Red-Black Trees

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

April 11, 2017

Outline

m Red-black trees

Summary on Binary Search Trees

m Binary search trees

» embody the divide-and-conquer search strategy
> SEARCH, INSERT, MIN, and MAX are O(h), where h is the height of the tree
» in general, h(n) = Q(logn) and h(n) = O(n)

» randomization can be used to make the worst-case scenario h(n) = n highly
unlikely

Summary on Binary Search Trees

m Binary search trees

» embody the divide-and-conquer search strategy
> SEARCH, INSERT, MIN, and MAX are O(h), where h is the height of the tree
» in general, h(n) = Q(logn) and h(n) = O(n)

» randomization can be used to make the worst-case scenario h(n) = n highly
unlikely

m Problem

» worst-case scenario is unlikely but still possible

» simply bad cases are even more probable

Red-Black Tree

Red-Black Tree

Red-Black Tree

Red-Black Tree

Red-Black Tree

m Red-black-tree property

Red-Black Tree

m Red-black-tree property

1. every node is either red or black

Red-Black Tree

m Red-black-tree property

1. every node is either red or black
2. therootis black

Red-Black Tree

m Red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black

Red-Black Tree

m Red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

AN -

Red-Black Tree

m Red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

vk =

Red-Black Tree (2)

m /mplementation

Red-Black Tree (2)

m /mplementation

» we use a common “sentinel” node to represent leaf nodes

Red-Black Tree (2)

m /mplementation

» we use a common “sentinel” node to represent leaf nodes
» the sentinel is also the parent of the root node

Red-Black Tree (3)

m /mplementation

» T represents the tree, which consists of a set of nodes

Red-Black Tree (3)

m /mplementation

» T represents the tree, which consists of a set of nodes

» T.rootis the root node of tree T

Red-Black Tree (3)

m /mplementation
» T represents the tree, which consists of a set of nodes
» T.rootis the root node of tree T

» T.nil is the “sentinel” node of tree T

m /mplementation

» T represents the tree, which consists of a set of nodes
» T.rootis the root node of tree T

» T.nil is the “sentinel” node of tree T

Nodes

» x.parent is the parent of node x

v

X.key is the key stored in node x

v

x.left is the left child of node x

v

x.right is the right child of node x

Red-Black Tree (3)

x.parent

node x
k = x.key

x.left x.right

m /mplementation

» T represents the tree, which consists of a set of nodes

>

>

T.root is the root node of tree T

T.nil is the “sentinel” node of tree T

Nodes

v

v

v

\ 4

X.parent is the parent of node x
X.key is the key stored in node x
x.left is the left child of node x
x.right is the right child of node x

x.color € {RED, BLACK} is the color of node x

Red-Black Tree (3)

x.parent

node x
k = x.key

x.left x.right

Height of a Red-Black Tree

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:
1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:
1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

1.2 induction step: consider y1, y», and x such that y;.parent = y,.parent = x, and
assume (induction) that size(y;) > 2°701) — 1 and size(y,) > 2°h02) — 1;
prove that size(x) > 2°M%) — 1

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:
1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0
1.2 induction step: consider y1, y», and x such that y;.parent = y,.parent = x, and
assume (induction) that size(y;) > 2°"0") — 1 and size(y,) > 2°702) — 1;

prove that size(x) > 2°M%) — 1
proof:

size(x) = size(y1) + size(y2) + 1 > (2°h01) — 1) + (20702) — 1) + 1

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:
1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

1.2 induction step: consider y1, y», and x such that y;.parent = y,.parent = x, and
assume (induction) that size(y;) > 2°"0") — 1 and size(y,) > 2°702) — 1;
prove that size(x) > 20 — 1
proof:
size(x) = size(y1) + size(y2) + 1 > (2°h01) — 1) + (20702) — 1) + 1
since
bh(y) if color(y) = RED

bhix) = {bh(y) +1 ifcolor(y) = BLACK

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

1.2 induction step: consider y1, y», and x such that y;.parent = y,.parent = x, and
assume (induction) that size(y;) > 2°"0") — 1 and size(y,) > 2°702) — 1;
prove that size(x) > 20 — 1
proof:
size(x) = size(y1) + size(y2) + 1 > (2°h01) — 1) + (20702) — 1) + 1
since
bh(y) if color(y) = RED

bhix) = {bh(y) +1 ifcolor(y) = BLACK

size(x) > (2bh(X)—1 —1)+ (th(x)—1 1)+ 1

Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2log(n+1).
Proof:

