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m Red-black-tree property
every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

A

for every node x, each path from x to its descendant leaves has the same number of black
nodes bh(x) (the black-height of x)



Recap on Red-Black Trees (2)

m /mplementation
> T represents the tree, which consists of a set of nodes
» T.rootisthe root node of tree T

» T.nilisthe “sentinel” node of tree T

Nodes
X.parent
> x.parent is the parent of node x
> x.key is the key stored in node x node x
k = x.key
> x.leftis the left child of node x

\4

x.right is the right child of node x
x. left x.right

v

x.color € {RED, BLACK} is the color of node x
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Recap on Deletion in Binary Trees

1. zhas no children

> simply remove z

2. z has one child

> removez
» connect z.parent to z.right

3. zhastwo children

> replace z with
y = TREE-SUCCESSOR(2)

> remove y (1 child!)
» connecty.parenttoy.right
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Red-Black Deletion

m Adeleting a red leaf does not require any adjustment

> the deletion does not affect the black height (property 5)
> no two red nodes become adjacent (property 4)
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Red-Black Deletion (2)

m Deleting a black node changes the balance of black-height in a subtree x

> RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
» in this simple case: x.color = BLACK
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m yisthe spliced node (y = zif z has zero or one child)

> if yisred, then no fixup is necessary
> so, here we assume that y is black

m x is either y’s only child or T.nil

> y was spliced out, so y can not have two children
> x = T.nil iffy has no (key-bearing) children

m Problem 1: y = T.root and x is red

> violates red-black property 2 (root must be black)

m Problem 2: both x and y. parent are red

> violates red-black property 4 (no adjacent red nodes)

B Problem 3: we are removing y, which is black

> violates red-black property 5 (same black height for all paths)

Fixup Conditions
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Red-Black Deletion (3)

Lo

B x carries an additional black weight
> the fixup algorithm pushes it up towards to root

m The additional black weight can be discarded if it reaches the root, otherwise...
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Lo

m The additional black weight can also stop as soon as it reaches a red node, which will
absorb the extra black color
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Red-Black Deletion (5)

m In other cases where we can not push the additional black color up, we can apply
appropriate rotations and color transfers that preserve all other red-black properties
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Red-Black Delete Fixup

RB-DELETE-FIXUP(T, x)

1 whilex # T.root A x.color = BLACK
2 if x == x.parent. left
3 w = x.parent.right
4 if w.color == RED
5 case 1...
6 if w. left.color == BLACK A w.right.color = BLACK
7 w.color = RED // case 2
8 X = Xx.parent
9 else if w.right.color == BLACK
10 case3...
11 case4...
12 else same as above, exchanging right and left
13 Xx.color = BLACK




