Basics of Complexity Analysis: The RAM Model and the Growth of Functions

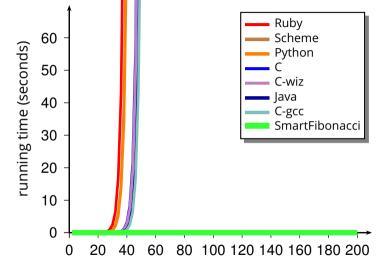
Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

February 25, 2021

Outline

- Informal analysis of two Fibonacci algorithms
- The *random-access machine* model
- Measure of complexity
- Characterizing functions with their asymptotic behavior
- Big-*O*, omega, and theta notations

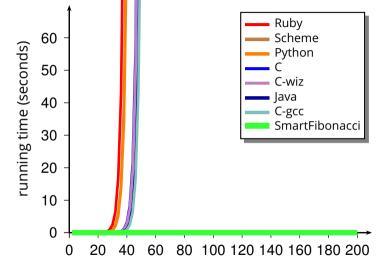


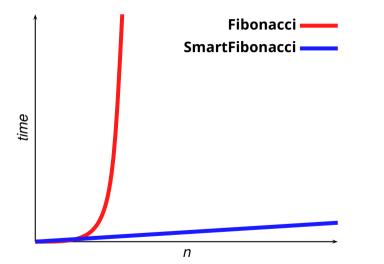
■ We informally characterized our two Fibonacci algorithms

- We informally characterized our two Fibonacci algorithms
 - Fibonacci(*n*) is *exponential* in *n*
 - SmartFibonacci(n) is (almost) linear in n

- We informally characterized our two Fibonacci algorithms
 - Fibonacci(*n*) is *exponential* in *n*
 - SmartFibonacci(n) is (almost) *linear* in n
- How do we characterize the complexity of algorithms?
 - in general

- We informally characterized our two Fibonacci algorithms
 - Fibonacci(*n*) is *exponential* in *n*
 - SmartFibonacci(n) is (almost) *linear* in n
- How do we characterize the complexity of algorithms?
 - in general
 - in a way that is specific to the algorithms
 - but independent of implementation details





An informal model of the *random-access machine (RAM)*

- An informal model of the *random-access machine (RAM)*
- **Basic types** in the RAM model

An informal model of the *random-access machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

An informal model of the *random-access machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

An informal model of the *random-access machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

An informal model of the *random-access machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

A basic step in the RAM model takes a constant time

SmartFibonacci(*n*)

```
    if n == 0
    return 0
    elseif n == 1
    return 1
    else pprev = 0
    prev = 1
    for i = 2 to n
```

```
8  f = prev + pprev
9  pprev = prev
```

```
10 prev = f
```

```
11 return f
```

SmartFibonacci(<i>n</i>)				
1	if <i>n</i> == 0			
2	return 0			
3	elseif <i>n</i> == 1			
4	return 1			
5	else $pprev = 0$			
6	prev = 1			
7	for <i>i</i> = 2 to <i>n</i>			
8	f = prev + pprev			
9	pprev = prev			
10	prev = f			
11	return f			

cost times (n > 1)

SmartFibonacci(<i>n</i>)		cost	times $(n > 1)$
1	if <i>n</i> == 0	<i>C</i> ₁	1
2	return 0	<i>C</i> ₂	0
3	elseif <i>n</i> == 1	<i>C</i> 3	1
4	return 1	<i>C</i> 4	0
5	else $pprev = 0$	<i>C</i> 5	1
6	prev = 1	<i>C</i> 6	1
7	for <i>i</i> = 2 to <i>n</i>	C 7	п
8	f = prev + pprev	<i>C</i> 8	<i>n</i> – 1
9	pprev = prev	<i>C</i> 9	<i>n</i> – 1
10	prev = f	C 10	<i>n</i> – 1
11	return f	C ₁₁	1

