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m GivenatextT

» T e X*:finite alphabet
> |T| = n:thelengthof Tisn

m Given a pattern P

> P e X*: same finite alphabet X
> |P| = m: the length of Pism

m Both T and P can be modeled as arrays
» T[1...n]landP[1...m]

m Pattern P occurs with shift s in T iff
» 0<s<n—-m
» T[s+i] = P[i] forall positionsl <i<m
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Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

P =

m Result
s=4
s=7

s=9
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Naive Algorithm

m Foreach positionsin0...n—m,seeif T[s+i] = P[i]foralll <i<m

NAIVE-STRING-MATCHING (T, P)
1 n = length(T)

2 m = length(P)

3 fors=0ton-m

4 if SUBSTRING-AT(T, P, s)
5 OUTPUT(S)

SUBSTRING-AT(T, P, 5)

1 fori = 1to length(P)
2 if T[s+i] # P[i]
3 return FALSE
4 return TRUE
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Complexity of the Naive Algorithm

m Complexity of NAIVE-STRING-MATCH is O((n — m + 1)m)

m Worst case example

So, (n —m+ 1)mis a tight bound, so the (worst-case) complexity of
NAIVE-STRING-MATCH is

|@((n—m+l)m)|
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m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #
P
m What now?

> the naive algorithm goes back to the second position in T and starts
from the beginning of P

> can’t we simply move along through T?

> why?
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m Here’s a wrong but insightful strategy

WRONG-STRING-MATCHING (T, P)
1 n = length(T)
2 m = length(P)
3 g=0 /# number of characters matched in P
4 s=1
5 whiles <n
6 S=5+1
7 if T[s] == P[q + 1]
8 g=g+1
9 ifg==m
10 OUTPUT(S — m)
11 g=0
12 elseg =0
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m Example run of WRONG-STRING-MATCHING

T{plajg[l]ifa]i]o] [b[af[g]o]|r]|d]o]
P[a]g]o] Output: 10

m Done. Perfect!

m Complexity: ©(n)
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m What is wrong with WRONG-STRING-MATCHING?

S
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missed!
P

q+l

B So WRONG-STRING-MATCHING doesn’t work, but it tells us something
useful
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B Where did WRONG-STRING-MATCHING go wrong?

S

T|ala|blaJala[bfa|b]a]|bac]|a]

e

q+l

m Wrong: by going all the way back to g = 0 we throw away a good
prefix of P that we already matched
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Improvement Strategy (6)

m Another example

T |la|bJalbla[bla[cb|a]c|b|c]|a]
OUTPUT(2)
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m We have matched “ababa”
> suffix “aba” can be reused as a prefix
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New Strategy

P[1...q]is the prefix of P matched so far

Find the longest prefix of P that is also a suffix of P[2 ... q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblafbla]c]

q+l

Restartfromqg = «
Iterate as usual

In essence, this is the Knuth-Morris-Pratt algorithm
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The Prefix Function

Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

This prefix is identified by its length 7 (q)

Because 7 (q) depends only on P (and g), = can be computed at the
beginning by PREfix-FUNCTION

> we represent & as an array of length m

Example

Plalblalbla]c]

w[0]of1]2]3]0]




The Knuth-Morris-Pratt Algorithm

KMP-STRING-MATCHING (T, P)
1 n = length(T)
2 m = length(P)
3 1 = PREfiX-FUNCTION(P)
4 g=0 / number of character matched
5 fori=1ton / scan the text left-to-right
6 whileg > 0and P[g + 1] # T[i]
7 q = n[q] / no match: go back using
8 if P[g+ 1] ==T[/]
9 g=g+1
10 ifg==-
11 OUTPUT(i — m)
12 q = n[q] / go back for the next match
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Prefix Function Algorithm

m Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

m In fact, PREfiX-FUNCTION is remarkably similar to
KMP-STRING-MATCHING

PREfiX-FUNCTION(P)

1 m = length(P)

2 #[1] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = m[k]

7 if P[k+ 1] == P|q]

8 k=k+1

9 nlq] = k




PREfiX-FUNCTION(P)
1 m = length(P)
2 #w[1l] =0
3 k=0
forg =2tom
while k > 0and P[k + 1] # P[q]
k = n[k]
if P[k + 1] == P[q]
k=k+1
n[q] =k

N

O 0 N O U»n

Prefix Function at Work

Plalbfalblafc]
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PREfiX-FUNCTION(P)
1 m = length(P)
2 x[1] =0
3 k=0
forg =2tom
while k > 0and P[k + 1] # P[q]
k = n[k]
if P[k + 1] == P[q]
k=k+1
n[q] =k

N

O 0 N O U»

Prefix Function at Work

Plalbfalblafc]

o] [ [ ][]




PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if Pk + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q
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m O(n) for the search phase
B O(m) for the pre-processing of the pattern
m The complexity analysis is non-trivial

m Can we do better?
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Comments on KMP

m Knuth-Morris-Prattis Q(n)

> KMP will always go through at least n character comparisons

> it fixes our “wrong” algorithm in the case of periodic patterns and texts

m Perhaps there’s another algorithm that works better on the average
case
> e.g.,inthe absence of periodic patterns
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> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

B In essence, this is the Boyer-Moore algorithm
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Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is 0(nm)

The search phase can be as low as O(n/m) in common cases

In practice, Boyer-Moore is the fastest string-matching algorithm for
most applications



