Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 18, 2017

Outline

- Basic complexity classes
- Polynomial reductions
- NP-completeness

A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)
 - *T*(*n*) is *A* a polynomial-time algorithm?

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)
 - *T*(*n*) is *A* a polynomial-time algorithm?

 $T(n) = n^2$

A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

Yes

Examples: algorithm *A* has a running time *T*(*n*)

T(n)	is A a polynomial-time algorithm?

 $T(n) = n^2$

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

T(n)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$\overline{T(n)} = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$\overline{T(n)} = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$\overline{T(n)} = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes
$T(n) = n^{-7} \cdot 2^{n/7}$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time *T*(*n*)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n)=n^3-2n^2-5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes
$T(n)=n^{-7}\cdot 2^{n/7}$	No

Examples:

Algorithm

worst-case running time

Examples:

Algorithm

worst-case running time

Add

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
Tree-Minimum	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	O(n)

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
Tree-Minimum	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
Tree-Minimum	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	<i>O</i> (<i>n</i> ²)

Algorithm	worst-case running time
Add	O(n)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	<i>O</i> (<i>n</i> ²)
HEAPSORT	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	<i>O</i> (<i>n</i> ²)
HEAPSORT	$O(n \log n)$

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	$O(n^2)$
HEAPSORT	$O(n \log n)$
BOYER-MOORE	

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
TREE-MINIMUM	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	$O(n^2)$
HEAPSORT	$O(n \log n)$
Boyer-Moore	<i>O</i> (<i>n</i> ²)

Algorithm	worst-case running time
Add	<i>O</i> (<i>n</i>)
Tree-Minimum	<i>O</i> (<i>n</i>)
RB-I NSERT	$O(\log n)$
INORDER-TREE-WALK	<i>O</i> (<i>n</i>)
INSERTION-SORT	<i>O</i> (<i>n</i> ²)
HEAPSORT	$O(n \log n)$
BOYER-MOORE	$O(n^2)$

Abstract Problems
Abstract Problems

An *abstract problem* Q is a binary relation between a set I of problem *instances* and a set S of *solutions*

Abstract Problems

An *abstract problem* Q is a binary relation between a set I of problem *instances* and a set S of *solutions*

■ A *concrete problem Q* is one where *I* and *S* are the set of binary strings {0, 1}*

- for all practical purposes, instances and solutions can be *encoded* as binary strings (i.e., mapped into {0, 1}*)
- we consider only sensible encodings...

A *decision problem* Q is one where the set of solutions is $S = \{0, 1\}$

A *decision problem* Q is one where the set of solutions is S = {0, 1}
 Example:

• • •

ng

A *decision problem* Q is one where the set of solutions is S = {0, 1}
 Example:

. . .

$$1 \longrightarrow 0$$

$$10 \longrightarrow 1$$

$$11 \longrightarrow 1$$

$$100 \longrightarrow 0$$

$$101 \longrightarrow 1$$

$$110 \longrightarrow 0$$

$$111 \longrightarrow 1$$

$$1000 \longrightarrow 0$$

$$1001 \longrightarrow 0$$

$$1010 \longrightarrow 0$$

$$1011 \longrightarrow 1$$

■ Many "optimization" problems have a corresponding decision problem

Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$G = (V = \{a, b, c, \ldots\}, E = \{(a, c), \ldots\}), a, z \longrightarrow a, c, \ldots, z$$

- ▶ *input:* a graph *G*, a start vertex (*a*), and an end vertex (*z*)
- output: a sequence of vertexes a, c, ..., z

Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$G = (V = \{a, b, c, \ldots\}, E = \{(a, c), \ldots\}), a, z \longrightarrow a, c, \ldots, z$$

- ▶ *input:* a graph *G*, a start vertex (*a*), and an end vertex (*z*)
- output: a sequence of vertexes a, c, ..., z

Shortest path as a decision problem

$$G = (V = \{a, b, c, \ldots\}, E = \{(a, c), \ldots\}), a, z, 10 \longrightarrow 1$$

- ▶ *input:* a graph *G*, a start vertex (*a*), an end vertex (*z*), and a path length (10)
- output: 1 if there is a path of (at most) the given length

We focus on decision problems only

- We focus on decision problems only
- An optimization problem is *at least as hard* as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem

- We focus on decision problems only
- An optimization problem is *at least as hard* as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is *not much harder* than the corresponding decision problem

- We focus on decision problems only
- An optimization problem is *at least as hard* as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is *not much harder* than the corresponding decision problem
 - having a solution to the decision problem does not give an immediate solution to the optimization problem
 - but we can typically use the decision problem as a subroutine in some kind of (binary) search to solve the corresponding optimization problem

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

Examples

shortest path (decision variant)

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

Examples

shortest path (decision variant)—Dijkstra's algorithm

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

- Examples
 - shortest path (decision variant)—Dijkstra's algorithm
 - primality

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

Examples

- shortest path (decision variant)—Dijkstra's algorithm
- primality—a relatively recent theoretical result...
 - ▶ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
 - Neeraj Kayal and Nitin Saxena were Bachelor students!