 $T(n) = c_1 + c_3 + c_5 + c_6 + c_{11} + nc_7 + (n-1)(c_8 + c_9 + c_{10})$

SmartFibonacci(<i>n</i>)		cost	times $(n > 1)$
1	if <i>n</i> == 0	<i>C</i> ₁	1
2	return 0	<i>C</i> ₂	0
3	elseif <i>n</i> == 1	<i>C</i> 3	1
4	return 1	<i>C</i> 4	0
5	else $pprev = 0$	<i>C</i> 5	1
6	prev = 1	<i>C</i> 6	1
7	for <i>i</i> = 2 to <i>n</i>	C 7	п
8	f = prev + pprev	<i>C</i> 8	<i>n</i> – 1
9	pprev = prev	C 9	<i>n</i> – 1
10	prev = f	C 10	<i>n</i> – 1
11	return f	C ₁₁	1

 $T(n) = nC_1 + C_2 \implies T(n)$ is a linear function of n

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for SmartFibonacci?

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for SmartFibonacci?
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output true if *A* contains *x*, or false otherwise

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for SmartFibonacci?

Example: given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output true if *A* contains *x*, or false otherwise

Find(*A*, *x*) **for** *i* = 1 **to** *length*(*A*) **if** *A*[*i*] == *x* **return** true **return** false

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for SmartFibonacci?

Example: given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output true if *A* contains *x*, or false otherwise

Find(*A*, *x*) **for** *i* = 1 **to** *length*(*A*) **if** *A*[*i*] == *x* **return** true **return** false

T(n) = Cn

■ In general we measure the complexity of an algorithm *in the worst case*

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output true if A contains two equal values $a_i = a_j$ (with $i \neq j$)

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output true if A contains two equal values $a_i = a_j$ (with $i \neq j$)

```
FindEquals(A)

1 for i = 1 to length(A) - 1

2 for j = i + 1 to length(A)

3 if A[i] == A[j]

4 return true

5 return false
```

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output true if A contains two equal values $a_i = a_j$ (with $i \neq j$)

FindEquals(A) 1 for i = 1 to length(A) - 12 for j = i + 1 to length(A)3 if A[i] == A[j]4 return true 5 return false

$$T(n) = C \frac{n(n-1)}{2}$$

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

We do not care about the specific costs of each basic step

these costs are likely to vary significantly with languages, implementations, and processors

so, we assume
$$c_1 = c_2 = c_3 = \cdots = c_i$$

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

We do not care about the specific costs of each basic step

- these costs are likely to vary significantly with languages, implementations, and processors
- so, we assume $c_1 = c_2 = c_3 = \cdots = c_i$
- ▶ we also ignore the specific *value c_i*, and in fact *we ignore every constant cost factor*

Order of Growth

• We care only about the **order of growth** or rate of growth of T(n)

Order of Growth

- We care only about the **order of growth** or rate of growth of T(n)
 - so we ignore lower-order terms

E.g., in

$$T(n) = an^2 + bn + c$$

we only consider the n^2 term and say that T(n) is a quadratic function in n

Order of Growth

- We care only about the **order of growth** or rate of growth of T(n)
 - so we ignore lower-order terms

E.g., in

$$T(n) = an^2 + bn + c$$

we only consider the n^2 term and say that T(n) is a quadratic function in nWe write

$$T(n) = \Theta(n^2)$$

and say that "T(n) is theta of *n*-squared"

Don Knuth's A-notation

■ Let *A*(*c*) indicate a quantity that is *absolutely at most c*

Don Knuth's A-notation

■ Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the *A* notation
 - $\pi = 3.14159265...$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the *A* notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - A(3) + A(4) =

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $\blacktriangleright x = A(3) \Rightarrow x = A(4)$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$

► A(2)A(7) =

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)
 - (10 + A(2))(20 + A(1)) =

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)

•
$$(10 + A(2))(20 + A(1)) = 200 + A(52)$$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)
 - (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)
 - (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
 - A $(n-1) = A(n^2)$

- Let A(c) indicate a quantity that is *absolutely at most c* **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Calculating with the A notation
 - $\pi = 3.14159265... = 3.14 + A(0.005)$
 - ► A(3) + A(4) = A(7)
 - $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
 - A(2)A(7) = A(14)
 - (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
 - $A(n-1) = A(n^2)$ for all *n*

■ If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some constant k > 0, then we say that

f(n) = O(g(n))

read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some constant k > 0, then we say that

f(n) = O(g(n))

read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)" **Examples:**

▶ 3n + 2 = O(n)

