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Representing Numbers

m How do we (human beings) represent numbers?

m Using the decimal notation
> tensymbols: 0,1,2,...,9 (whyten?)
» apolynomialin b = 10

m For example
d6d5d4d3d2d1d0 0Sd,’<b
n =(3]|1]a]1]5]9]2]  n=deb®+dsh®+- - +dibl +dob°

n = 3x 1000000 + 1 x 100000 + 4 x 10000 + 1 x 1000+
+5%x100+9%x10+2x1=23141592

m How do computers represent numbers?
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Representing Numbers in a Computer

m Computers work well with the binary representation
> two symbols: 0, 1 (why two?)
» apolynomialinb =2

m For example
dsdsdsdsdydidy 0<di<b
[1lof1]1]o]1]1]  n=deh®+dshb®+--- +dib +doh°

=
Il

N =1X64en+1X16ten+1X8ten +1X2ten+1X Lten =...

m The usual questions

> |Is this representation correct?
» How much does it cost? (This time in terms of space)
» Can we do better?
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A Ternary Computer?

m Aternary computer was actually built!

TCLE TRREE
T SR

The Setun was a ternary (or trinary) computer developed in 1958 and
used at Moscow State University until about 1965
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Correctness
m What does it even mean?

m There s at least one representation for each value

m Arepresentation should be unambiguous

> i.e,thereis at most one value for each representation

m We don’t care to say more about this
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Space Complexity (2)

m The space complexity for N is £ = ©(log N)
m Can we do better?

m No!

> there are exactly b® combinations of £ symbols chosen from an
alphabet X with |X| = b

> i.e., you can not express more than b¢ values with £ symbols
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m We can now represent n; and n, with ©(log n;) and ©(log n,) bits,
respectively

m How do we add two numbers represented in base-b notation?

m Theorem: the sum of three base-b digits (whose values are
X, ¥,z < b — 1) can be represented with two base-b digits

Proof:
» caseb=2:¢=2sincel+1+1=3ten = 1ltwo

> caseb > 3:

1. wecanrepresentx+y+zin € = [logy (x+y+2z+1)]

2. x+y+z+1 < 3b,because x,y, z are three base-b digits, therefore
¢=logp (x+y+z+1)] <logp3b=log,3+1

3. b > 3, therefore logy, 3 < 1, therefore € < 2
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Adding Numbers (2)

m We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi,yi»zi) = (¢, $i)

m So, givenxandy

C1 Co 0

X = Xe-1 X1 Xo
y= Ye-1 Yi Yo
X+Yy=Ceoa Se-1 S1 So

+1
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R=0/#1]0,...,0] ofsize¢+1
c=0
fori=1to ¢
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m Isitcorrect? Yes
m How long does it take?

m Can we do better?
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Complexity

m We areinterested in T(€) (remember that £ = ©(log N))

AbD (A, B)
R=0/#1]0,...,0] ofsize¢+1
c=0
fori=1to ¢
(¢,R[i]) = AbDTHREEDIGITS(A[/], B[i], )
R[¢+1] =c¢
return R

o Uk WN B

T(6) =09

m Can wedo better? No!

> we have to at least look at the £ symbols from the input values
> we must assign at least £ + 1 symbols for the result
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Multiplying Numbers

m We can now add two numbers
m Now, how do we multiply two numbers?
m Remember that our representation is a polynomial

x=Xe_1b + xp0bt 2+ -+ x1b + 0
multiplying x by a simple polynomialin b, say y = y;b', we obtain
XXy = Yi(Xe—1b ™ 4 xp_ob? 2 4 4 x B 4 xb)
m Muliplying by b’ is equivalent to shifting our representation to the left

by i positions
> left means in the direction of the most significant bits



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo

XXy =
1 0 0 1 (1001x1)



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo

XXy =
0 1 (1001x1)
1

1 0
+ 1 0 0 (1001 x 1 shifted by 1)



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo

XXy =
1 0 0 1 (1001x1)

+ 1 0 0 1 (1001 x 1 shifted by 1)

+ 0 0 0 O (1001 x 0 shifted by 2)



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo

XXy =
1 0 0 1 (1001x1)

+ 1 0 0 1 (1001 x 1 shifted by 1)

+ 0 0 0 O (1001 x 0 shifted by 2)

+ 1 0 0 1 (1001 x 1 shifted by 3)



Multiplying Binary Numbers

m Let’s now focus on binary numbers (i.e., base b = 2)

x=xXp_1b X0 0bt 2+ 4 x1b + x0

where x; is either 0 or 1

m Forexample, let x = 100140 and y = 1011yyo

XXy =
1 0 0 1 (1001x1)
+ 1 0 0 1 (1001 x 1 shifted by 1)
+ 0 0 0 O (1001 x 0 shifted by 2)
+ 1 0 0 1 (1001 x 1 shifted by 3)
= 1 1 1 0 0 0 1 1 (1001x1011)
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B Again we are interested in T(£)

MuLTIPLY (A, B)
1 R=0
2 T=A
3 fori=0to¢-1
4 if B[i] ==
5 R = ADD(R, T)
6 T = SHIFTLEFT(T)
7 returnR
T(¢) = ©(£2)

m Can we do better? Yes!
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which means x = 2¢/2x, + xg and y = 22y, + yg, so...

xy = (22 + x) 2%y, + y&)

= 2€X/_y/_ + 2€/2 (XLyR + XRy/_) + XRYR

we reduced the problem of multiplying two numbers of € bits into
the problem of multiplying four numbers of €/2 bits...

T(€) =4T(€/2) +0(¢)

T(6) = ©(¢%)
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Almost There

B Again, we have
xy = (2°72x + xp) (21%y + yR)
= 2%y + 2577 (xuyr + XRYL) + XRYR
but notice that x yr + xgy. = (X + Xg) (Vr + Y1) — XLY1 — XRYR, SO
Xy = 25Xy + 247 (%0 + XR) (VR + Y1) = XLYL — XRYR) + XRYR
Only 3 multiplications: x.y;, (x; + xg) (Yr + Y1), and xgyr

T(€) =3T(¢/2)+0(¢)

which, as we will see, leads to a much better complexity

T(e) — O(elogz 3) — 0(81'59)



