
Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 18, 2017



Outline

Basic complexity classes

Polynomial reductions

NP-completeness



Polynomial Time



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n!



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n Yes



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n Yes

T(n) = 5



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n Yes

T(n) = 5 Yes



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n Yes

T(n) = 5 Yes

T(n) = n−7 · 2n/7



Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T(n), on
input size n, is O(nk) for some constant k

Examples: algorithm A has a running time T(n)

T(n) is A a polynomial-time algorithm?

T(n) = n2 Yes

T(n) = n3 − 2n2 − 5 Yes

T(n) =
√
n! No

T(n) = n7 + 7n No

T(n) = n7 + 7−n Yes

T(n) = 5 Yes

T(n) = n−7 · 2n/7 No



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT O(n log n)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT O(n log n)

BOYER-MOORE



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT O(n log n)

BOYER-MOORE O(n2)



Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT O(n log n)

BOYER-MOORE O(n2)

. . .



Abstract Problems



Abstract Problems

An abstract problem Q is a binary relation between a set I of problem instances
and a set S of solutions

I S



Abstract Problems

An abstract problem Q is a binary relation between a set I of problem instances
and a set S of solutions

I S

A concrete problem Q is one where I and S are the set of binary strings {0, 1}∗

◮ for all practical purposes, instances and solutions can be encoded as binary strings
(i.e., mapped into {0, 1}∗)

◮ we consider only sensible encodings. . .



Decision Problems



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
. . .



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
. . .

Primality Testing



Decision Problems (2)



Decision Problems (2)

Many “optimization” problems have a corresponding decision problem



Decision Problems (2)

Many “optimization” problems have a corresponding decision problem

Example: shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

◮ input: a graph G, a start vertex (a), and an end vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z



Decision Problems (2)

Many “optimization” problems have a corresponding decision problem

Example: shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

◮ input: a graph G, a start vertex (a), and an end vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Shortest path as a decision problem

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z, 10 −→ 1

◮ input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
◮ output: 1 if there is a path of (at most) the given length



Decision Problems (3)



Decision Problems (3)

We focus on decision problems only



Decision Problems (3)

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision
problem

◮ having a solution to the optimization gives an immediate solution to the decision
problem



Decision Problems (3)

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision
problem

◮ having a solution to the optimization gives an immediate solution to the decision
problem

An optimization problem is not much harder than the corresponding decision
problem



Decision Problems (3)

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision
problem

◮ having a solution to the optimization gives an immediate solution to the decision
problem

An optimization problem is not much harder than the corresponding decision
problem

◮ having a solution to the decision problem does not give an immediate solution to
the optimization problem

◮ but we can typically use the decision problem as a subroutine in some kind of
(binary) search to solve the corresponding optimization problem



The Complexity Class P



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .

◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .

◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!

◮ parsing a Java program

◮ . . .



Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K

◮ Output: 1, if there is set S of at most k vertices such that for every edge
e = (u, v) ∈ E, u ∈ S or v ∈ S (or both); 0 otherwise



Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K

◮ Output: 1, if there is set S of at most k vertices such that for every edge
e = (u, v) ∈ E, u ∈ S or v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ



Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K

◮ Output: 1, if there is set S of at most k vertices such that for every edge
e = (u, v) ∈ E, u ∈ S or v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ



Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K

◮ Output: 1, if there is set S of at most k vertices such that for every edge
e = (u, v) ∈ E, u ∈ S or v ∈ S (or both); 0 otherwise

K = 6?

a b c d

e f g h

i j k ℓ



Polynomial-Time Verification



Polynomial-Time Verification

We might not know how to solve a problem in polynomial-time

problem instance ? solution



Polynomial-Time Verification

We might not know how to solve a problem in polynomial-time

problem instance ? solution

But we might know how to verify a given solution in polynomial-time

problem instance poly-time
algorithmsolution or “certificate”

valid/invalid



Polynomial-Time Verification

We might not know how to solve a problem in polynomial-time

problem instance ? solution

But we might know how to verify a given solution in polynomial-time

problem instance poly-time
algorithmsolution or “certificate”

valid/invalid

Examples

◮ longest path (decision variant)

◮ knapsack (decision variant)



The Complexity Class NP



The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant c such that, for each instance x ∈ I,
there is a certificate y of polynomial-size `y` = O(`x`c) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable



The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant c such that, for each instance x ∈ I,
there is a certificate y of polynomial-size `y` = O(`x`c) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!



