Basics of Complexity Analysis:
The RAM Model and the
Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

February 25, 2021

m Informal analysis of two Fibonacci algorithms

m The random-access machine model

m Measure of complexity

m Characterizing functions with their asymptotic behavior

m Big-O, omega, and theta notations

Outline

running time (seconds)

60 -
50 -
40 -
30 -
20 -

10 -

0_* T T T T i i i i i
0 20 40 60 80 100 120 140 160 180 200

)

n

Slow vs

— Ruby
- Scheme

C-gcc
SmartFibonacci

,—)

. Fast Fibonacci

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

» Fibonacci(n) is exponential in n

» SmartFibonacci(n) is (almost) linear in n

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms
» Fibonacci(n) is exponential in n
» SmartFibonacci(n) is (almost) linear in n

m How do we characterize the complexity of algorithms?

> in general

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

» Fibonacci(n) is exponential in n

» SmartFibonacci(n) is (almost) linear in n

m How do we characterize the complexity of algorithms?
> in general
> in a way that is specific to the algorithms

> but independent of implementation details

running time (seconds)

60 -
50 -
40 -
30 -
20 -

10 -

0_* T T T T i i i i i
0 20 40 60 80 100 120 140 160 180 200

)

n

Slow vs

— Ruby
- Scheme

C-gcc
SmartFibonacci

,—)

. Fast Fibonacci

time

Slow vs. Fast Fibonacci

FibonacCi s
SmartFibonacCi s

A Model of the Computer

m An informal model of the random-access machine (RAM)

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

> operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

>
>
>
» subroutine call

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

> operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

vyVvyy

m A basic step in the RAM model takes a constant time

Analysis in the RAM Model

SmartFibonacci(n)
1 ifn==

2 return O

3 elseif n==

4 return 1

5 elsepprev =0

6 prev = 1

7 fori=2ton

8 f = prev + pprev

9 pprev = prev

0 prev = f

1 returnf

Analysis in the RAM Model

SmartFibonacci(n) cost times (n > 1)
1 ifn==
2 return O
3 elseif n==
4 return 1
5 elsepprev =0
6 prev = 1
7 fori=2ton
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 returnf

Analysis in the RAM Model

SmartFibonacci(n) cost times (n> 1)
1 ifn== Cy 1
2 return 0 Co 0
3 elseif n== C3 1
4 return 1 Cs 0
5 elsepprev =0 Cs 1
6 prev = 1 Ce 1
7 fori=2ton C7 n
8 f = prev + pprev | Cs n—1
9 pprev = prev Co n—1

10 prev = f C10 n—1

11 returnf Ci1 1

T(n)=ci+c3+cs+c+ci1+ncs+ (n—1)(cg + cg + Cip)

Analysis in the RAM Model

SmartFibonacci(n) cost times (n> 1)
1 ifn== Cy 1
2 return 0 Co 0
3 elseif n== C3 1
4 return 1 Cs 0
5 elsepprev =0 Cs 1
6 prev = 1 Ce 1
7 fori=2ton C7 n
8 f = prev + pprev | Cs n—1
9 pprev = prev Co n—1

10 prev = f C10 n—1

11 returnf Ci1 1

T(n) =nCy+ Co = T(n)isalinear function of n

Input Size

m We measure the complexity of an algorithm as a function of the size of the input
» size measured in bits

Input Size

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for SmartFibonacci?

Input Size

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for SmartFibonacci?

m Example: given a sequence A = (ay, a, . . ., ap), and a value x, output true if A
contains x, or false otherwise

Input Size

m We measure the complexity of an algorithm as a function of the size of the input
> size measured in bits

» did we do that for SmartFibonacci?

m Example: given a sequence A = (ay, ao, .

.., ap), and a value x, output true if A
contains x, or false otherwise

Find(A, x)

1 fori = 1 to length(A)
2 if A[i] == x

3 return true
4 return false

Input Size

m We measure the complexity of an algorithm as a function of the size of the input
> size measured in bits

» did we do that for SmartFibonacci?

m Example: given a sequence A = (ay, ao, .

