
Basics of Complexity Analysis:

The RAM Model and the

Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

February 25, 2021

Outline

Informal analysis of two Fibonacci algorithms

The random-access machinemodel

Measure of complexity

Characterizing functions with their asymptotic behavior

Big-O, omega, and theta notations

Slow vs. Fast Fibonacci

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

n

ru
n
n
in
g
ti
m
e
(s
e
co
n
d
s)

Ruby
Scheme
Python
C
C-wiz
Java
C-gcc
SmartFibonacci

Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ Fibonacci(n) is exponential in n

◮ SmartFibonacci(n) is (almost) linear in n

Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ Fibonacci(n) is exponential in n

◮ SmartFibonacci(n) is (almost) linear in n

How do we characterize the complexity of algorithms?

◮ in general

Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ Fibonacci(n) is exponential in n

◮ SmartFibonacci(n) is (almost) linear in n

How do we characterize the complexity of algorithms?

◮ in general

◮ in a way that is specific to the algorithms

◮ but independent of implementation details

Slow vs. Fast Fibonacci

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

n

ru
n
n
in
g
ti
m
e
(s
e
co
n
d
s)

Ruby
Scheme
Python
C
C-wiz
Java
C-gcc
SmartFibonacci

Slow vs. Fast Fibonacci

n

ti
m

e

Fibonacci

SmartFibonacci

A Model of the Computer

An informal model of the random-access machine (RAM)

A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAMmodel

A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A basic step in the RAM model takes a constant time

Analysis in the RAM Model

SmartFibonacci(n)
1 if n == 0

2 return 0

3 elseif n == 1

4 return 1

5 else pprev = 0

6 prev = 1

7 for i = 2 to n

8 f = prev + pprev

9 pprev = prev

10 prev = f

11 return f

Analysis in the RAM Model

SmartFibonacci(n)
1 if n == 0

2 return 0

3 elseif n == 1

4 return 1

5 else pprev = 0

6 prev = 1

7 for i = 2 to n

8 f = prev + pprev

9 pprev = prev

10 prev = f

11 return f

cost times (n > 1)

Analysis in the RAM Model

SmartFibonacci(n)
1 if n == 0

2 return 0

3 elseif n == 1

4 return 1

5 else pprev = 0

6 prev = 1

7 for i = 2 to n

8 f = prev + pprev

9 pprev = prev

10 prev = f

11 return f

cost times (n > 1)
c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n

c8 n − 1

c9 n − 1

c10 n − 1

c11 1

T (n) = c1 + c3 + c5 + c6 + c11 + nc7 + (n − 1)(c8 + c9 + c10)

Analysis in the RAM Model

SmartFibonacci(n)
1 if n == 0

2 return 0

3 elseif n == 1

4 return 1

5 else pprev = 0

6 prev = 1

7 for i = 2 to n

8 f = prev + pprev

9 pprev = prev

10 prev = f

11 return f

cost times (n > 1)
c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n

c8 n − 1

c9 n − 1

c10 n − 1

c11 1

T (n) = nC1 + C2 ⇒ T (n) is a linear function of n

Input Size

We measure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

Input Size

We measure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for SmartFibonacci?

Input Size

We measure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for SmartFibonacci?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x , output true if A

contains x , or false otherwise

Input Size

We measure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for SmartFibonacci?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x , output true if A

contains x , or false otherwise

Find(A, x)
1 for i = 1 to length(A)
2 if A[i] == x

3 return true
4 return false

Input Size

We measure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for SmartFibonacci?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x , output true if A

contains x , or false otherwise

Find(A, x)
1 for i = 1 to length(A)
2 if A[i] == x

3 return true
4 return false

T (n) = Cn

Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output true if A contains two
equal values ai = aj (with i , j)

Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output true if A contains two
equal values ai = aj (with i , j)

FindEquals(A)
1 for i = 1 to length(A) − 1

2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return true
5 return false

Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output true if A contains two
equal values ai = aj (with i , j)

FindEquals(A)
1 for i = 1 to length(A) − 1

2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return true
5 return false

T (n) = C
n(n − 1)

