Representing and Searching
Sets of Strings

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

April 27,2016

Outline

m Radix search

m Ternary search tries

Sets of Strings

Sets of Strings

m Several very important applications

Sets of Strings

m Several very important applications
E.g.,
» dictionary (of words)
> symbol table in a compiler

» all kinds of key-based index

» e

Symbol Table

m Operations

m Operations

>

>

>

insert(Key)

delete(Key)
search(Key)
min()

max()

Symbol Table

Dictionary

m Operations

Dictionary

m Operations

> insert(Key)

> search(Key)

Dictionary

m Operations

> insert(Key)

> search(Key)

m No delete operation

m Built once and searched many times

Binary Search

BINARYSEARCH (A, K) TREE-SEARCH(T, K)
1 first=1 1 x = T.root
2 last = length(A) 2 whilex # NiLand K # x. key
3 whilefirst < last 3 if K < x.key
4 x = [(first + last) /2] 4 x = x.left
5 if A[x] == 5 else x = x.right
6 return TRUE 6 ifx#NIL
7 elseif first == last 7 return TRUE
8 return FALSE 8 elsereturn FALSE
9 elseif A[x] > K

10 last = x -1

11 elsefisrt = x+1

12 return FALSE

m Complexity?

Binary Search

K is a string!
BINARYSEARCH (A, K) TREE-SEARCH(T, K)
1 first=1 1 x = T.root
2 last = length(A) 2 whilex # NiLand K # x. key
3 whilefirst < last 3 if K < x.key
4 x = [(first + last) /2] 4 x = x.left
5 if A[x] == 5 else x = x.right
6 return TRUE 6 ifx#NIL
7 elseif first == last 7 return TRUE
8 return FALSE 8 elsereturn FALSE
9 elseif A[x] > K
10 last = x -1
11 elsefisrt = x+1
12 return FALSE

m Complexity?

Binary Search

K is a string!
BINARYSEARCH (A, K) TREE-SEARCH(T, K)
1 first=1 1 x = T.root
2 last = length(A) 2 whilex # NiLand K # x. key
3 whilefirst < last 3 if K < x.key
4 x = [(first + last) /2] 4 x = x.left
5 if A[x] == 5 else x = x.right
6 return TRUE 6 ifx#NIL
7 elseif first == last 7 return TRUE
8 return FALSE 8 elsereturn FALSE
9 elseif A[x] > K
10 last = x -1
11 elsefisrt = x+1
12 return FALSE

m Complexity?
> we must account for the complexity of string comparisons

String Comparison

String Comparison

B Assuming a string is an array of bytes, the condition A[x] == K (line 5
of BINARYSEARCH) becomes STRINGEQUALS (A[x], K)

String Comparison

B Assuming a string is an array of bytes, the condition A[x] == K (line 5
of BINARYSEARCH) becomes STRINGEQUALS (A[x], K)

STRINGEQUALS (S, S5)
1 if length(S;) # length(S,)
2 return FALSE

3 forj = 1tolength(S;)

4 if S1[i] # Sz [i]

5 return FALSE

6 return TRUE

String Comparison

B Assuming a string is an array of bytes, the condition A[x] == K (line 5
of BINARYSEARCH) becomes STRINGEQUALS (A[x], K)

STRINGEQUALS (S, S5)
1 if length(S;) # length(S,)
2 return FALSE

3 forj = 1tolength(S;)

4 if S1[i] # Sz [i]

5 return FALSE

6 return TRUE

m The complexity of STRINGEQUALS (S, S;) is O(m), where m is the max
string size

String Comparison

B Assuming a string is an array of bytes, the condition A[x] == K (line 5
of BINARYSEARCH) becomes STRINGEQUALS (A[x], K)

STRINGEQUALS (S, S5)
1 if length(S;) # length(S,)
2 return FALSE

3 forj = 1tolength(S;)

4 if S1[i] # Sz [i]

5 return FALSE

6 return TRUE

m The complexity of STRINGEQUALS (S, S;) is O(m), where m is the max
string size

m So, the complexity of BINARYSEARCH (A, K) is O(m log n)

What About a Hash Table

CHAINED-HASH-SEARCH (T, K) HASH-SEARCH(T, K)
1 L =T[h(K)] 1 fori = 1tolength(T)
2 return LIST-SEARCH (L, K) 2 j = h(K,i)
3 if T[j] ==
4 return TRUE
5 if T[j] == NIL
6 return FALSE
7 return FALSE

What About a Hash Table

CHAINED-HASH-SEARCH (T, K) HASH-SEARCH(T, K)
1 L =T[h(K)] 1 fori = 1tolength(T)
2 return LIST-SEARCH (L, K) 2 j = h(K,i)
3 if T[j] ==
4 return TRUE
5 if T[j] == NIL
6 return FALSE
7 return FALSE

m Complexity?

