Red-Black Trees (2)

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
April 18, 2016

Recap on Red-Black Trees

Recap on Red-Black Trees

Recap on Red-Black Trees

- Red-black-tree property

- Red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black
5. for every node x, each path from x to its descendant leaves has the same number of black nodes bh(x) (the black-height of x)

Recap on Red-Black Trees (2)

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x
- x.color $\in\{$ RED, BLACK $\}$ is the color

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

■ A deleting a red leaf does not require any adjustment

- A deleting a red leaf does not require any adjustment
- the deletion does not affect the black height (property 5)

- A deleting a red leaf does not require any adjustment
- the deletion does not affect the black height (property 5)
- no two red nodes become adjacent (property 4)

Red-Black Deletion (2)

Red-Black Deletion (2)

- Deleting a black node changes the balance of black-height in a subtree x

Red-Black Deletion (2)

■ Deleting a black node changes the balance of black-height in a subtree x

- RB-Delete-Fixup (T, x) fixes the tree after a deletion

Red-Black Deletion (2)

■ Deleting a black node changes the balance of black-height in a subtree x

- RB-Delete-Fixup (T, x) fixes the tree after a deletion
- in this simple case: x.color $=$ BLACK

Fixup Conditions

Fixup Conditions

$■ y$ is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

Fixup Conditions

$■ y$ is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T. nil iff y has no (key-bearing) children

Fixup Conditions

$■ y$ is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T. nil iff y has no (key-bearing) children

■ Problem 1: $y=T$.root and x is red

- violates red-black property 2 (root must be black)

Fixup Conditions

$■ y$ is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T. nil iff y has no (key-bearing) children

■ Problem 1: $y=T$.root and x is red

- violates red-black property 2 (root must be black)

■ Problem 2: both x and y.parent are red

- violates red-black property 4 (no adjacent red nodes)

Fixup Conditions

$■ y$ is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T. nil iff y has no (key-bearing) children

■ Problem 1: $y=T$.root and x is red

- violates red-black property 2 (root must be black)

■ Problem 2: both x and y.parent are red

- violates red-black property 4 (no adjacent red nodes)

■ Problem 3: we are removing y, which is black

- violates red-black property 5 (same black height for all paths)

Red-Black Deletion (3)

Red-Black Deletion (3)

Red-Black Deletion (3)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

Red-Black Deletion (3)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ The additional black weight can be discarded if it reaches the root, otherwise...

Red-Black Deletion (4)

Red-Black Deletion (4)

Red-Black Deletion (4)

Red-Black Deletion (4)

Red-Black Deletion (4)

■ The additional black weight can also stop as soon as it reaches a red node, which will absorb the extra black color

Red-Black Deletion (5)

Red-Black Deletion (5)

■ In other cases where we can not push the additional black color up, we can apply appropriate rotations and color transfers that preserve all other red-black properties

Basic Fixup Iteration (1)

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Basic Fixup Iteration (1)

Case 2

Basic Fixup Iteration (1)

Case 2

Basic Fixup Iteration (1)

Case 2

Case 3

Basic Fixup Iteration (2)

Case 3

Basic Fixup Iteration (2)

Basic Fixup Iteration (2)

Case 4

Basic Fixup Iteration (2)

Case 3

Case 4

Red-Black Delete Fixup

```
RB-DeLete-Fixup \((T, x)\)
    1 while \(x \neq\) T.root \(\wedge x\).color \(=\) BLACK
```