2

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ so, we assume c1 = c2 = c3 = · · · = ci

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ so, we assume c1 = c2 = c3 = · · · = ci

◮ we also ignore the specific value ci , and in factwe ignore every constant cost factor

Order of Growth

We care only about the order of growth or rate of growth of T (n)

Order of Growth

We care only about the order of growth or rate of growth of T (n)
◮ so we ignore lower-order terms

E.g., in

T (n) = an
2
+ bn + c

we only consider the n2 term and say that T (n) is a quadratic function in n

Order of Growth

We care only about the order of growth or rate of growth of T (n)
◮ so we ignore lower-order terms

E.g., in

T (n) = an
2
+ bn + c

we only consider the n2 term and say that T (n) is a quadratic function in n

We write

T (n) = Θ(n2)

and say that “T (n) is theta of n-squared”

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . .

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) =

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) =

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)
◮ (10 + A(2)) (20 + A(1)) =

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)
◮ (10 + A(2)) (20 + A(1)) = 200 + A(52)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)
◮ (10 + A(2)) (20 + A(1)) = 200 + A(52) = 200 + A(100)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)
◮ (10 + A(2)) (20 + A(1)) = 200 + A(52) = 200 + A(100)
◮ A(n − 1) = A(n2)

Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x | ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!
◮ A(y) denotes a set of values
◮ x = A(y) really means x ∈ A(y)

Calculating with the A notation

◮ π = 3.14159265 . . . = 3.14 + A(0.005)
◮ A(3) + A(4) = A(7)
◮ x = A(3) ⇒ x = A(4), but x = A(4) ; x = A(3)
◮ A(2)A(7) = A(14)
◮ (10 + A(2)) (20 + A(1)) = 200 + A(52) = 200 + A(100)
◮ A(n − 1) = A(n2) for all n

From A to O

From A to O

If f (n) is such that f (n) = kA(g (n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g (n))
◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

From A to O

If f (n) is such that f (n) = kA(g (n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g (n))
◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”
Examples:

◮ 3n + 2 = O(n)

From A to O

If f (n) is such that f (n) = kA(g (n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g (n))
◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”
Examples:

◮ 3n + 2 = O(n)
◮ 2

√
n + log n = O(n2)

From A to O

If f (n) is such that f (n) = kA(g (n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g (n))
◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”
Examples:

◮ 3n + 2 = O(n)
◮ 2

√
n + log n = O(n2)

◮ let TSF (n) be the computational complexity of SmartFibonacci (the efficient
algorithm); then

From A to O

If f (n) is such that f (n) = kA(g (n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g (n))
◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”
Examples:

◮ 3n + 2 = O(n)
◮ 2

√
n + log n = O(n2)

◮ let TSF (n) be the computational complexity of SmartFibonacci (the efficient
algorithm); then

TSF (n) = O(n)

From O to Ω and Θ

If f (n) = O(g (n)) then we can also say that g (n) asymptotically dominates f (n),
which we can also write as

g (n) = Ω(f (n))
◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”

From O to Ω and Θ

If f (n) = O(g (n)) then we can also say that g (n) asymptotically dominates f (n),
which we can also write as

g (n) = Ω(f (n))
◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”
Examples:

◮ 3n + 2 = Ω(log n)

From O to Ω and Θ

If f (n) = O(g (n)) then we can also say that g (n) asymptotically dominates f (n),
which we can also write as

g (n) = Ω(f (n))
◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”
Examples:

◮ 3n + 2 = Ω(log n)
◮ let TF (n) be the computational complexity of Fibonacci (the inefficient algorithm);

then

TF (n) = Ω((1.4)n)

From O to Ω and Θ

If f (n) = O(g (n)) then we can also say that g (n) asymptotically dominates f (n),
which we can also write as

g (n) = Ω(f (n))
◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”
Examples:

◮ 3n + 2 = Ω(log n)
◮ let TF (n) be the computational complexity of Fibonacci (the inefficient algorithm);

then

TF (n) = Ω((1.4)n)

When f (n) = O(g (n)) and f (n) = Ω(g (n)) we also write

f (n) = Θ(g (n))

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Example:

Let π (n) be the number of primes less than or equal to n

What is the asymptotic behavior of π (n)?