If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some constant k > 0, then we say that

f(n) = O(g(n))

► read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)" **Examples:**

▶
$$3n + 2 = O(n)$$

 $\blacktriangleright 2\sqrt{n} + \log n = O(n^2)$

■ If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some constant k > 0, then we say that

f(n) = O(g(n))

• read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

Examples:

- ▶ 3n + 2 = O(n)
- ► $2\sqrt{n} + \log n = O(n^2)$
- let T_{SF}(n) be the computational complexity of SmartFibonacci (the efficient algorithm); then

If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some constant k > 0, then we say that

f(n) = O(g(n))

• read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

Examples:

- ▶ 3n + 2 = O(n)
- ► $2\sqrt{n} + \log n = O(n^2)$
- let T_{SF}(n) be the computational complexity of SmartFibonacci (the efficient algorithm); then

$$T_{SF}(n) = O(n)$$

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically *dominates* f(n), which we can also write as

 $g(n) = \Omega(f(n))$

• which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)"

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically *dominates* f(n), which we can also write as

 $g(n) = \Omega(f(n))$

• which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)" **Examples:**

► $3n + 2 = \Omega(\log n)$

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically *dominates* f(n), which we can also write as

 $g(n) = \Omega(f(n))$

• which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)" **Examples:**

►
$$3n + 2 = \Omega(\log n)$$

• let $T_F(n)$ be the computational complexity of **Fibonacci** (the inefficient algorithm); then

$$T_F(n) = \Omega((1.4)^n)$$

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically *dominates* f(n), which we can also write as

 $g(n) = \Omega(f(n))$

• which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)" **Examples:**

►
$$3n + 2 = \Omega(\log n)$$

• let $T_F(n)$ be the computational complexity of **Fibonacci** (the inefficient algorithm); then

$$T_F(n) = \Omega((1.4)^n)$$

• When f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ we also write

 $f(n) = \Theta(g(n))$

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

• $\pi(n) = O(n)$ trivial *upper bound*

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

$\blacktriangleright \pi(n) = O(n)$	trivial upper bound
$\blacktriangleright \pi(n) = \Omega(1)$	trivial <i>lower bound</i>
$ \qquad \qquad$	non-trivial <i>tight bound</i>

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

$\blacktriangleright \pi(n) = O(n)$	trivial upper bound
$\blacktriangleright \pi(n) = \Omega(1)$	trivial <i>lower bound</i>
$\blacktriangleright \pi(n) = \Theta(n/\log n)$	non-trivial <i>tight bound</i>

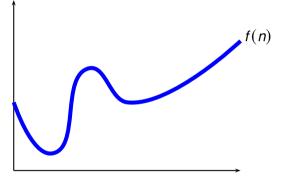
In fact, the fundamental prime number theorem says that

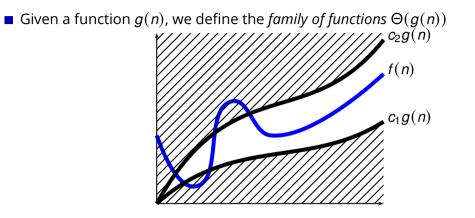
$$\lim_{n\to\infty}\frac{\pi(n)\ln n}{n}=1$$

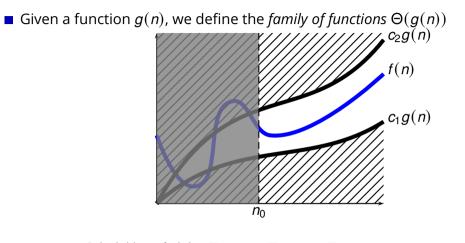
Θ -Notation

Given a function g(n), we define the *family of functions* $\Theta(g(n))$

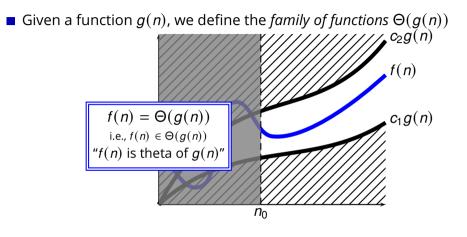
Given a function g(n), we define the *family of functions* $\Theta(g(n))$







