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m Problem

» worst-case scenario is unlikely but still possible

» simply bad cases are even more probable
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m Red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)
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m /mplementation

» we use a common “sentinel” node to represent leaf nodes
» the sentinel is also the parent of the root node
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» T.rootis the root node of tree T

» T.nil is the “sentinel” node of tree T

Nodes

» x.parent is the parent of node x

v

X.key is the key stored in node x

v

x.left is the left child of node x

v

x.right is the right child of node x
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m /mplementation

» T represents the tree, which consists of a set of nodes

>

>

T.root is the root node of tree T

T.nil is the “sentinel” node of tree T

Nodes

v

v

v

\ 4

X.parent is the parent of node x
X.key is the key stored in node x
x.left is the left child of node x
x.right is the right child of node x

x.color € {RED, BLACK} is the color of node x

Red-Black Tree (3)

x.parent

node x
k = x.key

x.left x.right
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Height of a Red-Black Tree (2)
1. size(x) > 2P0 — 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

3. From steps 1 and 2, n = size(x) > 2"¥)/2 — 1, therefore

h < 2log(n+1)

m A red-black tree works as a binary search tree for search, etc.

m So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(logn)

» which is also the worst-case complexity
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m X = RIGHT-ROTATE(X)



RIGHT-ROTATE(x)

LEFT-ROTATE(X)

Rotation
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m RB-INSERT(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

A

m General strategy
1. insertz as in a binary search tree
2. color zred so as to preserve property 5
3. fix the tree to correct possible violations of property 4



RB-INSERT

RB-INSERT(T, 2)

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = Xx.left
else x = x.right
Z.parent = y
ify == T.nil
T.root = z
else if z.key < y.key
y.left = z
else y.right = z
Z.left = z.right = T.nil
z.color = RED
RB-INSERT-FIXUP(T, 2)
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m 7's father is black, so no fixup needed
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Zs uncle is red |

m A black node can become red and transfer its black color to its two children
m This may cause other red-red conflicts, so we iterate...
m The root can change to black without causing conflicts
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Zs uncle is black |

m An in-line red-red conflicts can be resolved with a rotation plus a color switch
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Zs uncle is black |

m A zig-zag red-red conflicts can be resolved with a rotation to turn it into an
in-line conflict, and then a rotation plus a color switch



