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Output: a sequence X = (x1, X2, ..., Xg) such that

> every element of Aappears oncein X
> every element of B appears once in X
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B =(51,21,14,15,27,31,2)
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Merging (Set Union)

m Input: sequencesA = (ai1,0,...,ap)and B = (by,by,...,bm)
Output: a sequence X = (x1, X2, ..., Xg) such that

> every element of Aappears oncein X
> every element of B appears once in X

> every element of X appearsinAorinBorin both

m Example:
A=(34,7,11,31,14,51,8,21,10)
B =(51,21,14,15,27,31,2)

X =(34,7,11,31,14,51, 8,21, 10, 15, 27, 2)
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A Simple Merge Algorithm

m Algorithm strategy
> iterate through every position j, first through A, and then B
> outputgjifajisnotin{ai,as,...,0i-1)

» output b;if bjisnotin{(ai, a,..., an, b1, by, ... bji_1)

MERGESIMPLE (A, B)
1 fori = 1tolength(A)

2 if not FIND(A[1..i - 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1../— 1], B[i])

6 output B[]
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MERGESIMPLE (A, B)
1 fori = 1tolength(A)

2 if not FIND(A[1..i— 1], A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[/])
6 output B[]

let n = length(A) + length(B)

length(A) length(B)
T = >, T+ > (Tewo(i) + Trmo(length(A)))
i=1 i=1

T(n) = Z Trino (1)
i=1
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m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FIND (A, key) FIND (A, begin, end, key)

1 fori = 1tolength(A) 1 fori = beginto end
2 if A[i] == key 2 if A[i] == key

3 return TRUE 3 return TRUE
4 return FALSE 4 return FALSE

m The complexity of FIND is

T(n) = 0(n)
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Searching in a List

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST (A, key)

1 item = first(A)

2  while item # last(A)

3 if value(item) == key
4 return TRUE

5 item = next(item)

6 return FALSE

m The complexity of FINDINLIST is

T(n) = 0(n)
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Complexity of MERGESIMPLE

MERGESIMPLE(A, B)

1 fori = 1tolength(A)

2 if not FIND(A[1..i— 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1../— 1], B[i])
6 output B[]

T(n) = Z Trino (1)
i=1

T(n)= Y 0() =0 (”(”2+ 1)) = 0(n?)
i=1
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m Input: a sorted sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

BINARYSEARCH (A, key)
1 first =1
2 last = length(A)
3 while first < last
4 middle = [(first + last) /2]
5 if A[middle] == key
6 return TRUE
7 elseif first = last
8 return FALSE

9 elseif A[middle] > key
10 last = middle — 1
11 else first = middle + 1

12 return FALSE




Binary Search

BINARYSEARCH (A, key)

1 first=1

2 last = length(A)

3 whilefirst < last

4 middle = [(first + last)/2]

5 if Almiddle] == key

6 return TRUE

7 elseif first = last

8 return FALSE

9 elseif A{[middle] > key
10 last = middle — 1
11 else first = middle + 1
12 return FALSE
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Binary Search

BINARYSEARCH (A, key) _
1 first=1 12
2 last = length(A) 13
3 whilefirst < last 12 EI
4 middle = [(first + last) /2] 11
5 if A[middle] == key 10 key
6 return TRUE 8 -
7 elseif first = last 7
8 return FALSE 6
9 elseif A[middle] > key 5
10 last = middle — 1 g'
11 else first = middle + 1 2
12 return FALSE 1
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BINARYSEARCH (A, key) _
1 first=1 12
2 last = length(A) 13
3 whilefirst < last 12
4 middle = [(first + last) /2] 11
5 if A[middle] == key ] J
9
6 return TRUE 8 -
7 elseif first = last 7
8 return FALSE 6
9 elseif A[middle] > key 5
10 last = middle — 1 4
11 else first = middle + 1 3
12 return FALSE 1
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BINARYSEARCH (A, key)
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N = O

first = 1
last = length(A)
while first < last

middle = [(first + last) /2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1

return FALSE

T(n) = O(log n)
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Merging Sorted Sequences

m Aslightly different problem:

Input: two sorted sequences A = {(a1,0,,...,a,)and B = (b1, by, ..., by), where
gg<a;<...<apandb; <b, <...< b,

Output: a sequence X = (x1, X2, ..., Xg) such that

> every element of Aappears oncein X
> every element of B appears once in X

> every element of X appearsinAorinBorin both
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7 output B[ /]
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A Better Merge Algorithm

MERGESIMPLE2(A, B)

1 fori = 1tolength(A)

2 if not BINARYSEARCH (A[1 ../ — 1], A[/])

3 output A[/]

4 fori = 1tolength(B)

5 if not BINARYSEARCH (A, B[/])

6 and not BINARYSEARCH(B[1..i — 1], B[i])
7 output B[ /]

T(n) = Z O(log i) = O(nlog n)

i=1

Better than O(n?), but can we do even better than O(n log n)?
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An Even Better Merge Algorithm

m Intuition: A and B are sorted
e.g.
A = (3,7,12,13, 34, 37, 70, 75, 80)
B =(1,5,6,7,34, 35,40, 41, 43)

so just like in BINARYSEARCH | can avoid looking for an element x if the first element | see
isy >x
m High-level algorithm strategy
> step through every position i of A and every position j of B

> outputa;and advanceiifa; < b; orifjis beyond the end of B

> output bjand advance if a; > b; or if i is beyond the end of A
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MERGE Algorithm

Al 3 7 12 | 13 | 34 | 37 | 70 | 75 | 80
Bl 1 5 6 7 34 | 35 | 40 | 41 | 43

Output:135671213...



MERGE Algorithm (2)

MERGE(A, B)
1 ij=1
2 X=0
3 while/ < length(A) orj < length(B)
4 if i > length(A)
5 X = X o B[j] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = X oAli]
9 i=i+1
10 elseif A[i] < B[j]
11 X = X oA[i]
12 i=i+1
13 else X = X o B[j]
14 j=j+1
15 return X




MERGE Algorithm (2)

MERGE(A, B)
1 ij=1
2 X=0
3 while/ < length(A) orj < length(B)
4 if i > length(A)
5 X = X o B[j] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = X oAli]
9 i=i+1
10 elseif A[i] < B[j]
11 X = X oA[i]
12 i=i+1
13 else X = X o B[j]
14 j=j+1
15 return X

B This algorithm is incorrect! (Exercise: fix it)
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return X
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else X = X o B[j]

j=j+1

Complexity of MERGE
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Complexity of MERGE

MERGE (A, B)
ij=1
X=0
while/ < length(A) orj < length(B)
if i < length(A) and (j > length(B) or A[i] < B[j])
X = X o Ali]
else X = X o BJ[j]
j=j+1
return X

O 0o N Ul b WN

T(n) =©(n)

m Can we do better? No!

> we have to output n = length(A) + length(B) elements
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Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
> produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m Idea

> use a variant of MERGE that outputs all elements of its input sequences
> i.e., without removing duplicates

> assume that two parts, A, o A = A, and that A, and Ag are sorted
> use MERGE to combine A; and Ay into a sorted sequence

> this suggests a recursive algorithm



Merge Sort



Merge Sort

MERGESORT(A)
1 iflength(A) ==
2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])
5

6

Ar = MERGESORT(A[m + 1. .length(A)])
return MERGE(A, Ar)
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MERGESORT(A)

1 iflength(A) ==

2 return A

m = |length(A)/2]

A, = MERGESORT(A[1..m])

Ar = MERGESORT(A[m + 1. .length(A)])
return MERGE(A, Ar)
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m The complexity of MERGESORT is



Merge Sort

MERGESORT(A)
1 iflength(A) ==
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MERGESORT(A)
1 iflength(A) ==
2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])
5

6

Ar = MERGESORT(A[m + 1. .length(A)])
return MERGE(A, Ar)

m The complexity of MERGESORT is

T(n) =2T(n/2) + O(n)

| T(n) = O(nlogn) |
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m MeRGESORT exemplifies the divide and conquer strategy

m General strategy: given a problem P on input data A
» divide the input A into parts A1, A,, . . ., Ay, usually disjoint, surely with |A;] < |A| =n
» solve problem P for the individual k parts

> combine the partial solutions to obtain the solution for A

m Complexity analysis

k

T(n) = Tdivide + Z T(lAi]) + Tcombine
Py

we might analyze this formula another time...
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A Divide-and-Conquer Merge

MERGER(A, B)
1 iflength(A) ==

2 return B

3 if length(B) ==

4 return A

5 ifA[l] < B[1]

6 return A[1] o MERGER(A[2. . length(A)], B)
7 elsereturn B[1] o MERGER(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is

T(nN)=C1+T(n-1)=Cin=0(n)

m Can we do better? No! (We knew that already)
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m Going back to multiplication...

