Representing and Searching Sets of Strings

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

April 27, 2016

■ Radix search

■ Ternary search tries

Sets of Strings

Sets of Strings

■ Several very important applications

Sets of Strings

■ Several very important applications
E.g.,

- dictionary (of words)
- symbol table in a compiler
- all kinds of key-based index
- ...

Symbol Table

■ Operations

Symbol Table

■ Operations

- insert(Key)
- delete(Key)
- search(Key)
- $\min ()$
- max()

■ Operations

Dictionary

■ Operations

- insert(Key)
- search(Key)

Dictionary

■ Operations

- insert(Key)
- search(Key)

■ No delete operation

■ Built once and searched many times

Binary Search

```
BinarySearch \((A, K)\)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad x=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[x]==K\)
                return TRUE
        elseif first == last
                return FALSE
        elseif \(A[x]>K\)
                        last \(=x-1\)
    else fist \(=x+1\)
    return FALSE
```

■ Complexity?

Tree-Search (T, K)

$1 x=$ T.root
2 while $x \neq$ NIL and $K \neq x$. key
if $K<x$. key
$x=x$.left
else $x=x$. right
if $x \neq$ NIL
return true
else return FALSE

```
BinarySearch \((A, K)\)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad x=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[x]==K\)
                return TRUE
        elseif first == last
                return FALSE
        elseif \(A[x]>K\)
                        last \(=x-1\)
    else fist \(=x+1\)
12 return FALSE
```

10
11
12 return FALSE

■ Complexity?

Tree-Search (T, K)
$1 x=$ T.root
2 while $x \neq$ NIL and $K \neq x$. key
if $K<x$. key
$x=x$.left
else $x=x$. right
if $x \neq \mathrm{NIL}$
return true
else return FALSE

3 if $K<x$. key
$4 \quad x=x . l e f t$
else $x=x$. right
return true
8 else return FALSE
K is a string!

```
BinarySearch \((A, K)\)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad x=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[x]==K\)
                return TRUE
        elseif first == last
                return FALSE
        elseif \(A[x]>K\)
                        last \(=x-1\)
        else fist \(=x+1\)
12 return FALSE
```

■ Complexity?

- we must account for the complexity of string comparisons

String Comparison

String Comparison

- Assuming a string is an array of bytes, the condition $A[x]==K$ (line 5 of BinarySearch) becomes StringEquals $(A[x], K)$

String Comparison

- Assuming a string is an array of bytes, the condition $A[x]==K$ (line 5 of BinarySearch) becomes StringEquals $(A[x], K)$

```
StringEquALs \(\left(S_{1}, S_{2}\right)\)
1 if length \(\left(S_{1}\right) \neq\) length \(\left(S_{2}\right)\)
2 return FALSE
3 for \(i=1\) to length \(\left(S_{1}\right)\)
4 if \(S_{1}[i] \neq S_{2}[i]\)
5 return FALSE
6 return TRUE
```


String Comparison

- Assuming a string is an array of bytes, the condition $A[x]==K$ (line 5 of BinarySearch) becomes StringEquals $(A[x], K)$

\square The complexity of $\operatorname{StringEquals}\left(S_{1}, S_{2}\right)$ is $O(m)$, where m is the max string size

String Comparison

- Assuming a string is an array of bytes, the condition $A[x]==K$ (line 5 of BinarySearch) becomes StringEquals $(A[x], K)$

\square The complexity of $\operatorname{String} \operatorname{Equals}\left(S_{1}, S_{2}\right)$ is $O(m)$, where m is the max string size

■ So, the complexity of $\operatorname{BinARYSEARCH}(A, K)$ is $O(m \log n)$

What About a Hash Table

Chained-HASh-Search (T, K)
$1 L=T[h(K)]$
2 return List-Search (L, K)

HASH-SEARCH (T, K)
1 for $i=1$ to length (T)
$j=h(K, i)$
if $T[j]==K$
return TRUE
if $T[j]==$ NIL
return FALSE
7 return FALSE

What About a Hash Table

Chained-HASh-Search (T, K)
$1 L=T[h(K)]$
2 return List-Search (L, K)

HASH-SEARCH (T, K)
1 for $i=1$ to length (T)
$j=h(K, i)$
if $T[j]==K$
return TRUE
if $T[j]==\mathrm{NIL}$
return FALSE
return FALSE

■ Complexity?