A concrete decision problem Q is *polynomial-time solvable* if there is a polynomial-time algorithm A that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

Examples

▶ ...

- shortest path (decision variant)—Dijkstra's algorithm
- primality—a relatively recent theoretical result...
 - in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
 - Neeraj Kayal and Nitin Saxena were Bachelor students!
- parsing a Java program

Example: *Vertex cover* (decision variant)

- *Input:* A graph G = (V, E) and a number K
- *Output:* 1, if there is set *S* of at most *k* vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise

Example: *Vertex cover* (decision variant)

- Input: A graph G = (V, E) and a number K
- *Output:* 1, if there is set *S* of at most *k* vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise

Example: *Vertex cover* (decision variant)

- Input: A graph G = (V, E) and a number K
- *Output:* 1, if there is set *S* of at most *k* vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise

K = 7

Example: *Vertex cover* (decision variant)

- Input: A graph G = (V, E) and a number K
- *Output:* 1, if there is set *S* of at most *k* vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise

$$K = 6?$$

■ We might not know how to *solve* a problem in polynomial-time

■ We might not know how to *solve* a problem in polynomial-time

■ But we might know how to *verify a given solution* in polynomial-time

■ We might not know how to *solve* a problem in polynomial-time

■ But we might know how to *verify a given solution* in polynomial-time

problem instance poly-time *solution or "certificate" valid/invalid*

Examples

- longest path (decision variant)
- knapsack (decision variant)

■ A concrete decision problem *Q* is *polynomial-time verifiable* if there is a polynomial-time algorithm *A* and a constant *c* such that, for each instance $x \in I$, there is a *certificate y* of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

The *complexity class NP* is the set of all concrete decision problems that are *polynomial-time verifiable*

■ A concrete decision problem *Q* is *polynomial-time verifiable* if there is a polynomial-time algorithm *A* and a constant *c* such that, for each instance $x \in I$, there is a *certificate y* of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

The *complexity class NP* is the set of all concrete decision problems that are *polynomial-time verifiable*

NP does not mean non-polynomial!

■ A concrete decision problem *Q* is *polynomial-time verifiable* if there is a polynomial-time algorithm *A* and a constant *c* such that, for each instance $x \in I$, there is a *certificate y* of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

The *complexity class NP* is the set of all concrete decision problems that are *polynomial-time verifiable*

NP does not mean non-polynomial!

it means "non-deterministic polynomial"

■ A concrete decision problem *Q* is *polynomial-time verifiable* if there is a polynomial-time algorithm *A* and a constant *c* such that, for each instance $x \in I$, there is a *certificate y* of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

The *complexity class NP* is the set of all concrete decision problems that are *polynomial-time verifiable*

NP does not mean non-polynomial!

it means "non-deterministic polynomial"

• polynomial-time solvable \implies polynomial-time verifiable

 $\mathsf{P}\subseteq\mathsf{NP}$
■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

■ Most theoretical computing scientists *believe* that $P \neq NP$

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

■ Most theoretical computing scientists *believe* that $P \neq NP$

Finding a solution to a problem is believed to be inherently more difficult than verifying a given solution or a proof of a solution

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

• $\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y)$

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

$$\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$$

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

- $\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$
- $\blacktriangleright (x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z)$

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

- $\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$
- $\bullet \ (x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

- $\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$
- $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$

■ SAT \in NP?

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

$$\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$$

$$(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$$

■ SAT \in NP?

 yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

$$\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$$

$$(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$$

■ SAT \in NP?

yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

Satisfiability problem (SAT)

- ▶ *Input:* a Boolean formula of *n* (Boolean) variables $x_1, x_2, ..., x_n$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

$$\neg x \land (\neg y \lor \neg z) \land \neg z \land (x \lor y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$$

$$(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$$

■ SAT \in NP?

yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

■ SAT \in P?

we don't know

In our theory of complexity we want to show that a problem is just as hard as another problem

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

instance of
$$Q \longrightarrow$$
 ? ... solution

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

instance of
$$Q \longrightarrow$$
 ? ... solution

instance of
$$Q' \longrightarrow A \longrightarrow$$
 solution

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

► an instance q of Q is transformed into an instance q' of Q' through a polynomial-time algorithm

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

- ► an instance q of Q is transformed into an instance q' of Q' through a polynomial-time algorithm
- ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1

Solution by polynomial-time reductions to a solvable problem

Solution by polynomial-time reductions to a solvable problem

Solution by polynomial-time reductions to a solvable problem

► if *A* is polynomial-time, then of *A*_Q is also polynomial time

Solution by polynomial-time reductions to a solvable problem

- ► if *A* is polynomial-time, then of *A*_Q is also polynomial time
- therefore if $Q' \in P$, then $Q \in P$

