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General Information

On-line course information
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Announcements
▶ you are responsible for reading the announcements (posted through iCorsi)

Office hours
▶ Antonio Carzaniga: by appointment
▶ Dylan Robert Ashley: by appointment
▶ Aditya Ramesh: by appointment
▶ Morteza Rezaalipour: by appointment
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Textbook

Introduction to Algorithms
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press



Evaluation

+20% homework
▶ 3–5 assignments
▶ grades added together, thus resulting in a weighted average

+30% midterm exam

+50% final exam

±10% instructor’s discretionary evaluation
▶ participation
▶ extra credits
▶ trajectory
▶ . . .

−100% plagiarism penalties
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Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations
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Deadlines

Deadlines are firm!

Exceptions may be granted

▶ at the instructor’s discretion

▶ for documented medical conditions or other documented emergencies

A late submission looses one third of the total value of the assignment

Each full day of delay reduces the grade by an additional one third

▶ The grade of an assignment turned in more than two days late is 0
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an introductory example. . .
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Johannes Gutenberg invents movable type and the printing press in Mainz, circa 1450
(already known in China and Korea, circa 1200 CE)
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Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı
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A sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170–ca. 1250)
son of Guglielmo “Bonaccio”
a.k.a. Leonardo Fibonacci
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The Fibonacci Sequence

Mathematical definition:

Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:
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
0 if n = 0
1 if n = 1
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Implementation on a computer:
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def F(n):
if n == 0:
return 0

elif n == 1:
return 1

else:
return F(n-1) + F(n-2)
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Mathematical definition:

Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

very concise C/C++ (or Java)
int F(int n) {
return (n<2)?n:F(n-1)+F(n-2);

}



The Fibonacci Sequence

Mathematical definition:

Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

“pseudo-code”
F(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return F(n − 1) + F(n − 2)



Questions on Our First Algorithm

FIBONACCI(n)
1 if n = = 0
2 return 0
3 elseif n = = 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. How much time does it take to complete?

3. Can we do better?
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Correctness
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Fn−1 + Fn−2 if n > 1

The algorithm is clearly correct
▶ assuming n ≥ 0
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Comments

Different implementations perform differently

▶ it is better to let the compiler do the optimization

▶ simple language tricks don’t seem to pay off

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm
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Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute FIBONACCI(n)

FIBONACCI(n)
1 if n = = 0
2 return 0
3 elseif n = = 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

T (0) = 2; T (1) = 3
T (n) = T (n − 1) + T (n − 2) + 3 ⇒ T (n) ≥ Fn
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Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n

T (n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .

Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?
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A Better Algorithm

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!

SMARTFIBONACCI(n)
1 if n = = 0
2 return 0
3 elseif n = = 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev

10 prev = f
11 return f
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Complexity of SMARTFIBONACCI
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T (n) = 6 + 6(n − 1) = 6n

The complexity of SMARTFIBONACCI(n) is linear in n
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