The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant c such that, for each instance x ∈ I,
there is a certificate y of polynomial-size `y` = O(`x`c) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

◮ it means “non-deterministic polynomial”



The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant c such that, for each instance x ∈ I,
there is a certificate y of polynomial-size `y` = O(`x`c) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

◮ it means “non-deterministic polynomial”

polynomial-time solvable =⇒ polynomial-time verifiable

P ⊆ NP



The Big Open Question



The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable



The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?



The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?



The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

Most theoretical computing scientists believe that P , NP



The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

Most theoretical computing scientists believe that P , NP

Finding a solution to a problem is believed to be inherently more difficult than
verifying a given solution or a proof of a solution



Example: SAT



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y)



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z)



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify
that the formula is satisfiable



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify
that the formula is satisfiable

SAT ∈ P?



Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify
that the formula is satisfiable

SAT ∈ P?
◮ we don’t know



Reduction



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

◮ an instance q of Q is transformed into an instance q′ of Q′ through a
polynomial-time algorithm



Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

=

◮ an instance q of Q is transformed into an instance q′ of Q′ through a
polynomial-time algorithm

◮ the solution to q is 1 if and only if the solution to q′ is 1



Reduction (2)



Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm



Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ



Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

◮ if A is polynomial-time, then of AQ is also polynomial time



Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

◮ if A is polynomial-time, then of AQ is also polynomial time

◮ therefore if Q′ ∈ P, then Q ∈ P



Example: 2-CNF-SAT



Example: 2-CNF-SAT

2-CNF-SAT problem

Input:

◮ f is a Boolean formula of n (Boolean) variables x1, x2, . . . , xn
◮ f is in conjunctive normal form (CNF), so f = C1 ∧ C2 ∧ · · · ∧ Ck
◮ every clause Ci of f contains exactly two literals (a variable or its negation)

Output: 1 iff f is satisfiable

◮ there is an assignment of variables that satisfies f

Example:
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)



2-CNF-SAT to Implicative Form



2-CNF-SAT to Implicative Form

Consider each clause Ci

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b⇒ a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative
normal form

Example:
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)



2-CNF-SAT to Implicative Form

Consider each clause Ci

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b⇒ a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative
normal form

Example:
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

is equivalent to

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

not satisfiable
if and only if
xi { ¬xi { xi
for some i



2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

not satisfiable
if and only if
xi { ¬xi { xi
for some i

depth-first search

(or strongly connected components)



Reduction of 2-CNF-SAT



Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution



Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability”



Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability” DFS solution



Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability” DFS solution

=



NP-Completeness



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to
Q′



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to
Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to
Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is NP-hard



NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to
Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is NP-hard

If Q′ is NP-hard and polynomial-time solvable, then P = NP

◮ i.e., most researchers believe that there is no such Q′



The First NP-Complete Problem



The First NP-Complete Problem

Is there any NP-complete problem?

any problem Q ∈ NP polynomial-time
reduction

??



The First NP-Complete Problem

Is there any NP-complete problem?

any problem Q ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT) was the first problem that was proved NP-hard and,
since SAT ∈ NP, also NP-complete



The First NP-Complete Problem

Is there any NP-complete problem?

any problem Q ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT) was the first problem that was proved NP-hard and,
since SAT ∈ NP, also NP-complete

Many other problems were then proved NP-complete through polynomial
reductions

◮ e.g., SAT is polynomial-time reducible to the longest path problem

◮ therefore, the longest path problem is also NP-complete


