String Matching Algorithms

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

December 22,2011

Outline

m Problem definition
m Naive algorithm
m Knuth-Morris-Pratt algorithm

m Boyer-Moore algorithm

Problem

Problem

m Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura
che la dritta via era smarrita. ..

Find the string “trova”

Problem

m Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura
che la dritta via era smarrita. ..

Find the string “trova”

B A more challenging example: How many times does the string
“110011” appear in the following text

0011110101011010011000110101111011010111
0110111001001010101011111011110110000101
1011000010111111011110011000011111000100
1001010010111011101011011110101001100101
0010111001000011111110010011011101011010
0110011011101001010010101000010100111110

Problem

m Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura
che la dritta via era smarrita. ..

Find the string “trova”

B A more challenging example: How many times does the string
“110011” appear in the following text

0011110101011010011000110101111011010111
0110111001001010101011111011110110000101
1011000010111111011110011000011111000100
1001010010111011101011011110101001100101
0010111001000011111110010011011101011010
0110011011101001010010101000010100111110

String Matching: Definitions

m GivenatextT

» T e X*:finite alphabet
> |T| = n:thelengthof Tisn

String Matching: Definitions

m GivenatextT

» T e X*:finite alphabet
> |T| = n:thelengthof Tisn

m Given a pattern P

> P e X*: same finite alphabet X
> |P| = m: the length of Pism

String Matching: Definitions

m GivenatextT

» T e X*:finite alphabet
> |T| = n:thelengthof Tisn

m Given a pattern P

> P e X*: same finite alphabet X
> |P| = m: the length of Pism

m Both T and P can be modeled as arrays
» T[1...n]landP[1...m]

String Matching: Definitions

m GivenatextT

» T e X*:finite alphabet
> |T| = n:thelengthof Tisn

m Given a pattern P

> P e X*: same finite alphabet X
> |P| = m: the length of Pism

m Both T and P can be modeled as arrays
» T[1...n]landP[1...m]

m Pattern P occurs with shift s in T iff
» 0<s<n—-m
» T[s+i] = P[i] forall positionsl <i<m

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

Fm=34

P[afb]a]

m Result

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

m Result
s=4

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

P =

m Result
s=4
s=7

Example

m Problem: find all s such that
» 0<s<n—-m
» T[s+i]=P[i]forl<i<m

n=14
TIaIblclalaIblalalblalblalclal

P =

m Result
s=4
s=7

s=9

Naive Algorithm

Naive Algorithm

m Foreach positionsin0...n—m,seeif T[s+i] = P[i]foralll <i<m

Naive Algorithm

m Foreach positionsin0...n—m,seeif T[s+i] = P[i]foralll <i<m

NAIVE-STRING-MATCHING (T, P)
1 n = length(T)

2 m = length(P)

3 fors=0ton-m

4 if SUBSTRING-AT(T, P, s)
5 OUTPUT(S)

Naive Algorithm

m Foreach positionsin0...n—m,seeif T[s+i] = P[i]foralll <i<m

NAIVE-STRING-MATCHING (T, P)
1 n = length(T)

2 m = length(P)

3 fors=0ton-m

4 if SUBSTRING-AT(T, P, s)
5 OUTPUT(S)

SUBSTRING-AT(T, P, 5)

1 fori = 1to length(P)
2 if T[s+i] # P[i]
3 return FALSE
4 return TRUE

Complexity of the Naive Algorithm

Complexity of the Naive Algorithm

m Complexity of NAIVE-STRING-MATCH is O((n — m + 1)m)

Complexity of the Naive Algorithm

m Complexity of NAIVE-STRING-MATCH is O((n — m + 1)m)

m Worst case example

Complexity of the Naive Algorithm

m Complexity of NAIVE-STRING-MATCH is O((n — m + 1)m)

m Worst case example

So, (n —m+ 1)mis a tight bound, so the (worst-case) complexity of
NAIVE-STRING-MATCH is

|@((n—m+l)m)|

Improvement Strategy

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

P[alb]a]

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

P[alb]a]

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

P[alb]a]

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #

P[alb]a]

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #
P [a]b]a]

m What now?

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #
P
m What now?

> the naive algorithm goes back to the second position in T and starts
from the beginning of P

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #
P
m What now?

> the naive algorithm goes back to the second position in T and starts
from the beginning of P

> can’t we simply move along through T?

Improvement Strategy

m Observation

Tlalbfclafalblafalba[bla]c]a]

= = #
P
m What now?

> the naive algorithm goes back to the second position in T and starts
from the beginning of P

> can’t we simply move along through T?

> why?