.., ap), and a value x, output true if A
contains x, or false otherwise

Find(A, x)

1 fori = 1 to length(A)
2 if A[i] == x

3 return true
4 return false

T(n) =Cn

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (ay, a, . . ., ap), output true if A contains two
equal values a; = a; (with i # j)

Worst-Case Complexity
m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (ay, a, . . ., ap), output true if A contains two
equal values a; = a; (with i # j)

FindEquals(A)
for i = 1 to length(A) — 1
for j = i+ 1 to length(A)
if Ali] == A[j]
return true
return false

u b WwWN =

Worst-Case Complexity
m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (ay, a, . . ., ap), output true if A contains two
equal values a; = a; (with i # j)

FindEquals(A)
for i = 1 to length(A) — 1
for j = i+ 1 to length(A)
if Ali] == A[j]
return true
return false

u b WwWN =

n(n—1)

T(n)=C 5

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0|vs. y+z|

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0|vs. y+z|

m We do not care about the specific costs of each basic step

> these costs are likely to vary significantly with languages, implementations, and
processors

> so,weassumeci =C =C3 ="+ =C(j

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0|vs. y+z|

m We do not care about the specific costs of each basic step

> these costs are likely to vary significantly with languages, implementations, and
processors

> so,weassumeci =C =C3 ="+ =C(j

> we also ignore the specific value ¢;, and in fact we ignore every constant cost factor

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

» so we ignore lower-order terms

E.g.,in
T(n)=an® +bn+c

we only consider the n® term and say that T(n) is a quadratic function in n

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

» so we ignore lower-order terms

E.g.,in
T(n)=an® +bn+c

we only consider the n® term and say that T(n) is a quadratic function in n

We write

T(n) = ©(rP)

and say that “T (n) is theta of n-squared”

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265. ..

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) =

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) = A7)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) = A7)
> x=A(3) = x = A(4)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) = A7)
> x = A(3) = x = A(4), but x = A(4) =» x = A(3)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) = A7)
> x = A(3) = x = A(4), but x = A(4) =» x = A(3)
> A(2)A(7) =

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
> A(3) + A(4) = A7)
> x = A(3) = x = A(4), but x = A(4) =» x = A(3)
> A(2)A(7) = A(14)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
A(3) + A(4) = A(7)
x = A(3) = x = A(4), but x = A(4) =» x = A(3)
A(2)A(7) = A(14)
(10+ A(2))(20 + A(1)) =

vyvyYyy

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
A(3) + A(4) = A(7)
x = A(3) = x = A(4), but x = A(4) =» x = A(3)
A(2)A(7) = A(14)
(10 + A(2))(20 + A(1)) = 200 + A(52)

vyvyYyy

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation
> 7 =3.14159265... = 3.14 + A(0.005)
A(3) + A(4) = A(7)
x = A(3) = x = A(4), but x = A(4) =» x = A(3)
A(2)A(7) = A(14)
(10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

vyvyYyy

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation

> 7 =3.14159265... = 3.14 + A(0.005)
A(3) + A(4) = A(7)
x = A(3) = x = A(4), but x = A(4) =» x = A(3)
A(2)A(7) = A(14)
(10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
A(n—1) = A(r?)

vVvyyvyVvVyy

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most ¢
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”
» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Calculating with the A notation

> w1 =3.14159265... = 3.14 + A(0.005)
A(3) + A(4) = A(7)
x = A(3) = x = A(4), but x = A(4) =» x = A(3)
A(2)A(7) = A(14)
(10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
A(n—1) = A(r?) forall n

vVvyyvyVvVyy

From Ato O

From Ato O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f(n) = O(g(n))
» read “f(n) is big-oh of g(n)” or simply “f(n) is oh of g(n)”

From Ato O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f(n) = O(g(n))
» read “f(n) is big-oh of g(n)” or simply “f(n) is oh of g(n)”
Examples:
» 3n+2=0(n)

From Ato O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f(n) = O(g(n))
» read “f(n) is big-oh of g(n)” or simply “f(n) is oh of g(n)”
Examples:
» 3n+2=0(n)
> 24/n+logn= 0(n?)

From Ato O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f(n) = O(g(n))
» read “f(n) is big-oh of g(n)” or simply “f(n) is oh of g(n)”
Examples:
» 3n+2=0(n)
> 24/n+logn= 0(n?)

» let Tse(n) be the computational complexity of SmartFibonacci (the efficient
algorithm); then

From Ato O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f(n) = O(g(n))
» read “f(n) is big-oh of g(n)” or simply “f(n) is oh of g(n)”
Examples:
» 3n+2=0(n)
> 24/n+logn= 0(n?)

