Peer-To-Peer Applications

Antonio Carzaniga

Faculty of Informatics
University of Lugano

October 22, 2014

Outline

m Transferring big files
» client-server vs. peer-to-peer

m BitTorrent
m Peer-to-peer search

m Miscellaneous

Transferring Big Files

m How long does it take to transfer a big file?

Transferring Big Files

m How long does it take to transfer a big file?

Example:

size = 600Mb
speed = 500Kb/s
T=7

Transferring Big Files

m How long does it take to transfer a big file?

Example:

size = 600Mb
speed = 500Kb/s

T =1200s = 20min

Transferring Big Files

m How long does it take to transfer a big file?

Example:
size = 600Mb
speed = 500Kb/s
T =1200s = 20min
In general: _
size
- speed

(we ignore the latency, which is marginal for large files)

Transferring Big Files

m How long does it take to transfer a big file?

Example:
size = 600Mb
speed = 500Kb/s
T =1200s = 20min
In general: _
size
- speed

(we ignore the latency, which is marginal for large files)

m How long does it take to transfer a big and very popular file?

» N clients want the file

Transferring Big and Popular Files

S

/
Internet

G

u

4

O]

Transferring Big and Popular Files

AN
d3
461/4

S

Internet

&

Transferring Big and Popular Files

S
Vo e
1 /
4> _%q)
d3
Internet
Q=7

Let F = file size, N = number of clients

Transferring Big and Popular Files

S
C

- %
> %)

d3

Internet
Q=7 5
C
Let F = file size, N = number of clients
Tcs = max (Z—f, ﬁ)

Exploiting Peer-to-Peer Connections

Exploiting Peer-to-Peer Connections

1. Split the file into blocks

Exploiting Peer-to-Peer Connections

1. Split the file into blocks

2. The server sends different blocks to different clients

Exploiting Peer-to-Peer Connections

1. Split the file into blocks
2. The server sends different blocks to different clients

3. The clients exchange blocks using “peer-to-peer” connections

Transfer Time with P2P Connections

S
Ve
> 2P|
% Internet
P 5

Transfer Time with P2P Connections

S
Ue
ds uz

Internet

Transfer Time with P2P Connections

“x
us ;\ d>
&)
uz
Internet

F F
Tp2p = max
<Us Amin’ Us + z, 1 u,)

Transferring Big and Popular Files

m Transfer time is at least

Tpop = max(F_f NF >
P2P =) ’
Us dmin us + Z:V:] uj

Transferring Big and Popular Files

m Transfer time is at least

Tpop = max(F_f NF >
P2P =) ’
Us dmin us + Z:V:] uj

B Assuming Uy = Uy = - -+ = UN = Up

Tp2p = max <£ F F)
p2p = LIS, dmin, LIS/N+ UP

Transferring Big and Popular Files

m Transfer time is at least

F NF >
Usg dmm US-I-Z, 1 Ui

Tp2p = max (

B Assuming Uy = Uy = - -+ = UN = Up

F F
T, >
p2p = Max <us dmin’ Us/ N + up>

m And for large peer groups (N > 1)

F F F
)

Tp2p = max (
Us’ dmm Up

Transferring Big and Popular Files

m Transfer time is at least

F NF
)

Tp2p = max (
us’ dmin’ US-I-Z, 1 Ui

B Assuming Uy = Uy = - -+ = UN = Up

F F)

Tp2p = max <
Us’ dmin’ Us/N + up

m And for large peer groups (N > 1)

FF)

Tp2p = max (
us’ dmin’ Up

The transfer time does not depend on the number of receivers!

BitTorrent: Tracker and Startup

BitTorrent: Tracker and Startup

m A tracker keeps track of which peers participate in the
“torrent”

BitTorrent: Tracker and Startup

m A tracker keeps track of which peers participate in the
“torrent”
» at startup, Alice requests a list of peers from the tracker

» then, Alice tries to establish direct connections with her
“neighbor peers”

» periodically, Alice tells the tracker that she is still participating
in the torrent

BitTorrent: Tracker and Startup

m A tracker keeps track of which peers participate in the
“torrent”

» at startup, Alice requests a list of peers from the tracker

» then, Alice tries to establish direct connections with her
“neighbor peers”

» periodically, Alice tells the tracker that she is still participating
in the torrent

m The torrent (one or more files) is split into equal-size chunks
» peers accumulate chunks and keep track of the chunks they
have

» it might be that no single peer has all the chunks, as long as all
the chunks are available from some peer

BitTorrent: Exchanging Chunks

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

» periodically, Alice requests the list of chunks of her peers

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

» periodically, Alice requests the list of chunks of her peers

» Alice figures who has what chunks, and therefore requests
some chunks from her neighbors

» Alice requests the rarest chunk first (why?)