What About a Hash Table

CHAINED-HASH-SEARCH (T, K) HASH-SEARCH(T, K)
1 L =T[h(K)] 1 fori = 1tolength(T)
2 return LIST-SEARCH (L, K) 2 j = h(K,i)
3 if T[] ==
4 return TRUE
5 if T[j] == NIL
6 return FALSE
7 return FALSE

m Complexity?

> here, too, we must account for the string comparisons

What About a Hash Table

CHAINED-HASH-SEARCH (T, K) HASH-SEARCH(T, K)
1 L =T[h(K)] 1 fori = 1tolength(T)
2 return LIST-SEARCH (L, K) 2 j = h(K,i)
3 if T[] ==
4 return TRUE
5 if T[j] == NIL
6 return FALSE
7 return FALSE

m Complexity?
> here, too, we must account for the string comparisons
» and for the hash functions

Observation

Observation

m When we start BINARYSEARCH (A, K)

> A[x] is probably far away from K

> so, STRINGEQUALS(A[x], K) is likely to return quickly

Observation

m When we start BINARYSEARCH (A, K)

> A[x] is probably far away from K

> so, STRINGEQUALS(A[x], K) is likely to return quickly

m Later in BINARYSEARCH (A, K)

> Al[x] gets closer and closer to K

> so, STRINGEQUALS(A[x], K) is likely to iterate for nearly m steps

Observation

m When we start BINARYSEARCH (A, K)
> A[x] is probably far away from K

> so, STRINGEQUALS(A[x], K) is likely to return quickly

m Later in BINARYSEARCH (A, K)
> Al[x] gets closer and closer to K

> so, STRINGEQUALS(A[x], K) is likely to iterate for nearly m steps

> problem is, STRINGEQUALS (A[x], K) is likely to go through the same
prefix of K many times

m So, since m = ©(log N), and BINARYSEARCH (A, K) uses ©(log N)
comparisons each one runningin O(m):

T(N, m) = O(log? N)

A New Data Structure

m |dea: a data structure where common prefixes are shared

A New Data Structure

m |dea: a data structure where common prefixes are shared

OpOK0%0,
OuOR0%0,
(-~
(]
O-E--O

A “Trie”

m Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

A “Trie”

m Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

m Every node holds one character

A “Trie”

m Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

m Every node holds one character

m Keys with the same prefix share a branch of the tree

A “Trie”

m Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

m Every node holds one character
m Keys with the same prefix share a branch of the tree

m Keys are stored at (or just represented by) leaf nodes

A “Trie”

Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

Every node holds one character
Keys with the same prefix share a branch of the tree
Keys are stored at (or just represented by) leaf nodes

Question: how do we represent nodes and links?

A “Trie”

Data structure useful for information retrieval (pronounced “try” to
distinguish it from a tree...)

Every node holds one character
Keys with the same prefix share a branch of the tree
Keys are stored at (or just represented by) leaf nodes

Question: how do we represent nodes and links?

> one way would be to hold |X| links

» one for each character of the given alphabet

Radix Trie

Radix Trie

26=1z2

Radix Trie

|||7\|

26=1z2

Radix Trie

|||T\|

26=1z2 z

Radix Trie

|||T\|

26=1z2 z

Radix Trie

al]
| al]
1= a[] .
— n| e — ol
2 b_ | a
3=c|_ | : B
Z_ o_o—\
t| o : :
Z_
2=z | 2[]
Z_

26=1z2

[[1]

Radix Trie

26=1z2

[[1]

|T|

Radix Trie

26=1z2

[[1]

|T|

Radix Trie

*

[2] 11l

|| Radix Trie

*

[2] 11l

|| Radix Trie

*

[2] 11l

|| Radix Trie

*

[2] 11l

|| Radix Trie

*

Radix Search

m Every element x has an array of links x. links

> e.g.,in “radix-256,” an element represents a byte in a string (of bytes)

m Every element x has a x.value that is TRUE if that prefix corresponds
to a string in the dictionary

> this is to distinguish an entire word from a prefix

Radix Search

m Every element x has an array of links x. links

> e.g.,in “radix-256,” an element represents a byte in a string (of bytes)

m Every element x has a x.value that is TRUE if that prefix corresponds
to a string in the dictionary

> this is to distinguish an entire word from a prefix

RADIXSEARCH (Root, K)

n = Root
fori = 1to length(K)
if n.links[K[i]] == NIL
return FALSE
else n = n.links[K[i]]
return n.value

o Ul WN B

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

T(N,m) = ©(m) I

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

T(N,m) = ©(m) I

m What is the space complexity?