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Example:

Let π (n) be the number of primes less than or equal to n

What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Example:

Let π (n) be the number of primes less than or equal to n

What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Example:

Let π (n) be the number of primes less than or equal to n

What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound

Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function
that is not completely known

Example:

Let π (n) be the number of primes less than or equal to n

What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound

In fact, the fundamental prime number theorem says that

lim
n→∞

π (n) ln n

n
= 1

Θ-Notation

Θ-Notation

Given a function g (n), we define the family of functions Θ(g (n))

Θ-Notation

Given a function g (n), we define the family of functions Θ(g (n))

f (n)

Θ-Notation

Given a function g (n), we define the family of functions Θ(g (n))

f (n)

c2g (n)

c1g (n)

Θ-Notation

Given a function g (n), we define the family of functions Θ(g (n))

f (n)

c2g (n)

c1g (n)

n0

Θ(g (n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0

: 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n ≥ n0}

Θ-Notation

Given a function g (n), we define the family of functions Θ(g (n))

f (n)

c2g (n)

c1g (n)

n0

f (n) = Θ(g (n))
i.e., f (n) ∈ Θ(g (n))

“f (n) is theta of g(n)”

Θ(g (n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0

: 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n ≥ n0}

Examples

T (n) = n2
+ 10n + 100

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n

n2

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n

n2 ⇒ T (n) = Θ(1

n
)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n

n2 ⇒ T (n) = Θ(1

n
)

T (n) = complexity of SmartFibonacci

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n

n2 ⇒ T (n) = Θ(1

n
)

T (n) = complexity of SmartFibonacci ⇒ T (n) = Θ(n)

Examples

T (n) = n2
+ 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√

n ⇒ T (n) = Θ(n
√

n)

T (n) = 2
n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n

n2 ⇒ T (n) = Θ(1

n
)

T (n) = complexity of SmartFibonacci ⇒ T (n) = Θ(n)

We characterize the behavior of T (n) in the limit

The Θ-notation is an asymptotic notation

O-Notation

O-Notation

Given a function g (n), we define the family of functions O(g (n))

O-Notation

Given a function g (n), we define the family of functions O(g (n))

f (n)

O-Notation

Given a function g (n), we define the family of functions O(g (n))

f (n)

cg (n)

O-Notation

Given a function g (n), we define the family of functions O(g (n))

f (n)

cg (n)

n0

O(g (n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ f (n) ≤ cg (n) for all n ≥ n0}

O-Notation

Given a function g (n), we define the family of functions O(g (n))

f (n)

cg (n)

n0

f (n) = O(g (n))
i.e., f (n) ∈ O (g (n))

“f (n) is big-oh of g(n)”

O(g (n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ f (n) ≤ cg (n) for all n ≥ n0}

Examples

f (n) = n2
+ 10n + 100

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n

n2

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n

n2 ⇒ f (n) = O(1)

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n

n2 ⇒ f (n) = O(1)

f (n) = Θ(g (n)) ⇒ f (n) = O(g (n))

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n

n2 ⇒ f (n) = O(1)

f (n) = Θ(g (n)) ⇒ f (n) = O(g (n))

f (n) = Θ(g (n)) ∧ g (n) = O(h(n)) ⇒ f (n) = O(h(n))

Examples

f (n) = n2
+ 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√

n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n

n2 ⇒ f (n) = O(1)

f (n) = Θ(g (n)) ⇒ f (n) = O(g (n))

f (n) = Θ(g (n)) ∧ g (n) = O(h(n)) ⇒ f (n) = O(h(n))

f (n) = O(g (n)) ∧ g (n) = Θ(h(n)) ⇒ f (n) = O(h(n))

Examples

n2 − 10n + 100 = O(n log n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2
+ (1.5)n

= O(2 n
2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n2
2

n)? YES

f (n) = Θ(n2
2

n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2
+ (1.5)n

= O(2 n
2)? NO

Example

So, what is the complexity of FindEquals?