 $\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$



 $\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

$$T(n) = n^2 + 10n + 100$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

 $T(n) = n + 10 \log n$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

 $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

- $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
- $T(n) = n \log n + n \sqrt{n}$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

 $T(n) = 2^{\frac{n}{6}} + n^7$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2}$$

■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$

■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$

)

T(n) = complexity of **SmartFibonacci**

$$T(n) = n^{2} + 10n + 100 \implies T(n) = \Theta(n^{2})$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^{7} \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^{2}} \implies T(n) = \Theta(\frac{1}{n})$$

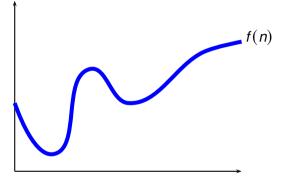
T(n) = complexity of **SmartFibonacci** \Rightarrow $T(n) = \Theta(n)$

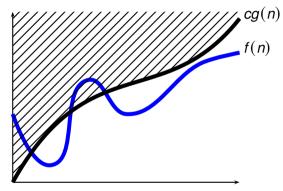
■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

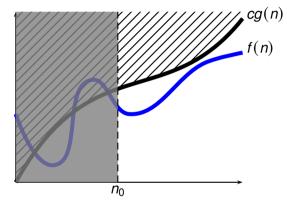
■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$

T(n) = complexity of **SmartFibonacci** \Rightarrow $T(n) = \Theta(n)$

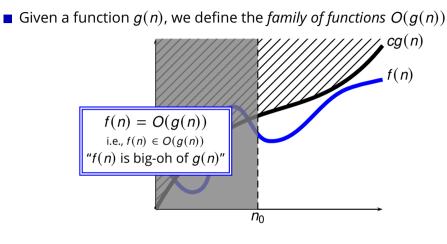
- We characterize the behavior of T(n) in the limit
- The Θ-notation is an *asymptotic notation*







$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$



$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

$$f(n) = n^2 + 10n + 100$$

■
$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

 $f(n) = n + 10 \log n$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

 $f(n) = n + 10 \log n \implies f(n) = O(2^n)$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

$$f(n) = n \log n + n \sqrt{n}$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

•
$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

• $f(n) = 2^{\frac{n}{6}} + n^7$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

•
$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

•
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

•
$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

• $f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$
• $f(n) = \frac{10+n}{n^2}$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \quad \Rightarrow f(n) = O(n^2)$$

•
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \implies f(n) = O(2^n)$$

$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

•
$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

• $f(n) = n + 10 \log n \implies f(n) = O(2^n)$
• $f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$
• $f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$
• $f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$
• $f(n) = \Theta(g(n)) \implies f(n) = O(g(n))$

$$f(n) = \Theta(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

•
$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

• $f(n) = n + 10 \log n \implies f(n) = O(2^n)$
• $f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$
• $f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$
• $f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$
• $f(n) = \Theta(g(n)) \implies f(n) = O(g(n))$
• $f(n) = \Theta(g(n)) \land g(n) = O(h(n)) \implies f(n) = O(h(n))$
• $f(n) = O(g(n)) \land g(n) = \Theta(h(n)) \implies f(n) = O(h(n))$

$$n^2 - 10n + 100 = O(n \log n)?$$

• $n^2 - 10n + 100 = O(n \log n)$? NO

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
■ $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$?

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? \text{ NO}$$

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
■ $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
■ $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$?

•
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
• $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
• $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
■ $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
■ $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
■ $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$?

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
■ $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
■ $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES
■ $f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2 \log_2 n})$? YES

$$n^{2} - 10n + 100 = O(n \log n)? \text{ NO}$$

$$f(n) = O(2^{n}) \Rightarrow f(n) = O(n^{2})? \text{ NO}$$

$$f(n) = \Theta(2^{n}) \Rightarrow f(n) = O(n^{2}2^{n})? \text{ YES}$$

$$f(n) = \Theta(n^{2}2^{n}) \Rightarrow f(n) = O(2^{n+2\log_{2} n})? \text{ YES}$$

$$f(n) = O(2^{n}) \Rightarrow f(n) = \Theta(n^{2})?$$

•
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
• $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
• $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
• $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
• $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO

•
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
• $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
• $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
• $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
• $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
• $\sqrt{n} = O(\log^2 n)$?

