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Red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x, each path from x to its descendant leaves has
the same number of black nodes bh(x) (the black-height of x)



Recap on Red-Black Trees (2)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T . root is the root node of tree T

◮ T .nil is the “sentinel” node of tree T

Nodes

◮ x.parent is the parent of node x

◮ x.key is the key stored in node x

◮ x. left is the left child of node x

◮ x. right is the right child of node x

◮ x.color ∈ {RED, BLACK} is the color
of node x

k k = x.key
node x

x.parent

x. left x.right
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◮ remove z
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z. right

3. z has two children

◮ replace z with y =
TREE-SUCCESSOR(z)

◮ remove y (1 child!)
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1. z has no children

◮ simply remove z

2. z has one child

◮ remove z

◮ connect z.parent to
z. right

3. z has two children

◮ replace z with y =
TREE-SUCCESSOR(z)

◮ remove y (1 child!)

◮ connect y.parent to
y. right
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A deleting a red leaf does not require any adjustment

◮ the deletion does not affect the black height (property 5)

◮ no two red nodes become adjacent (property 4)
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x

Deleting a black node changes the balance of black-height in
a subtree x

◮ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion

◮ in this simple case: x.color = BLACK
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Fixup Conditions

y is the spliced node (y = z if z has zero or one child)

◮ if y is red, then no fixup is necessary

◮ so, here we assume that y is black

x is either y’s only child or T .nil

◮ y was spliced out, so y can not have two children

◮ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red

◮ violates red-black property 2 (rootmust be black)

Problem 2: both x and y.parent are red

◮ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black

◮ violates red-black property 5 (same black height for all paths)
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x carries an additional black weight

◮ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the
root, otherwise. . .



Red-Black Deletion (4)

31

15 48

5 20 41 50

2 10 18 25 36 43 49 55



Red-Black Deletion (4)

31

15 48

5 20 41 50

2 10 18 25 36 43 49 55X



Red-Black Deletion (4)

31

15 48

5 20 41 50

10 18 25 36 43 49 55



Red-Black Deletion (4)

31

15 48

5 20 41 50

10 18 25 36 43 49 55



Red-Black Deletion (4)

31

15 48

5 20 41 50

10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches
a red node, which will absorb the extra black color
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In other cases where we can not push the additional black
color up, we can apply appropriate rotations and color
transfers that preserve all other red-black properties
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Red-Black Delete Fixup

RB-DELETE-FIXUP(T, x)

1 while x , T . root ∧ x.color = BLACK

2 if x == x.parent. left
3 w = x.parent. right
4 if w.color == RED

5 case 1. . .
6 if w. left.color == BLACK ∧ w. right.color = BLACK

7 w.color = RED // case 2
8 x = x.parent
9 else if w. right.color == BLACK

10 case 3. . .
11 case 4. . .
12 else same as above, exchanging right and left
13 x.color = BLACK