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

» periodically, Alice requests the list of chunks of her peers

» Alice figures who has what chunks, and therefore requests
some chunks from her neighbors

» Alice requests the rarest chunk first (why?)

» Alice also receives requests from her neighbors

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

» periodically, Alice requests the list of chunks of her peers

» Alice figures who has what chunks, and therefore requests
some chunks from her neighbors

» Alice requests the rarest chunk first (why?)
» Alice also receives requests from her neighbors

> Alice gives priority to neighbors that share the most (highest
rate): she sends her chunks to the top four (why?)

BitTorrent: Exchanging Chunks

m Neigboring peers exchange their lists of chunks and
eventually exchange chunks

» periodically, Alice requests the list of chunks of her peers

» Alice figures who has what chunks, and therefore requests
some chunks from her neighbors

» Alice requests the rarest chunk first (why?)
» Alice also receives requests from her neighbors

> Alice gives priority to neighbors that share the most (highest
rate): she sends her chunks to the top four (why?)

» periodically, Alice also selects another trading partner at
random (why?)

Searching

m How do you find files in a file-sharing network?

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses

» not too good: performance bottleneck, single point of failure,
etc.

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses
» not too good: performance bottleneck, single point of failure,
etc.

m Distributed peer-to-peer search with query flooding

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses
» not too good: performance bottleneck, single point of failure,
etc.
m Distributed peer-to-peer search with query flooding

» not too good (why?)

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses
» not too good: performance bottleneck, single point of failure,
etc.
m Distributed peer-to-peer search with query flooding
» not too good (why?)

» many variants: limited scope, probabilistic, hierarchical with
super-peeers, etc.

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses
» not too good: performance bottleneck, single point of failure,
etc.
m Distributed peer-to-peer search with query flooding
» not too good (why?)
» many variants: limited scope, probabilistic, hierarchical with
super-peeers, etc.
m Distributed peer-to-peer search with structured indexes
» a.k.a., distributed hash tables (DHTs)

Searching

m How do you find files in a file-sharing network?

m Centralized index (i.e., client-server)
» typically maps objects (e.g., files, nicknames) to IP addresses
» not too good: performance bottleneck, single point of failure,
etc.
m Distributed peer-to-peer search with query flooding
» not too good (why?)
» many variants: limited scope, probabilistic, hierarchical with
super-peeers, etc.
m Distributed peer-to-peer search with structured indexes
» a.k.a., distributed hash tables (DHTs)

» many variants, lots of interesting theoretical and practical
developments

Skype

m How does Skype work?

Skype

m How does Skype work? ...or what Skype does not want you to
know

Skype

m How does Skype work? ...or what Skype does not want you to
know

m Search: how does Alice find Bob?

» peer-to-peer index

Skype

m How does Skype work? ...or what Skype does not want you to
know

m Search: how does Alice find Bob?

» peer-to-peer index

m Connections: how does Alice connect to Bob?

Skype

m How does Skype work? ...or what Skype does not want you to
know

m Search: how does Alice find Bob?

» peer-to-peer index

m Connections: how does Alice connect to Bob?

» direct connections when possible

Skype

m How does Skype work? ...or what Skype does not want you to
know

m Search: how does Alice find Bob?

» peer-to-peer index

m Connections: how does Alice connect to Bob?

» direct connections when possible

» indirect connections through a relay “super-peer”

Skype

m How does Skype work? ...or what Skype does not want you to
know

m Search: how does Alice find Bob?

» peer-to-peer index

m Connections: how does Alice connect to Bob?

» direct connections when possible

» indirect connections through a relay “super-peer”

m And much more: chat, audio/video codecs, multi-party
communication, etc.