» let Tse(n) be the computational complexity of SmartFibonacci (the efficient
algorithm); then

Tse(n) = O(n)

From Oto Q2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))

» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)”

From Oto Q2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)”
Examples:
» 3n+ 2= Q(logn)

From Oto Q2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)”
Examples:
» 3n+ 2= Q(logn)

» let T=(n) be the computational complexity of Fibonacci (the inefficient algorithm);
then

Tr(n) = Q((1.4)")

From Oto Q2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)”
Examples:
» 3n+ 2= Q(logn)

» let T=(n) be the computational complexity of Fibonacci (the inefficient algorithm);
then

Te(n) = Q((1.4)")
m When f(n) = O(g(n)) and f(n) = Q(g(n)) we also write
f(n) = ©(g(n))

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let 7 (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let 7 (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

» m(n) = 0(n) trivial upper bound

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let 7 (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> n(n) = O(n)

> m(n) = Q(1)

trivial upper bound

trivial lower bound

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let 7 (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

» m(n) = 0(n)
> m(n) =Q(1)
» m(n) =O(n/logn)

trivial upper bound
trivial lower bound

non-trivial tight bound

Characterizing Unknown Functions

m The idea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let 7 (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

» m(n) = 0(n)
> m(n) =Q(1)
» m(n) =O(n/logn)

trivial upper bound

trivial lower bound
non-trivial tight bound
In fact, the fundamental prime number theorem says that

~ a(n)inn
lim ——— =1

n—oo n

©-Notation

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

f(n)

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
v ceg(n)

f(n)

/’ cig(n)
/

A
bk

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
c2g(n)

f(n)

c1g(n)

7

No

©(g(n)) = {f(n) : ¢y > 0,3c, > 0,3y > 0
:0 < c1g(n) < f(n) < ceg(n) foralln> ny}

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
c2g(n)

f(n)

f(n) = ©(g(n))

i.e, f(n) € ©(g(n))

“f(n) is theta of g(n)”
7 /

No

c1g(n)

©(g(n)) = {f(n) : ¢y > 0,3c, > 0,3y > 0
:0 < c1g(n) < f(n) < ceg(n) foralln> ng}

Examples

m 7(n)=nr+10n+ 100

Examples

m7(n)=r+10n+100 = T(n)=0(r?)

Examples
m7(n)=r+10n+100 = T(n)=0(r?)

m7(n)=n+10logn

Examples
m7(n)=r+10n+100 = T(n)=0(r?)

m7(n)=n+10logn = T(n) =0O(n)

Examples
m7(n)=r+10n+100 = T(n)=0(r?)
m7(n)=n+10logn = T(n) =0O(n)

m 7(n) =nlogn+nyn

Examples
m7(n)=r+10n+100 = T(n)=0(r?)
m7(n)=n+10logn = T(n) =0O(n)

m7(n)=nlogn+nm/n = T(n) =60(nyVn)

T(n) = +10n+100 = T(n) = O(rP)
T(n)=n+10logn = T(n) =0(n)
T(n) = nlogn+nm/n = T(n) = O(n/n)

T(n) =26 +n

Examples

T(n) = +10n+100 = T(n) = O(rP)
T(n)=n+10logn = T(n) =0(n)
T(n) = nlogn+nm/n = T(n) = O(n/n)

T(n)=28+n" = T(n) =0O(2%)

Examples

T(n) = +10n+100 = T(n) = O(r)
T(n) =n+10logn = T(n) = O(n)
T(n) = nlogn+m/n = T(n) = ©(nyn)
T(n) =28 +n" = T(n)=0O(2%)

T(n) — 10+n

ne

Examples

T(n) = +10n+100 = T(n) = O(rP)
T(n)=n+10logn = T(n) = O(n)
T(n) = nlogn+nyn = T(n) = ©(nyn)
T(n)=25+n = T(n)=0(28)

T(n) =120 = T(n)=0()

Examples

T(n) = +10n+100 = T(n) = O(r)
T(n)=n+10logn = T(n) = O(n)
T(n) = nlogn+nyn = T(n) = ©(nyn)
T(n)=25+n = T(n)=0(28)

