checksum)

© 2005–2007 Antonio Carzaniga

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an

error-detection code (i.e., a checksum)

S ACK

r_send(data)

data_pkt = [data]∗

u_send(data_pkt)

u_recv(pkt)

and pkt is NACK

u_send(data_pkt)

u_recv(pkt)

and pkt is ACK

© 2005–2007 Antonio Carzaniga

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an

error-detection code (i.e., a checksum)

S ACK

r_send(data)

data_pkt = [data]∗

u_send(data_pkt)

u_recv(pkt)

and pkt is NACK

u_send(data_pkt)

u_recv(pkt)

and pkt is ACK

Receiver

R

u_recv(pkt)

and pkt is corrupted

u_send(NACK)

u_recv(pkt)

and pkt is good

u_send(ACK)

r_recv(pkt)

© 2005–2007 Antonio Carzaniga

Noisy Channel

© 2005–2007 Antonio Carzaniga

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each

packet

◮ i.e., the sender must receive a (positive) acknowledgment

before it can take more data from the application layer

© 2005–2007 Antonio Carzaniga

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each

packet

◮ i.e., the sender must receive a (positive) acknowledgment

before it can take more data from the application layer

Does the protocol really work?

© 2005–2007 Antonio Carzaniga

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each

packet

◮ i.e., the sender must receive a (positive) acknowledgment

before it can take more data from the application layer

Does the protocol really work?

What happens if an error occurs within an ACK/NACK packet?

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

Not Good: this protocol doesn’t seem to end

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can

always figure out what the message is, even if a few bits are

corrupted

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can

always figure out what the message is, even if a few bits are

corrupted

◮ good enough for channels that do not loose messages

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can

always figure out what the message is, even if a few bits are

corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet

© 2005–2007 Antonio Carzaniga

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”

2. receiver hears: “let’s . . . Taxi . . . ”

3. receiver says: “Repeat message!”

4. sender hears: “. . . noise . . . ”

5. sender says: “Repeat your ACK please!”

6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can

always figure out what the message is, even if a few bits are

corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet

◮ good idea, but it introduces duplicate packets (why?)

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

7. receiver hears: “7: let’s go see Taxi Driver”

8. receiver ignores the packet

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

7. receiver hears: “7: let’s go see Taxi Driver”

8. receiver ignores the packet

How many bits do we need for the sequence number?

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

7. receiver hears: “7: let’s go see Taxi Driver”

8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the

receiver needs to distinguish between (1) the next packet and

(2) the retransmission of the current packet

© 2005–2007 Antonio Carzaniga

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the

receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver passes “let’s go see Taxi Driver” to application layer

4. receiver says: “Got it!” (i.e., ACK)

5. sender hears: “. . . noise . . . ”

6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

7. receiver hears: “7: let’s go see Taxi Driver”

8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the

receiver needs to distinguish between (1) the next packet and

(2) the retransmission of the current packet

◮ so, one bit is sufficient

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)
u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)
u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt is ACK

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)
u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt is ACK

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)
u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt is ACK

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)
u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt is ACK

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

u_recv(pkt)

and (pkt is NACK

or pkt is corrupted)

u_send(data_pkt)

u_recv(pkt)

and pkt is good

and pkt is ACK

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK]∗)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK]∗)

r_recv(pkt)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK]∗)

© 2005–2007 Antonio Carzaniga

Using Sequence Numbers: Receiver

R0

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK]∗)

r_recv(pkt)

© 2005–2007 Antonio Carzaniga

Better Use of ACKs

Do we really need both ACKs and NACKs?

© 2005–2007 Antonio Carzaniga

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can

convey the semantics of a NACK by sending an ACK for the

last good packet it received

© 2005–2007 Antonio Carzaniga

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can

convey the semantics of a NACK by sending an ACK for the

last good packet it received

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver says: “Got it!”

4. sender hears: “Got it!”