[ K Ha ] emd y=[ ][ ]

which means x = 2¢/2x; + xg and y = 2¢/2y, + yg, s0...

xy = (2% +xg) (2%, + yg)

= 26xy1 + 242 (xeyR + XRYL) + XRYR

we reduced the problem of multiplying two numbers of £ bits into the problem of
multiplying four numbers of £/2 bits...

T(€) =4T(€/2) +0(¢)

T(¢) = ©(€)
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m Again, we have

xy = (22 + x) 2%y, + y&)

= ZEX/_y/_ + 28/2 (XLyR + XRy/_) + XRYR
but notice that x,yr + Xgy, = (X, +Xg) (Vg + Y1) — XLYL — XRYR, SO
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Only 3 multiplications: x.y;, (x. + xg) (Vg + V1), and XgYr
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Divide-and-Conquer Multiplication (2)

m Again, we have

xy = (22 + x) 2%y, + y&)

=2y, + 2612 (XLYR + XRYL) + XRYR
but notice that x,yr + Xgy, = (X0 + Xg) (Vg + Y1) — XYL — XRYR, SO
xy = 25xy1 + 2872 ((x + XR) (YR + Y1) — XYL — XRYR) + XRYR
Only 3 multiplications: x.y;, (x. + xg) (Vg + V1), and XgYr

T(€) =3T(€/2)+0(¢)

which, as we will see, leads to a much better complexity

T(e) — o(elogz 3) — 0(81.59)
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Computing the Median

m The median of a sequence Ais a value m € Asuch that half the values in A are smaller than
m and half are bigger than m

> e.g.,, whatisthe medianof A = (2, 36,5, 21, 8, 13,11, 20, 5, 4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|length(A)/2]]

m Isit correct? Yes
m How long does it take? T(n) = Tuercesorr(7) = O(nlogn)

m Can we do better? Intuitively, yes...
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Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are less than or
equal to m and the other half are greater than or equal tom

m Generalizating, the k-smallest element of a sequence Ais avalue v € A such that k
elements of A are less than or equal to v and n — k are greater or equal to v

E.g.,
» fork = 1,the minimum of A
» fork = ||A|/2], the median of A
> what is the 6th smallest element of A = (2, 36, 5,21, 8,13, 11, 20,5, 4, 1)?
the 6th smallest element of A—a.k.a. select(A, 6)—is 8
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k-Smallest Element

m |dea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
> A, contains the set of elements that are equal to v
> Ag contains the set of elements that are greater then v

E.g.,A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, sayv = 5

A =(2,4,1) A =(55) Ag=(36218,13,11,20)

Now, where is the 7th smallest value of A?
It is the 2nd smallest value of Ar
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k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A

select(Ar, k) ifk < |A]
select(A, k) = v if ALl < k < |AL]+ AV
select(Ar, k — ALl — JA/)  ifk > ALl + A/

m ComputingA;, Ay, and Ag takes O(n) steps
m How do we pick v?

m ldeally, we should pick v so as to obtain |A;| ~ |Ag| = |A|/2

> so, ideally we should pick v = median(A), but...

m We pick a random element of A



Selection Algorithm

SELECTION(A, k)

v = Alrandom(1... |A])]
ALALAR = @
fori = 1to |A|
if Ali] <v
A = AL UA[I]
elseif A[i] == v
A, = A, UA[I]
else Ap = Ap UAJI]
if k < |A]
return SELECTION(A,, k)
elseif k > |A.| + |A/]
return SELECTION(Ag, k — |AL| — |A/])
else returnv
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