•
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
• $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
• $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
• $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
• $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
• $\sqrt{n} = O(\log^2 n)$? NO

$$n^2 - 10n + 100 = O(n \log n)$$
? NO
 $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
 $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
 $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
 $\sqrt{n} = O(\log^2 n)$? NO
 $n^2 + (1.5)^n = O(2^{\frac{n}{2}})$?

$$n^2 - 10n + 100 = O(n \log n)$$
? NO
 $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
 $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
 $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
 $\sqrt{n} = O(\log^2 n)$? NO
 $n^2 + (1.5)^n = O(2^{\frac{n}{2}})$? NO

So, what is the complexity of **FindEquals**?

FindEquals(A) 1 for i = 1 to length(A) - 12 for j = i + 1 to length(A)3 if A[i] == A[j]4 return true 5 return false

So, what is the complexity of **FindEquals**?

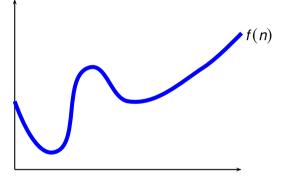
FindEquals(A) 1 for i = 1 to length(A) - 12 for j = i + 1 to length(A)3 if A[i] == A[j]4 return true 5 return false

$$T(n) = \Theta(n^2)$$

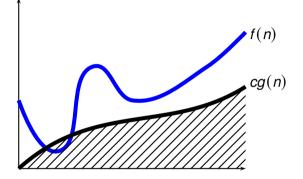
- n = length(A) is the size of the input
- we measure the worst-case complexity

Given a function g(n), we define the *family of functions* $\Omega(g(n))$

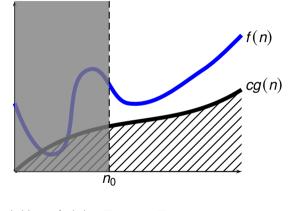
Given a function g(n), we define the *family of functions* $\Omega(g(n))$



Given a function g(n), we define the *family of functions* $\Omega(g(n))$

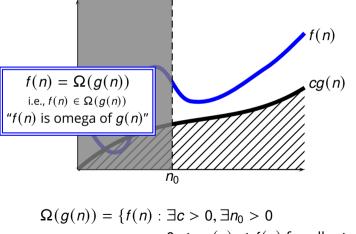


Given a function g(n), we define the *family of functions* $\Omega(g(n))$



 $\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Given a function g(n), we define the *family of functions* $\Omega(g(n))$



 $0 \leq cg(n) \leq f(n)$ for all $n \geq n_0$

Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

 $f \ge g \land f \le g \Leftrightarrow f = g$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n) **dominates** f(n)

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \geq g \wedge f \leq g \Leftrightarrow f = g$$

- When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n) **dominates** f(n)
- When $f(n) = \Omega(g(n))$ we say that g(n) is a *lower bound* for f(n)

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

Examples

 $n^2 + 4n - 1 = n^2 + \Theta(n)?$

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

Examples

 $n^2 + 4n - 1 = n^2 + \Theta(n)$? YES

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in *n*.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$? YES

O-Notation

O-Notation

The upper bound defined by the O-notation may or may not be asymptotically tight

O-Notation

The upper bound defined by the O-notation may or may not be asymptotically tight

E.g.,

 $n \log n = O(n^2)$ is not asymptotically tight $n^2 - n + 10 = O(n^2)$ is asymptotically tight

O-Notation

The upper bound defined by the O-notation may or may not be asymptotically tight

E.g.,

$$n \log n = O(n^2)$$
 is not asymptotically tight
 $n^2 - n + 10 = O(n^2)$ is asymptotically tight

• We use the *o*-notation to denote upper bounds that are *not* asymtotically tight. So, given a function g(n), we define the family of functions o(g(n))

$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0$$

: $0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

The lower bound defined by the Ω-notation may or may not be *asymptotically tight*

The lower bound defined by the Ω-notation may or may not be *asymptotically tight*

E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

 $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

The lower bound defined by the Ω-notation may or may not be asymptotically tight

E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

 $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

• We use the ω -notation to denote lower bounds that are *not* asymtotically tight. So, given a function g(n), we define the family of functions $\omega(g(n))$

$$\omega(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 > 0 \\ : 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$