T(n) =1 = T(n)=0(;)

T(n) = complexity of SmartFibonacci

Examples

T(n) = +10n+100 = T(n) = O(r)
T(n)=n+10logn = T(n) = O(n)
T(n) = nlogn+nyn = T(n) = ©(nyn)
T(n)=25+n = T(n)=0(28)

T(n) =1 = T(n)=0(;)

T(n) = complexity of SmartFibonacci

= T(n) =O(n)

Examples

T(n) = +10n+100 = T(n) = O(r)
T(n)=n+10logn = T(n) =0(n)

T(n) = nlogn+nyn = T(n) =©(nvyn)

T(n)=28+n" = T(n)=0(28)

T(n) = ”f% = T(n) = @(,1—7)

T(n) = complexity of SmartFibonacci = T(n) = O(n)
We characterize the behavior of T(n) in the limit

The ©-notation is an asymptotic notation

Examples

O-Notation

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

f(n)

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
v cg(n)

f(n)
>
7

N

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)

f(n)

No

O(g(n)) ={f(n) : 3¢ >0,3ny > 0
:0 < f(n) < cg(n)foralln> ng}

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)

f(n)

f(n) = O(g(n))
i.e, f(n) € O(g(n))
“f(n) is big-oh of g(n)”

No

O(g(n)) ={f(n) : 3¢ >0,3ny > 0
:0 < f(n) < cg(n)foralln> ng}

Examples

m f(n) = n*+10n+ 100

Examples

mf(n) = +10n+100 = f(n) = O(n?)

Examples

mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

m f(n) =n+10logn

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

mf(n)=n+10logn = f(n) = 0O(2")

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)
mf(n)=n+10logn = f(n) = 0O(2")

m f(n) = nlogn+ nyn

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)
mf(n)=n+10logn = f(n) = 0O(2")

m f(n) =nlogn+m/n = f(n) = O(n?)

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)
mf(n)=n+10logn = f(n) = O(2")
m f(n) = nlogn+nyn = f(n) = O(r?)

mi(n)=28+n

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)
mf(n)=n+10logn = f(n) = O(2")
m f(n) = nlogn+nyn = f(n) = O(r?)

mi(n)=28+n = f(n)=0((1.5)")

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)
mf(n)=n+10logn = f(n) = O(2")
m f(n) = nlogn+nyn = f(n) = O(r?)

mi(n)=28+n = f(n)=0((1.5)")

= f(n) = 102

mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

mf(n)=n+10logn = f(n) = 0O(2")
m f(n) =nlogn+m/n = f(n) = O(n?)
mi(n)=2s+n" = f(n)=0((1.5")

mf(n) = 1?% = f(n) = O(1)

Examples

mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

mf(n)=n+10logn = f(n) = O(2")
m f(n) = nlogn+nyn = f(n) = O(P)
mi(n)=25s+n" = f(n)=0((1.5)")
mf(n) =% = f(n)=0(1)

m f(n) = ©(g(n)) = f(n) = O(g(n))

Examples

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

mf(n)=n+10logn = f(n) = O(2")

m f(n) = nlogn+nyn = f(n) = O(P)

mi(n)=25s+n" = f(n)=0((1.5)")

mf(n) =% = f(n)=0(1)

m f(n) =©(g(n)) = f(n) = O(g(n))

m f(n) = ©(g(m) Ag(n) = O(h(n)) = f(n) = O(h(n))

Examples
mf(n)=nr+10n+100 = f(n) = 0(n?) = f(n) =0(n%)

mf(n)=n+10logn = f(n) = O(2")

m f(n) = nlogn+nyn = f(n) = O(P)

mi(n)=25s+n" = f(n)=0((1.5)")

mf(n) =% = f(n)=0(1)

m f(n) =©(g(n)) = f(n) = O(g(n))

m f(n) = ©(g(n)) A g(n) = O(h(n)) = f(n) = O(h(n))

m f(n) = O(g(n)) A g(n) =O(h(n)) = f(n) = O(h(n))

Examples

m ? —10n+ 100 = O(nlog n)?

Examples

m ° —10n+ 100 = O(nlogn)? NO

Examples
m ° —10n+ 100 = O(nlogn)? NO

m 1(n) = O(2") = f(n) = O(r?)?

Examples
m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

Examples
m ° —10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")?