Improvement Strategy (2)

Improvement Strategy (2)

m Here’s a wrong but insightful strategy

Improvement Strategy (2)

m Here’s a wrong but insightful strategy

WRONG-STRING-MATCHING (T, P)
1 n = length(T)
2 m = length(P)
3 g=0 /# number of characters matched in P
4 s=1
5 whiles <n
6 S=5+1
7 if T[s] == P[q + 1]
8 g=g+1
9 ifg==m
10 OUTPUT(S — m)
11 g=0
12 elseg =0

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

P[ale]o]

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalef[t]ifa]ifo] [blafefo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgf[t]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r[d]o]

o

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r[d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafefo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalef[t]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafefo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalef[t]ifa]ifo] [blafelo]r]d]o]

e

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafefo]r]d]o]

o

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafelo]r]d]o]

P [lele]

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafelo]r]d]o]

P Output: 10

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfalgft]ifa]ifo] [blafefo]r]d]o]

P Output: 10

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

S

Tlpfaleft]ifa]ifo] [blafelo]r]d]o]

P Output: 10

q+l

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

T{plajg[l]ifa]i]o] [b[af[g]o]|r]|d]o]
P[a]g]o] Output: 10

m Done. Perfect!

Improvement Strategy (3)

m Example run of WRONG-STRING-MATCHING

T{plajg[l]ifa]i]o] [b[af[g]o]|r]|d]o]
P[a]g]o] Output: 10

m Done. Perfect!

m Complexity: ©(n)

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

T[a]alblafalabfa|ba[bla]c]a]

P[ala]b]

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|ba[bla]c]a]

e

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa]ba[bla]c]a]

o

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T|a]alblafalabfa|ba[bla]c]a]

o

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

Tlala[bJalala|bla|b]a]|bac]|a]
ouTpPUT(0)

PL=TE]

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa]ba[bla]c]a]

e

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa]ba[bla]c]a]

o

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|b]a[bla]c]a]

o

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|b]a[bla]c]a]

e

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|ba[bla]c]a]

o

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|ba[bla]c]a]

e

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

T[a]alblafalabfa|ba[bla]c]a]

e

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

Tlala|blaJala[bfa|b|a]|bac]|a]

missed!
P

q+l

Improvement Strategy (4)

m What is wrong with WRONG-STRING-MATCHING?

S

Tlala|blaJala[bfa|b|a]|bac]|a]

missed!
P

q+l

B So WRONG-STRING-MATCHING doesn’t work, but it tells us something
useful

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

T|ala|blaJala[bfa|b]a]|bac]|a]

P[a]a]b]

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

S

Tlala|blaJala[bfa|b|a]|bac]|a]

e

q+l

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

S

T|ala|blaJala[bfa|b]a]|bac]|a]

o

q+l

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

S

T|ala|blaJala[bfa|b]a]|bac]|a]

o

q+l

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

S

T|ala|blaJala[bfa|b]a]|bac]|a]

e

q+l

Improvement Strategy (5)

B Where did WRONG-STRING-MATCHING go wrong?

S

T|ala|blaJala[bfa|b]a]|bac]|a]

e

q+l

m Wrong: by going all the way back to g = 0 we throw away a good
prefix of P that we already matched

Improvement Strategy (6)

m Another example

Improvement Strategy (6)

m Another example

T[a]blalbfalbafc|bafc[b]c]a]

Plalbfalblafc]

Improvement Strategy (6)

m Another example

S

T[a]blalbfalbafc|bafc[b]c]a]

Plalbfalblafc]

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalbafc|bafc[b]c]a]

F’

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

PlalbJalbla]c]

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalbafc|bafc[b]c]a]

Plalblafbla]c]

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalbafc|bafc[b]c]a]

Plalblalbfa]c]

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

Plalblalblafc]

q+l

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

Plalblalblafc]

q+l

m We have matched “ababa”

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

1

Plalblalblafc]

q+l

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

Plalblalblafc]

IS — |

q+l

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

Plalblafbla]c]

q+l

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

Improvement Strategy (6)

m Another example

S

T[a]blalbfalblafc|bafc[b]c]a]

Plalblalbfa]c]

q+l

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

Improvement Strategy (6)

m Another example

S

T[a]blalbfalbafc|bafc[b]c]a]

Plalblalblafc]

q+l

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

Improvement Strategy (6)

m Another example

T |la|bJalbla[bla[cb|a]c|b|c]|a]
OUTPUT(2)

Plalblajblalc]

m We have matched “ababa”
> suffix “aba” can be reused as a prefix

New Strategy

m P[1...q]isthe prefix of P matched so far

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalbfalblafc]

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblalblafc]

q+l

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblalblafc]

T =3

q+l

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblalblafc]

T =3

q+l

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblafbla]c]

q+l

m Restartfromg =«

New Strategy

m P[1...q]isthe prefix of P matched so far

m Find the longest prefix of P that is also a suffix of P[2...q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblafbla]c]

q+l

m Restartfromg =«

m Iterate as usual

New Strategy

P[1...q]is the prefix of P matched so far

Find the longest prefix of P that is also a suffix of P[2 ... q]

