Red-Black Trees (2)

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

April 13,2016

Recap on Red-Black Trees

Recap on Red-Black Trees

Recap on Red-Black Trees

m Red-black-tree property

Recap on Red-Black Trees

m Red-black-tree property
every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

A

for every node x, each path from x to its descendant leaves has the same number of black
nodes bh(x) (the black-height of x)

Recap on Red-Black Trees (2)

m /mplementation
> T represents the tree, which consists of a set of nodes
» T.rootisthe root node of tree T

» T.nilisthe “sentinel” node of tree T

Nodes
X.parent
> x.parent is the parent of node x
> x.key is the key stored in node x node x
k = x.key
> x.leftis the left child of node x

\4

x.right is the right child of node x
x. left x.right

v

x.color € {RED, BLACK} is the color of node x

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

1. zhas no children

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

> removez

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

> removez
» connect z.parent to z.right

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

> removez
» connect z.parent to z.right

Recap on Deletion in Binary Trees

1. zhas no children

» simply remove z

2. z has one child

> removez
» connect z.parent to z.right

3. zhastwo children

Recap on Deletion in Binary Trees

1. zhas no children

» simply remove z

2. z has one child

> removez
» connect z.parent to z.right

3. zhastwo children

> replace z with
y = TREE-SUCCESSOR(2)

> remove y (1 child!)

Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

> removez
» connect z.parent to z.right

3. zhastwo children

> replace z with
y = TREE-SUCCESSOR(2)

> remove y (1 child!)
» connecty.parenttoy.right

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

m Adeleting a red leaf does not require any adjustment

Red-Black Deletion

m Adeleting a red leaf does not require any adjustment

> the deletion does not affect the black height (property 5)

Red-Black Deletion

m Adeleting a red leaf does not require any adjustment

> the deletion does not affect the black height (property 5)
> no two red nodes become adjacent (property 4)

Red-Black Deletion (2)

Red-Black Deletion (2)

Red-Black Deletion (2)

Red-Black Deletion (2)

Red-Black Deletion (2)

m Deleting a black node changes the balance of black-height in a subtree x

Red-Black Deletion (2)

m Deleting a black node changes the balance of black-height in a subtree x

> RB-DELETE-FIXUP(T, x) fixes the tree after a deletion

Red-Black Deletion (2)

m Deleting a black node changes the balance of black-height in a subtree x

> RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
» in this simple case: x.color = BLACK

Fixup Conditions

Fixup Conditions

m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

Fixup Conditions

m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

m x is either y’s only child or T.nil

> y was spliced out, so y can not have two children
> x = T.nil iffy has no (key-bearing) children

Fixup Conditions

m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

m x is either y’s only child or T.nil

> y was spliced out, so y can not have two children
> x = T.nil iffy has no (key-bearing) children

m Problem 1: y = T.root and x is red

> violates red-black property 2 (root must be black)

m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

m x is either y’s only child or T.nil

> y was spliced out, so y can not have two children
> x = T.nil iffy has no (key-bearing) children

m Problem 1: y = T.root and x is red

> violates red-black property 2 (root must be black)

m Problem 2: both x and y. parent are red

> violates red-black property 4 (no adjacent red nodes)

Fixup Conditions

m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

m x is either y’s only child or T.nil

> y was spliced out, so y can not have two children
> x = T.nil iffy has no (key-bearing) children

m Problem 1: y = T.root and x is red

> violates red-black property 2 (root must be black)

m Problem 2: both x and y. parent are red

> violates red-black property 4 (no adjacent red nodes)

B Problem 3: we are removing y, which is black

> violates red-black property 5 (same black height for all paths)

Fixup Conditions

Red-Black Deletion (3)

Lo
28

Red-Black Deletion (3)

@®
28

Red-Black Deletion (3)

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

-

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

Lo

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

Lo

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

m The additional black weight can be discarded if it reaches the root, otherwise...

Red-Black Deletion (4)

®®

Red-Black Deletion (4)

o

Red-Black Deletion (4)

Red-Black Deletion (4)

Red-Black Deletion (4)

Lo

m The additional black weight can also stop as soon as it reaches a red node, which will
absorb the extra black color

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

Red-Black Deletion (5)

m In other cases where we can not push the additional black color up, we can apply
appropriate rotations and color transfers that preserve all other red-black properties

Basic Fixup Iteration (1)

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Case 1

Case?2

Basic Fixup Iteration (1)

Case?2

Basic Fixup Iteration (1)

Basic Fixup Iteration (2)

Case 3

Basic Fixup Iteration (2)

Case 3

Basic Fixup Iteration (2)

Case 3
B\ B\
® N9
R R ﬂ
Yy 6 € ¢ s (E)

e ¢

Basic Fixup Iteration (2)
Case 3
B\ B\
o R o J o}
a B Q (E) a B 14 (D)
Yy 6 € ¢ s (E)
e ¢

Case 4

Basic Fixup Iteration (2)
Case 3
B\ B\
o R o J o}
a B Q (E) a B 14 (D)
Yy 6 € ¢ s (E)
e ¢

Case 4

(B) (D)
©) (D)))
— ‘
a B C (E) (A) C e ¢
/ \ / \
Y &6 € ¢ a B Y 6

Red-Black Delete Fixup

RB-DELETE-FIXUP(T, x)

1 whilex # T.root A x.color = BLACK
2 if x == x.parent. left
3 w = x.parent.right
4 if w.color == RED
5 case 1...
6 if w. left.color == BLACK A w.right.color = BLACK
7 w.color = RED // case 2
8 X = Xx.parent
9 else if w.right.color == BLACK
10 case3...
11 case4...
12 else same as above, exchanging right and left
13 Xx.color = BLACK

