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Abstract Problems

m An abstract problem Q is a binary relation between a set / of problem instances
and a set S of solutions

m A concrete problem Q is one where / and S are the set of binary strings {0, 1}*

» for all practical purposes, instances and solutions can be encoded as binary strings
(i.e., mapped into {0, 1}%)
» we consider only sensible encodings...
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Decision Problems (2)

m Many “optimization” problems have a corresponding decision problem
Example: shortest path in a graph
G=(V=A{abc...},E={(a,0),...}),0,z— a,c,...,Z

» input: a graph G, a start vertex (a), and an end vertex (z)
» output: a sequence of vertexes a,¢,...,Z

Shortest path as a decision problem
G=(=A{ab,c...},;E={(a,0),...}),0,2,10 — 1

» input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
» output: 1 if there is a path of (at most) the given length
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Decision Problems (3)

m We focus on decision problems only

m An optimization problem is at least as hard as its corresponding decision
problem

» having a solution to the optimization gives an immediate solution to the decision
problem

m An optimization problem is not much harder than the corresponding decision
problem

» having a solution to the decision problem does not give an immediate solution to
the optimization problem

» but we can typically use the decision problem as a subroutine in some kind of
(binary) search to solve the corresponding optimization problem
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The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

» shortest path (decision variant)—Dijkstra's algorithm
» primality—a relatively recent theoretical result...
> in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
> Neeraj Kayal and Nitin Saxena were Bachelor students!
> parsing a Java program

> DI
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Polynomial-Time Verification

m We might not know how to solve a problem in polynomial-time

problem instance wmy-1 ? e« > solution

m But we might know how to verify a given solution in polynomial-time

problem instance === oly-time

. o> valid/invali
solution or “certificate” mmmp{ 3lg0rithm valia/invalid

m Examples

» longest path (decision variant)
» knapsack (decision variant)
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The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant ¢ such that, for each instance x € |,
there is a certificate y of polynomial-size |y| = O(|x|°) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

m NP does not mean non-polynomial!

» it means “non-deterministic polynomial”

m polynomial-time solvable = polynomial-time verifiable

P C NP
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The Big Open Question

?
m polynomial-time verifiable = polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

m Most theoretical computing scientists believe that P # NP

m Finding a solution to a problem is believed to be inherently more difficult than
verifying a given solution or a proof of a solution
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Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables xq, x2, . . ., X

» Output: 1 iff there is an assignment of variables that satisfies the formula

m Examples
» XA(yV-Z)A-zA(XxVYy)—1 (x=0,y=1,z=0)
» (XVYVZ)IAXV Y AYV-2)A@ZV-X)AN(—xV-yV-z)— 0

m SAT € NP?

» yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify
that the formula is satisfiable

m SAT € P?

» we don't know
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Reduction

m In our theory of complexity we want to show that a problem is just as hard as
another problem

m We do that with polynomial-time reductions

instance of Q wemp 7 e e ¥ solution

poly-time 1

algorithm l

instance of Q' ey A 3> 50/UitiON

» aninstance g of Q is transformed into an instance g’ of Q’ through a
polynomial-time algorithm

» the solution to g is 1 if and only if the solution to q” is 1
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m Solution by polynomial-time reductions to a solvable problem

instance of Q
|

L]

poly-time
algorithm Aq
; A —

= so/ution

» if Ais polynomial-time, then of Ag is also polynomial time

» thereforeif Q" € P,thenQ € P

Reduction (2)
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Example: 2-CNF-SAT

m 2-CNF-SAT problem
Input:
» fis a Boolean formula of n (Boolean) variables x1, X2, . . ., X
» fisin conjunctive normal form (CNF),sof = G A G A -+ A G
» every clause C; of f contains exactly two literals (a variable or its negation)
Output: 1 iff f is satisfiable
» thereis an assignment of variables that satisfies f

Example:
(X1 V =x3) A (mX2 V X3) A (X1 V =X3) A (X7 V X2)
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2-CNF-SAT to Implicative Form

Consider each clause (;

(avb)=(—a=b)=(-b=a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative
normal form

Example:
(X1 V =x3) A (—X2 V X3)

is equivalent to

(—|X1 = —|X3) AN (X3 = X1) AN (XZ = X3) AN (—|X3 = —|X2)
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(X1 V=x3) A (=x2 VX3) A (X7 V =X3) A (X1 V X2)
un
(—|X1 = —|X3) A (X3 = X1) A (X2 = X3) A (—|X3 = —|X2)/\
(X1 = x3) A (X3 = —X1) A (X1 = X2) A (X2 = Xq)

not satisfiable
if and only if
Xj ~ X~ X
for some i

\
depth-first search
(or strongly connected components)
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NP-Completeness

m A problem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

» a polynomial-time algorithm transforms every instance q of Q into an instance g’
of Q'

» the solution to g is 1 if and only if the solution to g’ is 1

m A problem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to
QI

m A problem Q" is NP-complete if Q" € NP and Q’ is NP-hard
m If Q" is NP-hard and polynomial-time reducible to Q”’, then Q”” is NP-hard

m If Q" is NP-hard and polynomial-time solvable, then P = NP
> i.e., most researchers believe that there is no such Q’
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The First NP-Complete Problem

m Is there any NP-complete problem?

polynomial-time

any problem Q € NP w1 reduction

- SAT

m Circuit satisfiability (SAT) was the first problem that was proved NP-hard and,
since SAT € NP, also NP-complete

m Many other problems were then proved NP-complete through polynomial
reductions

» e.g., SAT is polynomial-time reducible to the longest path problem
» therefore, the longest path problem is also NP-complete