> je,find0 <m <qgsuchthatP[g—7+1...q] =P[1...7]
> x = 0 means that such a prefix does not exist

Plalblafbla]c]

q+l

Restartfromqg = «
Iterate as usual

In essence, this is the Knuth-Morris-Pratt algorithm

The Prefix Function

m Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

The Prefix Function

m Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

m This prefix is identified by its length 7 (q)

The Prefix Function

m Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

m This prefix is identified by its length 7 (q)
m Because 7 (q) depends only on P (and g), 7 can be computed at the

beginning by PREfix-FUNCTION

> we represent & as an array of length m

The Prefix Function

Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

This prefix is identified by its length 7 (q)

Because 7 (q) depends only on P (and g), = can be computed at the
beginning by PREfix-FUNCTION

> we represent & as an array of length m

Example

Plalblalbla]c]

The Prefix Function

Given a pattern prefix P[1. .. g], the longest prefix of P thatis also a
suffix of P[2...q] depends onlyon Pand g

This prefix is identified by its length 7 (q)

Because 7 (q) depends only on P (and g), = can be computed at the
beginning by PREfix-FUNCTION

> we represent & as an array of length m

Example

Plalblalbla]c]

w[0]of1]2]3]0]

The Knuth-Morris-Pratt Algorithm

KMP-STRING-MATCHING (T, P)
1 n = length(T)
2 m = length(P)
3 1 = PREfiX-FUNCTION(P)
4 g=0 / number of character matched
5 fori=1ton / scan the text left-to-right
6 whileg > 0and P[g + 1] # T[i]
7 q = n[q] / no match: go back using
8 if P[g+ 1] ==T[/]
9 g=g+1
10 ifg==-
11 OUTPUT(i — m)
12 q = n[q] / go back for the next match

Prefix Function Algorithm

Prefix Function Algorithm

m Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

Prefix Function Algorithm

m Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

m In fact, PREfiX-FUNCTION is remarkably similar to
KMP-STRING-MATCHING

PREfiX-FUNCTION(P)

1 m = length(P)

2 #[1] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = m[k]

7 if P[k+ 1] == P|q]

8 k=k+1

9 nlq] = k

PREfiX-FUNCTION(P)
1 m = length(P)
2 #w[1l] =0
3 k=0
forg =2tom
while k > 0and P[k + 1] # P[q]
k = n[k]
if P[k + 1] == P[q]
k=k+1
n[q] =k

N

O 0 N O U»n

Prefix Function at Work

Plalbfalblafc]

JENEEEN

PREfiX-FUNCTION(P)
1 m = length(P)
2 x[1] =0
3 k=0
forg =2tom
while k > 0and P[k + 1] # P[q]
k = n[k]
if P[k + 1] == P[q]
k=k+1
n[q] =k

N

O 0 N O U»

Prefix Function at Work

Plalbfalblafc]

o] [[][]

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if Pk + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

o] [[][]

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k+1

6 k = n[k]

7 if P[k + 1] == P[q] ool [[||
8 k=k+1

9 n[q] = k

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

wlofof [|]|

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k+l

6 k = n[k]

7 if P[k + 1] == P[q] ool [[||
8 k=k+1

9 n[q] =k

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k+l

6 k = n[k]

7 if P[k + 1] == P[q] mlofofaf [| |
8 k=k+1

9 n[q] = k

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

wlofofi | [|

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k1

6 k = n[k]

7 if P[k + 1] == P[q] mlofofaf [| |
8 k=k+1

9 n[q] =k

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k1

6 k = m[k]

7 if P[k + 1] == P[q] 7T|0|0|1|2| | |
8 k=k+1

9 n[q] = k

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

n[ofofif2] [|

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and Pk + 1] # P[q] k¥l

6 k = m[k]

7 if P[k + 1] == P[q] 7T|0|0|1|2| | |
8 k=k+1

9 n[q] =k

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and Pk + 1] # P[q] k¥l

6 k = n[k]

7 if P[k + 1] == P[q] n[ofof1[2[3] |
8 k=k+1

9 n[q] = k

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

n[o]of1[2]3] |

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

n[o]of1[2]3] |

PREfiX-FUNCTION(P)

1 m = length(P)

2 #w[1l] =0

3 k=0

4 forg=2tom

5 while k > 0and P[k + 1] # P[q]
6 k = n[k]

7 if P[k + 1] == P[q]

8 k=k+1

9 n[q] =k

Prefix Function at Work

q

Plalbfalblafc]

k+1

n[o]of1[2]3] |

Prefix Function at Work

PREfiX-FUNCTION(P)
q

1 m = length(P)