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

T(N,m) = ©(m) I

m What is the space complexity?
» first approximation:

S(N,m) = O(|Z|mN)

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

T(N,m) = ©(m) I

m What is the space complexity?
» first approximation:

S(N,m) = O(IZImN) S(N,m) = Q(|Z] logz| N)

Complexities of Radix Search

m What is the complexity of Radix Search with a dictionary of N strings
of up to m characters?

T(N,m) = ©(m) I

m What is the space complexity?
» first approximation:

S(N,m) = O(|Z[mN) S(N,m) = Q(|Z|log5 N)
> abetter characterization (Exercise: figure this out!):

~ N-1 |OgN
S(N,m) =0 (|Z| [IZI——l +N(m - Iog|Z|)])

Idea

m We do not represent a full array of links

Idea

m We do not represent a full array of links

B Instead, we represent a small binary “index” of the existing links

Idea

m We do not represent a full array of links

B Instead, we represent a small binary “index” of the existing links

E.g., prefixes “xa”, “xb”, “xn”, “xk”, and “xs” might be represented as
follows

Idea

m We do not represent a full array of links

B Instead, we represent a small binary “index” of the existing links

» o«

E.g., prefixes “xa”, “xb”, “xn”, “xk”, and “xs” might be represented as
follows

= next character link
- next character index

Ternary Search Trie

Ternary Search Trie

m n.character is the character at node n; i.e., the last character in the
prefix represented by n

Ternary Search Trie

m n.character is the character at node n; i.e., the last character in the
prefix represented by n

m n.value is the value to which n maps to; if the TST is a dictionary, then
n.value is true iff the prefix represented by n is a key in the dictionary

Ternary Search Trie

m n.character is the character at node n; i.e., the last character in the
prefix represented by n

m n.value is the value to which n maps to; if the TST is a dictionary, then
n.value is true iff the prefix represented by n is a key in the dictionary

m A node n has three links

> n.lower links to a node representing a “lower” character at the same
position

> n.higher links to a node representing a “higher” character at the same
position

> n.equal links to a node representing a character in the next position

Example

“culture”

Example

“culture”

Example

“lugano”

Example

“lugano”

Example

“lunatic”

Example

“lunatic”

Example

“ciao”

Example

“ciao”

Example

“cappero”

Example

“cappero”

Example

“class”

Example

“class”

*

Example

“classic”

*

Example

“classic”

*

Example

“algorithm”

Example

“algorithm”

Example

“algo“

Example

“algo“

TST Search

TST Search

TSTSEARCH(T, K)
1 fori= 1to|K]
2 ifi>1
3 T = T.equal
4 while T # NniLand K[/] # T.character
5 if K[i] < T.character
6 T = T.lower
7 else T = T.higher
8 if T==NIL
9 return FALSE
10 returnn.value

TST Search

TSTSEARCH(T, K)
1 fori= 1to|K]
2 ifi>1
3 T = T.equal
4 while T # NniLand K[/] # T.character
5 if K[i] < T.character
6 T = T.lower
7 else T = T.higher
8 if T==NIL
9 return FALSE
10 returnn.value

m Isit correct?

TST Search

TSTSEARCH(T, K)
1 fori= 1to|K]
2 ifi>1
3 T = T.equal
4 while T # NniLand K[/] # T.character
5 if K[i] < T.character
6 T = T.lower
7 else T = T.higher
8 if T==NIL
9 return FALSE
10 returnn.value

m Isitcorrect? Not completely! (Exercise: fix it.)

m Complexity?

TST Search

TSTSEARCH(T, K)
1 fori= 1to|K]
2 ifi>1
3 T = T.equal
4 while T # NniLand K[/] # T.character
5 if K[i] < T.character
6 T = T.lower
7 else T = T.higher
8 if T==NIL
9 return FALSE
10 returnn.value

m Isitcorrect? Not completely! (Exercise: fix it.)

m Complexity? Non-trivial...

TST Insertion

TST Insertion

m Recursion starts with root = TSTINSERT(root, K, 1)

TSTINSERT(T, K, i)
1 ifT==NIL
2 T = NEWNODE(K]/])
3 if K[i] < T.character
4 T.lower = TSTINSERT(T.lower, K, i)
5 elseif K[i] > T.character
6 T.higher = TSTINSERT(T. higher, K, i)
7 elseif K[i] == T.character
8 if i < |K|
9 T.equal = TSTINSERT(T.equal,K,i+ 1)
10 else T.value = TRUE
11 returnT