1. prove that Vx : size(x) > 2°"®) — 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

1.2 induction step: consider y1, y», and x such that y;.parent = y,.parent = x, and
assume (induction) that size(y;) > 2°"0") — 1 and size(y,) > 2°702) — 1;
prove that size(x) > 20 — 1
proof:
size(x) = size(y1) + size(y2) + 1 > (2°h01) — 1) + (20702) — 1) + 1
since
bh(y) if color(y) = RED

bhix) = {bh(y) +1 ifcolor(y) = BLACK

size(x) > (2600~ — 1) 4 (2600=1 _ 1y 4 1 = 2bh(0) _

Height of a Red-Black Tree (2)

1. size(x) > 2P0 — 1

Height of a Red-Black Tree (2)

1. size(x) > 2P0 — 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black

Height of a Red-Black Tree (2)

1. size(x) > 2P0 — 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

Height of a Red-Black Tree (2)
. size(x) > 2PN0) — 1

. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

. From steps 1 and 2, n = size(x) > 2"*)/2 _1

Height of a Red-Black Tree (2)
. size(x) > 2PN0) — 1

. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

. From steps 1 and 2, n = size(x) > 2"¥)/2 — 1, therefore

h < 2log(n+1)

Height of a Red-Black Tree (2)
1. size(x) > 2P0 — 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

3. From steps 1 and 2, n = size(x) > 2"¥)/2 — 1, therefore

h < 2log(n+1)

m A red-black tree works as a binary search tree for search, etc.

m So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(logn)

» which is also the worst-case complexity

Rotation

Rotation

Rotation

()
@ O ©

m X = RIGHT-ROTATE(X)

RIGHT-ROTATE(x)

LEFT-ROTATE(X)

Rotation

Red-Black Insertion

m RB-INSERT(T, z) works as in a binary search tree

Red-Black Insertion

m RB-INSERT(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

Red-Black Insertion

m RB-INSERT(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

A

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

Red-Black Insertion

m RB-INSERT(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

A

m General strategy

Red-Black Insertion

m RB-INSERT(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

A

m General strategy
1. insertz as in a binary search tree
2. color zred so as to preserve property 5
3. fix the tree to correct possible violations of property 4

RB-INSERT

RB-INSERT(T, 2)

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = Xx.left
else x = x.right
Z.parent = y
ify == T.nil
T.root = z
else if z.key < y.key
y.left = z
else y.right = z
Z.left = z.right = T.nil
z.color = RED
RB-INSERT-FIXUP(T, 2)

Red-Black Insertion (2)

Red-Black Insertion (2)

Red-Black Insertion (2)

Red-Black Insertion (2)

Red-Black Insertion (2)

m 7's father is black, so no fixup needed

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

|zs uncle is red |

Red-Black Insertion (3)

|zs uncle is red |

Red-Black Insertion (3)

35) |zs uncle is red |
Y

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

@ (35) |zs uncle is red |
36)

Red-Black Insertion (3)

35) |zs uncle is red |
Y

Red-Black Insertion (3)

@ (35) |zs uncle is red |
36)

Red-Black Insertion (3)

Zs uncle is red |

m A black node can become red and transfer its black color to its two children

Red-Black Insertion (3)

Zs uncle is red |

m A black node can become red and transfer its black color to its two children
m This may cause other red-red conflicts, so we iterate...

Red-Black Insertion (3)

Zs uncle is red |

m A black node can become red and transfer its black color to its two children
m This may cause other red-red conflicts, so we iterate...
m The root can change to black without causing conflicts

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

41
@ |z’s uncle is black|
39

Red-Black Insertion (4)

41
@ |z’s uncle is black|
39

Red-Black Insertion (4)

Zs uncle is black |

m An in-line red-red conflicts can be resolved with a rotation plus a color switch

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

41
@ |z’s uncle is black|
39

Red-Black Insertion (5)

41
@ |z’s uncle is black|
39

Red-Black Insertion (5)

Zs uncle is black |

m A zig-zag red-red conflicts can be resolved with a rotation to turn it into an
in-line conflict, and then a rotation plus a color switch