Example: 2-CNF-SAT

Example: 2-CNF-SAT

2-CNF-SAT problem

Input:

- *f* is a Boolean formula of *n* (Boolean) variables x_1, x_2, \ldots, x_n
- *f* is in conjunctive normal form (CNF), so $f = C_1 \land C_2 \land \cdots \land C_k$
- every clause C_i of f contains exactly two literals (a variable or its negation)

Output: 1 iff *f* is satisfiable

there is an assignment of variables that satisfies f

Example:

$$(x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2)$$

2-CNF-SAT to Implicative Form

2-CNF-SAT to Implicative Form

Consider each clause *C_i*

$$(a \lor b) \equiv (\neg a \Rightarrow b) \equiv (\neg b \Rightarrow a)$$

so we can rewrite a 2-CNF-SAT formula *f* into another formula in *implicative normal form*

Example:

$$(x_1 \vee \neg x_3) \land (\neg x_2 \vee x_3)$$

2-CNF-SAT to Implicative Form

Consider each clause *C_i*

$$(a \lor b) \equiv (\neg a \Rightarrow b) \equiv (\neg b \Rightarrow a)$$

so we can rewrite a 2-CNF-SAT formula *f* into another formula in *implicative normal form*

Example:

$$(x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3)$$

is equivalent to

$$(\neg x_1 \Rightarrow \neg x_3) \land (x_3 \Rightarrow x_1) \land (x_2 \Rightarrow x_3) \land (\neg x_3 \Rightarrow \neg x_2)$$

2-CNF-SAT to Graph Reachability

 $(x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2)$

2-CNF-SAT to Graph Reachability

$$(x_{1} \lor \neg x_{3}) \land (\neg x_{2} \lor x_{3}) \land (\neg x_{1} \lor \neg x_{3}) \land (x_{1} \lor x_{2})$$

$$\Downarrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow x_{1}) \land (x_{2} \Rightarrow x_{3}) \land (\neg x_{3} \Rightarrow \neg x_{2}) \land$$

$$(x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow \neg x_{1}) \land (\neg x_{1} \Rightarrow x_{2}) \land (\neg x_{2} \Rightarrow x_{1})$$

$$(x_{1} \lor \neg x_{3}) \land (\neg x_{2} \lor x_{3}) \land (\neg x_{1} \lor \neg x_{3}) \land (x_{1} \lor x_{2})$$

$$\downarrow \uparrow \\ (\neg x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow x_{1}) \land (x_{2} \Rightarrow x_{3}) \land (\neg x_{3} \Rightarrow \neg x_{2}) \land (x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow \neg x_{1}) \land (\neg x_{1} \Rightarrow x_{2}) \land (\neg x_{2} \Rightarrow x_{1})$$

$$(x_{1} \lor \neg x_{3}) \land (\neg x_{2} \lor x_{3}) \land (\neg x_{1} \lor \neg x_{3}) \land (x_{1} \lor x_{2})$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow x_{1}) \land (x_{2} \Rightarrow x_{3}) \land (\neg x_{3} \Rightarrow \neg x_{2}) \land$$

$$(x_{1} \Rightarrow \neg x_{3}) \land (x_{3} \Rightarrow \neg x_{1}) \land (\neg x_{1} \Rightarrow x_{2}) \land (\neg x_{2} \Rightarrow x_{1})$$

A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*

- A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*
 - a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1

- A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*
 - ▶ a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'

- A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*
 - ► a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is *NP-complete* if $Q' \in NP$ and Q' is NP-hard

- A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*
 - ▶ a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is *NP-complete* if $Q' \in NP$ and Q' is NP-hard
- If Q' is NP-hard and *polynomial-time reducible* to Q'', then Q'' is NP-hard

- A problem Q is *polynomial-time reducible* to another problem Q' if there is a *polynomial-time reduction*
 - ► a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ▶ the solution to *q* is 1 if and only if the solution to *q'* is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is *NP-complete* if $Q' \in NP$ and Q' is NP-hard
- If Q' is NP-hard and *polynomial-time reducible* to Q'', then Q'' is NP-hard
- If Q' is NP-hard and *polynomial-time solvable*, then P = NP
 - ► i.e., most researchers believe that there is no such *Q*′

■ Is there any NP-complete problem?

■ Is there any NP-complete problem?

■ *Circuit satisfiability (SAT)* was the first problem that was proved NP-hard and, since SAT ∈ NP, also NP-complete

■ Is there any NP-complete problem?

- *Circuit satisfiability (SAT)* was the first problem that was proved NP-hard and, since SAT ∈ NP, also NP-complete
- Many other problems were then proved NP-complete through polynomial reductions
 - e.g., SAT is polynomial-time reducible to the *longest path* problem
 - therefore, the *longest path* problem is also NP-complete