What About a Hash Table

Chained-HASh-Search (T, K)
$1 L=T[h(K)]$
2 return List-SeARCH (L, K)
HASH-SEARCH (T, K)

1 for $i=1$ to length (T)
$j=h(K, i)$
if $T[j]==K$
return TRUE
if $T[j]==\mathrm{NIL}$
return FALSE
return FALSE

- Complexity?
- here, too, we must account for the string comparisons

What About a Hash Table

Chained-HASh-Search (T, K)
$1 L=T[h(K)]$
2 return List-SeARCH (L, K)
HASH-SEARCH (T, K)

1 for $i=1$ to length (T)
$j=h(K, i)$
if $T[j]==K$
return TRUE
if $T[j]==\mathrm{NIL}$
return FALSE
return FALSE

- Complexity?
- here, too, we must account for the string comparisons
- and for the hash functions

Observation

Observation

■ When we start BinarySearch (A, K)

- $A[x]$ is probably far away from K
- so, StringEquals $(A[x], K)$ is likely to return quickly

Observation

■ When we start BinarySearch (A, K)

- $A[x]$ is probably far away from K
- so, StringEquals $(A[x], K)$ is likely to return quickly

■ Later in BinarySearch (A, K)

- $A[x]$ gets closer and closer to K
- so, StringEquals $(A[x], K)$ is likely to iterate for nearly m steps

Observation

■ When we start BinarySearch (A, K)

- $A[x]$ is probably far away from K
- so, StringEquals $(A[x], K)$ is likely to return quickly

■ Later in BinarySearch (A, K)

- $A[x]$ gets closer and closer to K
- so, StringEquals $(A[x], K)$ is likely to iterate for nearly m steps
- problem is, StringEquals $(A[x], K)$ is likely to go through the same prefix of K many times

■ So, since $m=\Theta(\log N)$, and $\operatorname{BinarySearch}(A, K)$ uses $\Theta(\log N)$ comparisons each one running in $O(m)$:

$$
T(N, m)=O\left(\log ^{2} N\right)
$$

A New Data Structure

■ Idea: a data structure where common prefixes are shared

A New Data Structure

■ Idea: a data structure where common prefixes are shared

■ Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Every node holds one character

■ Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Every node holds one character
■ Keys with the same prefix share a branch of the tree

■ Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Every node holds one character

- Keys with the same prefix share a branch of the tree

■ Keys are stored at (or just represented by) leaf nodes

■ Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Every node holds one character

- Keys with the same prefix share a branch of the tree

■ Keys are stored at (or just represented by) leaf nodes
■ Question: how do we represent nodes and links?

- Data structure useful for information retrieval (pronounced "try" to distinguish it from a tree...)

■ Every node holds one character
■ Keys with the same prefix share a branch of the tree

- Keys are stored at (or just represented by) leaf nodes

■ Question: how do we represent nodes and links?

- one way would be to hold $|\Sigma|$ links
- one for each character of the given alphabet Σ

Radix Trie

Radix Trie

Radix Trie

Radix Trie

Radix Trie

Radix Trie

Radix Search

■ Every element x has an array of links x.links

- e.g., in "radix-256," an element represents a byte in a string (of bytes)

■ Every element x has a x.value that is TRUE if that prefix corresponds to a string in the dictionary

- this is to distinguish an entire word from a prefix

Radix Search

■ Every element x has an array of links x.links

- e.g., in "radix-256," an element represents a byte in a string (of bytes)

■ Every element x has a x.value that is TRUE if that prefix corresponds to a string in the dictionary

- this is to distinguish an entire word from a prefix

```
RadixSearch (Root, K)
    \(1 n=\) Root
2 for \(i=1\) to length(K)
    if \(n\).links \([K[i]]==\) NIL
            return FALSE
            else \(n=n\).links \([K[i]]\)
6 return \(n\). value
```


Complexities of Radix Search

■ What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

Complexities of Radix Search

■ What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

$$
T(N, m)=\Theta(m)
$$

Complexities of Radix Search

\square What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

$$
T(N, m)=\Theta(m)
$$

■ What is the space complexity?

Complexities of Radix Search

\square What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

$$
T(N, m)=\Theta(m)
$$

■ What is the space complexity?

- first approximation:

$$
S(N, m)=O(|\Sigma| m N)
$$

Complexities of Radix Search

\square What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

$$
T(N, m)=\Theta(m)
$$

■ What is the space complexity?

- first approximation:

$$
S(N, m)=O(|\Sigma| m N) \quad S(N, m)=\Omega\left(|\Sigma| \log _{|\Sigma|} N\right)
$$

Complexities of Radix Search

\square What is the complexity of Radix Search with a dictionary of N strings of up to m characters?

$$
T(N, m)=\Theta(m)
$$

■ What is the space complexity?