2 n|1] =0

: k[:]o Plalblafbfa]c|
4 forg=2tom

5 while k > 0and P[k + 1] # P[q] k+1

6 k = n[k]

7 if P[k + 1] == P[q] n[o0]of1[2[3]0]
8 k=k+1

9 n[q] = k

Complexity of KMP

Complexity of KMP

m O(n) for the search phase

Complexity of KMP

m O(n) for the search phase

B O(m) for the pre-processing of the pattern

Complexity of KMP

m O(n) for the search phase
B O(m) for the pre-processing of the pattern

m The complexity analysis is non-trivial

Complexity of KMP

m O(n) for the search phase
B O(m) for the pre-processing of the pattern
m The complexity analysis is non-trivial

m Can we do better?

Comments on KMP

m Knuth-Morris-Prattis Q(n)

> KMP will always go through at least n character comparisons

> it fixes our “wrong” algorithm in the case of periodic patterns and texts

Comments on KMP

m Knuth-Morris-Prattis Q(n)

> KMP will always go through at least n character comparisons

> it fixes our “wrong” algorithm in the case of periodic patterns and texts

m Perhaps there’s another algorithm that works better on the average
case
> e.g.,inthe absence of periodic patterns

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx]a[m[p|i]e]

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

le[x]a[m[p|i]e]

m We match the pattern right-to-left

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx]alm[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx]alm[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

A New Strategy

Lhlef[rle[Jils] [a] [s]i|m(p)tfe] [e[x[a]m[p]t]e]

e[x]am(p)t]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

Lhlef[rle[Jils] [a] [s]i|m(p)tfe] [e[x[a]m[p]t]e]

e[x]am(p)t]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

le[x[a[m[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[l]e] [e[x[a]m[p[l]e]

examplE

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hle[rle[[i]s] [a] [s[i[m|p]t]e] Je[x[a[m|p[i]e]

Le[x[a]m[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hle[rle] [i]s] [a[[s]ilm|p[t]e] [e[x[alm[p[l]e]

Le[x[a[m]p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [i[s] [af [s[i|m[p[t]e] [e[x[a]m[p[t]e]

[e[x[am[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [ifs] [a] [s(idm[p[t]e] [e[x[a]m[p[l]e]

le[x[a[m[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx[a]m[p|i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [i[s] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx[a]m[p|i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [i[s] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

—

lelx[a]m[p|i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [i[s] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

—

| |

lelx[a]m[p|i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

—

| |

lelx]alm[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx]alm[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m(p)i]e]

e[x]am(p)i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m(p)i]e]

e[x]am(p)t]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe] [ifs] [a] [s[i|m[p[t]e] [e[x[a]m[p[l]e]

lelx]alm[p]i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [a] [s[i]m[p[t]e] [e[x[a[m|p[l]e]

exampl—lzl

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [a] [s[i]m[p[t]e] [e[x[a[m|p]i]e]

Le[x[a[m[p|i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hle[rle[[i]s] [a] [s[i[m[p|t]e[[e[x[a[m|p|i]e]

Le[x[a[m]p]|(]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [af [s[i]m[p[t]e] [e[x[afm]p[i]e]

Le[x[am[p[i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [a] [s[i]m[p[t]e] [e[x]am]p[i]e]

le[x]am[p[i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [a] [s[i]m[p[t]e] [e[x]am]p[i]e]

le|xlalm[p[i]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [af [s[i]m[p[t]e]| Je|xJam]p[l]e]

lelx|ajm|p[l]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

[hlelrfe| [ifs] [af [s[i]m[p[t]e]| Je|xJam]p[l]e]

lelx|ajm|p[l]e]

m We match the pattern right-to-left

m If we find a bad character « in the text, we can shift

» so that the pattern skips a, if a is not in the pattern

> so that the pattern lines up with the rightmost occurrence of a in the
pattern, if the pattern contains a

> so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

B In essence, this is the Boyer-Moore algorithm

Comments on Boyer-Moore

Comments on Boyer-Moore

m Like KMP, Boyer-Moore includes a pre-processing phase

Comments on Boyer-Moore

m Like KMP, Boyer-Moore includes a pre-processing phase

B The pre-processing is O(m)

Comments on Boyer-Moore
m Like KMP, Boyer-Moore includes a pre-processing phase
B The pre-processing is O(m)

m The search phase is O(nm)

Comments on Boyer-Moore

m Like KMP, Boyer-Moore includes a pre-processing phase
B The pre-processing is O(m)
m The search phase is O(nm)

m The search phase can be as low as O(n/m) in common cases

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is 0(nm)

The search phase can be as low as O(n/m) in common cases

In practice, Boyer-Moore is the fastest string-matching algorithm for
most applications