FindEquals(A)
1 for i = 1 to length(A) − 1

2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return true
5 return false

Example

So, what is the complexity of FindEquals?

FindEquals(A)
1 for i = 1 to length(A) − 1

2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return true
5 return false

T (n) = Θ(n2)

◮ n = length(A) is the size of the input
◮ we measure the worst-case complexity

Ω-Notation

Ω-Notation

Given a function g (n), we define the family of functions Ω(g (n))

Ω-Notation

Given a function g (n), we define the family of functions Ω(g (n))

f (n)

Ω-Notation

Given a function g (n), we define the family of functions Ω(g (n))

f (n)

cg (n)

Ω-Notation

Given a function g (n), we define the family of functions Ω(g (n))

f (n)

cg (n)

n0

Ω(g (n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ cg (n) ≤ f (n) for all n ≥ n0}

Ω-Notation

Given a function g (n), we define the family of functions Ω(g (n))

f (n)

cg (n)

n0

f (n) = Ω(g (n))
i.e., f (n) ∈ Ω (g (n))

“f (n) is omega of g(n)”

Ω(g (n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ cg (n) ≤ f (n) for all n ≥ n0}

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g (n),
f (n) = Ω(g (n)) ∧ f (n) = O(g (n)) ⇔ f (n) = Θ(g (n))

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g (n),
f (n) = Ω(g (n)) ∧ f (n) = O(g (n)) ⇔ f (n) = Θ(g (n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g (n),
f (n) = Ω(g (n)) ∧ f (n) = O(g (n)) ⇔ f (n) = Θ(g (n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g (n),
f (n) = Ω(g (n)) ∧ f (n) = O(g (n)) ⇔ f (n) = Θ(g (n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

When f (n) = O(g (n)) we say that g (n) is an upper bound for f (n), and that
g (n) dominates f (n)

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g (n),
f (n) = Ω(g (n)) ∧ f (n) = O(g (n)) ⇔ f (n) = Θ(g (n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

When f (n) = O(g (n)) we say that g (n) is an upper bound for f (n), and that
g (n) dominates f (n)

When f (n) = Ω(g (n)) we say that g (n) is a lower bound for f (n)

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)?

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)?

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)? NO

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)? NO

n2
+ O(n) − 1 = O(n2)?

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)? NO

n2
+ O(n) − 1 = O(n2)? YES

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)? NO

n2
+ O(n) − 1 = O(n2)? YES

n log n + Θ(
√

n) = O(n
√

n)?

Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2
+ O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2
+ 4n − 1 = n2

+ Θ(n)? YES

n2
+ Ω(n) − 1 = O(n2)? NO

n2
+ O(n) − 1 = O(n2)? YES

n log n + Θ(
√

n) = O(n
√

n)? YES

o-Notation

o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,

n log n = O(n2) is not asymptotically tight

n2 − n + 10 = O(n2) is asymptotically tight

o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,

n log n = O(n2) is not asymptotically tight

n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g (n), we define the family of functions o(g (n))

o(g (n)) = {f (n) : [c > 0,\n0 > 0

: 0 ≤ f (n) < cg (n) for all n ≥ n0}

ω-Notation

ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

E.g.,

2
n
= Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

E.g.,

2
n
= Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use the ω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g (n), we define the family of functions ω(g (n))

ω(g (n)) = {f (n) : [c > 0,\n0 > 0

: 0 ≤ cg (n) < f (n) for all n ≥ n0}

n

nn2

nn2 n1.5

nn2 n1.5

2
n

3
n

nn2 n1.5

2
n

3
n

n log n

nn2 n1.5

2
n

3
n

n log n

√
n = n0.5

nn2 n1.5

2
n

3
n

n log n

√
n = n0.5

log n

nn2 n1.5

2
n

3
n

n log n

√
n = n0.5

log n

n
log n