5. sender says: “8: let’s meet at 8:00PM”

6. receiver hears: “. . . noise . . . ”

© 2005–2007 Antonio Carzaniga

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can

convey the semantics of a NACK by sending an ACK for the

last good packet it received

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver says: “Got it!”

4. sender hears: “Got it!”

5. sender says: “8: let’s meet at 8:00PM”

6. receiver hears: “. . . noise . . . ”

7. receiver now says: “Got 7” (instead of saying “Please, resend”)

8. sender hears: “Got 7”

© 2005–2007 Antonio Carzaniga

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can

convey the semantics of a NACK by sending an ACK for the

last good packet it received

1. sender says: “7: let’s go see Taxi Driver”

2. receiver hears: “7: let’s go see Taxi Driver”

3. receiver says: “Got it!”

4. sender hears: “Got it!”

5. sender says: “8: let’s meet at 8:00PM”

6. receiver hears: “. . . noise . . . ”

7. receiver now says: “Got 7” (instead of saying “Please, resend”)

8. sender hears: “Got 7”

9. sender knows that the current message is 8, and therefore

repeats: “8: let’s meet at 8:00PM”

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

u_recv(pkt)

and pkt is good

and pkt = (ACK,1)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

u_recv(pkt)

and pkt is good

and pkt = (ACK,1)

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

u_recv(pkt)

and pkt is good

and pkt = (ACK,1)

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

u_recv(pkt)

and (pkt = (ACK,0)

or pkt is corrupted)

u_send(data_pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Receiver

R0

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK,0]∗)

r_recv(pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK,0]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK,1]∗)

r_recv(pkt)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK,0]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK,1]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is corrupted

u_send([ACK,1]∗)

u_recv(pkt)

and pkt is corrupted

u_send([ACK,0]∗)

© 2005–2007 Antonio Carzaniga

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK,0]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK,1]∗)

r_recv(pkt)

u_recv(pkt)

and pkt is corrupted

u_send([ACK,1]∗)

u_recv(pkt)

and pkt is corrupted

u_send([ACK,0]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 0

u_send([ACK,0]∗)

u_recv(pkt)

and pkt is good

and seq_num(pkt) is 1

u_send([ACK,1]∗)

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect

transmission errors

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect

transmission errors

Retransmission allow us to recover from transmission errors

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect

transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection

code

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect

transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection

code

◮ corrupted ACKs are interpreded as NACKs, possibly generating

duplicate segments

© 2005–2007 Antonio Carzaniga

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect

transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection

code

◮ corrupted ACKs are interpreded as NACKs, possibly generating

duplicate segments

Sequence numbers allow the receiver to ignore duplicate data

segments

© 2005–2007 Antonio Carzaniga

Lossy And Noisy Channel

© 2005–2007 Antonio Carzaniga

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

© 2005–2007 Antonio Carzaniga

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?

(Think of radio transmissions over a noisy and shared medium.

Also, think about what we just did for noisy channels)

© 2005–2007 Antonio Carzaniga

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?

(Think of radio transmissions over a noisy and shared medium.

Also, think about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to

determine that a packet was lost (how?)

© 2005–2007 Antonio Carzaniga

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?

(Think of radio transmissions over a noisy and shared medium.

Also, think about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to

determine that a packet was lost (how?)

ACKs, retransmission, and sequence numbers: lost packets

can be easily treated as corrupted packets

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,0)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

© 2005–2007 Antonio Carzaniga

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,1)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

S1

u_recv(pkt)

and pkt is good

and pkt = (ACK,0)

ACK1

r_send(data)

data_pkt = [1,data]∗

u_send(data_pkt)

start_timer()

timeout

u_send(data_pkt)

start_timer()

u_recv(pkt)

and (pkt = (ACK,0)

or pkt is corrupted)

u_send(data_pkt)

start_timer()

u_recv(pkt)

and pkt is good

and pkt = (ACK,1)

© 2005–2007 Antonio Carzaniga