Examples
m ° —10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

Examples
m ° —10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO
m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2"2'e21)?

Examples
m ° —10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO
m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES

m 7(n) = 0(2") = f(n) = O(?)?

Examples

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES

m f(n) = 0(2") = f(n) = ©(n?)? NO

Examples

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES
m f(n) = O(2") = f(n) = ©(n?)? NO

m \/n = O(log? n)?

Examples

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES
m f(n) = O(2") = f(n) = ©(n?)? NO

m \n= O(log? n)? NO

Examples

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES
m f(n) = 0(2") = f(n) = ©(n?)? NO

m Vn = O(log? n)? NO

m 2+ (1.5)" = 0(27)?

Examples

m ° —10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = O(2") = f(n) = O(n?2")? YES

m f(n) = ©(n?2") = f(n) = O(2™2eM)? YES
m f(n) = 0(2") = f(n) = ©(n?)? NO

m Vn = O(log? n)? NO

m 2+ (1.5)"=0(2Z)? NO

Examples

Example

m So, what is the complexity of FindEquals?

FindEquals(A)
for i = 1 to length(A) — 1
for j = i + 1 to length(A)
if Ali] == A[j]
return true

ua b WwWN =

return false

Example

m So, what is the complexity of FindEquals?

FindEquals(A)
for i = 1 to length(A) — 1
for j = i + 1 to length(A)
if Ali] == A[j]
return true
return false

ua b WwWN =

T(n) = ©(r°)

» n = length(A) is the size of the input

> we measure the worst-case complexity

Q2-Notation

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

cg(n)

QQ-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

cg(n)

%

Q(g(n)) = {f(n) : dc > 0,3dny > 0
:0 < cg(n) < f(n)foralln> ny}

Mg

QQ-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n) = Q(g(n))
i.e., f(n) € Q(g(n))
“f(n) is omega of g(n)”

Q(g(n)) = {f(n) : dc > 0,3dny > 0
:0 < cg(n) < f(n)foralln> ny}

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) A f(n) = O(g(n)) < f(n) =B(g(n))

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) A f(n) = O(g(n)) < f(n) =B(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) A f(n) = O(g(n)) < f(n) =B(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fF>gANf<gef=g

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) A f(n) = O(g(n)) < f(n) =B(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fF>gANf<gef=g

m When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), and that
g(n) dominates f(n)

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) A f(n) = O(g(n)) < f(n) =B(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fF>gANf<gef=g

m When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), and that
g(n) dominates f(n)

m When f(n) = Q(g(n)) we say that g(n) is a lower bound for f(n)

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,

f(n) = 10n* + O(n)
means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?+0(n)?

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,

f(n) = 10n* + O(n)
means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
?+Q(n) —1=0(n?)?

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
+Q(n)—1=0(n)? NO

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
+Q(n)—1=0(n)? NO
? +0(n) —1 = 0(r?)?

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
+Q(n)—1=0(n)? NO
n?+0(n)—1=0(n?)? YES

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
+Q(n)—1=0(n)? NO
n?+0(n)—1=0(n?)? YES
nlog n+ ©(y/n) = O(n\n)?

©, O, and Q2 as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don't care
to know that is asymptotically at most linear in n.

m Examples
" +4n—1=n?>+0(n)? YES
+Q(n)—1=0(n)? NO
n?+0(n)—1=0(n?)? YES
nlogn+©(+/n) = O(n\/n)? YES

o-Notation

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,
nlogn= O(n?) is not asymptotically tight
n? —n+10 = 0(n?) is asymptotically tight

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,
nlogn= O(n?) is not asymptotically tight
n? —n+10 = O(n?) is asymptotically tight

m We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) ={f(n) : V¢ >0,3ny >0
:0 < f(n) < cg(n)foralln=> ng}

w-Notation

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

E.g.,
2" = Q(nlogn) is not asymptotically tight
n+4nlogn= Q(nlogn) isasymptotically tight

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

E.g.,
2" = Q(nlogn) is not asymptotically tight
n+4nlogn= Q(nlogn) isasymptotically tight

m We use the w-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions w(g(n))

w(g(n)) ={f(n): Yc>0,3ng > 0
:0 < cg(n) < f(n)foralln> ny}

3!7

\n = n®8

log n