- first approximation:

$$
S(N, m)=O(|\Sigma| m N) \quad S(N, m)=\Omega\left(|\Sigma| \log _{|\Sigma|} N\right)
$$

- a better characterization (Exercise: figure this out!):

$$
S(N, m)=\Theta\left(|\Sigma|\left[\frac{N-1}{|\Sigma|-1}+N\left(m-\frac{\log N}{\log |\Sigma|}\right)\right]\right)
$$

■ We do not represent a full array of links

■ We do not represent a full array of links
■ Instead, we represent a small binary "index" of the existing links

■ We do not represent a full array of links
■ Instead, we represent a small binary "index" of the existing links
E.g., prefixes "xa", "xb", "xn", "xk", and "xs" might be represented as follows

■ We do not represent a full array of links
■ Instead, we represent a small binary "index" of the existing links
E.g., prefixes "xa", "xb", "xn", "xk", and "xs" might be represented as follows

Ternary Search Trie

Ternary Search Trie

■ n. character is the character at node n; i.e., the last character in the prefix represented by n

Ternary Search Trie

■ n. character is the character at node n; i.e., the last character in the prefix represented by n

■ n. value is the value to which n maps to; if the TST is a dictionary, then n.value is true iff the prefix represented by n is a key in the dictionary

Ternary Search Trie

- n. character is the character at node n; i.e., the last character in the prefix represented by n
- n.value is the value to which n maps to; if the TST is a dictionary, then n.value is true iff the prefix represented by n is a key in the dictionary
- A node n has three links
- n. lower links to a node representing a "lower" character at the same position
- n.higher links to a node representing a "higher" character at the same position
- n. equal links to a node representing a character in the next position

Example

"culture"

Example

"culture"
(C) \Rightarrow (U) \Rightarrow (I) \Rightarrow (t) \Rightarrow U \Rightarrow r \Rightarrow (e)
"Iugano"
(c) \Rightarrow (U) \Rightarrow (I) \rightarrow (t) \Rightarrow (\rightarrow (e)
"Iugano"

"lunatic"

Example

"lunatic"

Example

"ciao"

"ciao"

"cappero"

"cappero"

"class"

"class"

"classic"

"classic"

"algorithm"

Example

"algorithm"

Example

"algo"

Example

"algo"

TST Search

TST Search

```
TSTSEARCh \((T, K)\)
    1 for \(i=1\) to \(|K|\)
    2 if \(i>1\)
        \(T=T\). equal
        while \(T \neq\) NIL and \(K[i] \neq T\).character
        if \(K[i]<T\).character
        \(T=T\).lower
        else \(T=T\).higher
    if \(T==\) NIL
        return FALSE
10 return n.value
```


TST Search

```
TSTSEARCh \((T, K)\)
    1 for \(i=1\) to \(|K|\)
    2 if \(i>1\)
        \(T=T\). equal
        while \(T \neq\) NIL and \(K[i] \neq T\).character
        if \(K[i]<T\).character
        \(T=T\).lower
        else \(T=T\).higher
    if \(T==\) NIL
        return FALSE
10 return n.value
```

■ Is it correct?

TST Search

```
TSTSEARCh \((T, K)\)
    1 for \(i=1\) to \(|K|\)
    2 if \(i>1\)
        \(T=T\). equal
        while \(T \neq\) NIL and \(K[i] \neq T\).character
        if \(K[i]<T\).character
        \(T=T\).lower
        else \(T=T\).higher
    if \(T==\) NIL
        return FALSE
10 return n.value
```

■ Is it correct? Not completely! (Exercise: fix it.)

- Complexity?

TST Search

```
TSTSEARCh \((T, K)\)
    1 for \(i=1\) to \(|K|\)
    2 if \(i>1\)
        \(T=T\). equal
    while \(T \neq\) NIL and \(K[i] \neq T\).character
        if \(K[\) i] < T.character
        \(T=T\).lower
        else \(T=T\).higher
    if \(T==\) NIL
        return FALSE
10 return n.value
```

■ Is it correct? Not completely! (Exercise: fix it.)

- Complexity? Non-trivial...

TST Insertion

■ Recursion starts with root $=$ TSTINSERT(root, $K, 1$)

```
TSTINSERT(T, K,i)
    1 if T== NIL
    T = NewNode(K[i])
    if K[i] < T.character
    T.lower = TSTINSERT(T.lower, K,i)
    elseif K[i] > T.character
        T.higher = TSTINSERT(T.higher, K,i)
    elseif K[i] == T.character
    if }i<|K
        T.equal = TSTINSERT(T.equal, K,i+1)
    else T.value = TRUE
11 return T
```

