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Polynomial-Time Algorithms

Examples:

Algorithm worst-case running time

ADD O(n)

TREE-MINIMUM O(n)

RB-INSERT O(log n)

INORDER-TREE-WALK O(n)

INSERTION-SORT O(n2)

HEAPSORT O(n log n)

BOYER-MOORE O(n2)

. . .
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Abstract Problems

An abstract problem Q is a binary relation between a set I of problem instances
and a set S of solutions

I S

A concrete problem Q is one where I and S are the set of binary strings {0, 1}∗

◮ for all practical purposes, instances and solutions can be encoded as binary strings
(i.e., mapped into {0, 1}∗)

◮ we consider only sensible encodings. . .



Decision Problems



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
. . .



Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
. . .

Primality Testing
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Many “optimization” problems have a corresponding decision problem

Example: shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

◮ input: a graph G, a start vertex (a), and an end vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Shortest path as a decision problem

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z, 10 −→ 1

◮ input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
◮ output: 1 if there is a path of (at most) the given length
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Decision Problems (3)

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision
problem

◮ having a solution to the optimization gives an immediate solution to the decision
problem

An optimization problem is not much harder than the corresponding decision
problem

◮ having a solution to the decision problem does not give an immediate solution to
the optimization problem

◮ but we can typically use the decision problem as a subroutine in some kind of
(binary) search to solve the corresponding optimization problem



The Complexity Class P



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality



The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .

◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!
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A concrete decision problem Q is polynomial-time solvable if there is a
polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .

◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!

◮ parsing a Java program

◮ . . .
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Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K

◮ Output: 1, if there is set S of at most k vertices such that for every edge
e = (u, v) ∈ E, u ∈ S or v ∈ S (or both); 0 otherwise

K = 6?

a b c d

e f g h

i j k ℓ
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Polynomial-Time Verification

We might not know how to solve a problem in polynomial-time

problem instance ? solution

But we might know how to verify a given solution in polynomial-time

problem instance poly-time
algorithmsolution or “certificate”

valid/invalid

Examples

◮ longest path (decision variant)

◮ knapsack (decision variant)
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The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if there is a
polynomial-time algorithm A and a constant c such that, for each instance x ∈ I,
there is a certificate y of polynomial-size `y` = O(`x`c) such that A(x, y) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

◮ it means “non-deterministic polynomial”

polynomial-time solvable =⇒ polynomial-time verifiable

P ⊆ NP
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The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification
algorithm but there are no polynomial-time algorithms to find solutions?

P = NP?

Most theoretical computing scientists believe that P , NP

Finding a solution to a problem is believed to be inherently more difficult than
verifying a given solution or a proof of a solution
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Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify
that the formula is satisfiable

SAT ∈ P?
◮ we don’t know
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Reduction

In our theory of complexity we want to show that a problem is just as hard as
another problem

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

=

◮ an instance q of Q is transformed into an instance q′ of Q′ through a
polynomial-time algorithm

◮ the solution to q is 1 if and only if the solution to q′ is 1
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Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

◮ if A is polynomial-time, then of AQ is also polynomial time

◮ therefore if Q′ ∈ P, then Q ∈ P
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Example: 2-CNF-SAT

2-CNF-SAT problem

Input:

◮ f is a Boolean formula of n (Boolean) variables x1, x2, . . . , xn
◮ f is in conjunctive normal form (CNF), so f = C1 ∧ C2 ∧ · · · ∧ Ck
◮ every clause Ci of f contains exactly two literals (a variable or its negation)

Output: 1 iff f is satisfiable

◮ there is an assignment of variables that satisfies f

Example:
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
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2-CNF-SAT to Implicative Form

Consider each clause Ci

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b⇒ a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative
normal form

Example:
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

is equivalent to

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)
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2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

not satisfiable
if and only if
xi { ¬xi { xi
for some i

depth-first search

(or strongly connected components)
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Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability” DFS solution

=
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NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′

of Q′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to
Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is NP-hard

If Q′ is NP-hard and polynomial-time solvable, then P = NP

◮ i.e., most researchers believe that there is no such Q′
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The First NP-Complete Problem

Is there any NP-complete problem?

any problem Q ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT) was the first problem that was proved NP-hard and,
since SAT ∈ NP, also NP-complete

Many other problems were then proved NP-complete through polynomial
reductions

◮ e.g., SAT is polynomial-time reducible to the longest path problem

◮ therefore, the longest path problem is also NP-complete


