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m Input: a sequence A = (a1, 02, ...,0p)

Output: a sequence (b1, by, ..., bp) such that

» (b1,ba,...,bp)is a permutation of (a4, 0z, ...,0n)
» (by,by,...,b,)is sorted

by <b, <---< by

m Typically, Ais implemented as an array
in-place sort

A=1(2|3(4[|5|6(6|7|8(9]|11
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m What is the time complexity of INSERTION-SORT?

m Can we do better?
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INSERTION-SORT(A)

1 fori = 2 to length(A)

2 j=i

3 whilej > 1 and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case: the inner loop is never executed

» what case is this?

m Worst case: the inner loop is executed exactly j — 1 times for
every iteration of the outer loop

» what case is this?
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Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed
exactly j — 1 times, so

=Z(f—1)

T(n) is the arithmetic series Z” Tk, so

m Best-case is T(n) = ©(n)

m Average-case is T(n) = O(n?)
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Correctness

m Does INSERTION-SORT terminate for all valid inputs?

m If so, does it satisfy the conditions of the sorting problem?

» A contains a permutation of the initial value of A
» Alissorted: A[1] < A[2] < --- < Allength(A)]

m We want a formal proof of correctness

» does not seem straightforward...



The Logic of Algorithmic Steps

Example:

SORTTWO(A)

1 # Amust be an array of 2 elements
2 ifA[1] > A[2]

3 t = A[1]
4 A[1] = A[2]
5 A[2] =t
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Loop Invariants

m We formulate a loop-invariant condition C

» C must remain true through a loop

» Cis relevant to the problem definition: we use C at the end of a
loop to prove the correctness of the result

m Then, we only need to prove that the algorithm terminates
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Loop Invariants (2)

m Formulation: this is where we try to be smart

» the invariant must reflect the structure of the algorithm

» it must be the basis to prove the correctness of the solution

m Proof of validity (i.e., that C is indeed a loop invariant): typical
proof by induction

» initialization: we must prove that
the invariant C is true before entering the loop

» maintenance: we must prove that

if C is true at the beginning of a cycle then it remains true after
one cycle
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INSERTION-SORT(A)

1 fori = 2to length(A)
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Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)

1 fori = 2 to length(A)

2 j=i

3 whilej > 1 and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Initialization: j = 2, so A[1..j — 1] is the single element A[1]
» A[1] contains the original element in A[1]

» A[1] is trivially sorted
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INSERTION-SORT(A)

1 fori = 2 to length(A)

2 j=i

3 whilej > 1 and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Maintenance: informally, if A[1../— 1] is a permutation of
the original A[1..i—1]and A[1..i— 1] is sorted (invariant),

then if we enter the inner loop:
» shifts the subarray A[k ../ — 1] by one position to the right

» inserts key, which was originally in A[/] at its proper position
1 <k <i—1,insorted order
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Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)

1 fori = 2 to length(A)

2 j=i

3 whilej > 1 and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Termination: INSERTION-SORT terminates with
i = length(A) + 1; the invariant states that

» A[1..i—1]is a permutation of the original A[1...i—1]
» A[1..i—1]issorted

Given the termination condition, A[1../ — 1] is the whole A
So INSERTION-SORT is correct!
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Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
» assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

2. Initialization (for all valid inputs)
» prove that C holds right before the first execution of the first
instruction of the loop
3. Management (for all valid inputs)
» prove that if C holds right before the first instruction of the
loop, then it holds also at the end of the loop
4. Termination (for all valid inputs)
» prove that the loop terminates, with some exit condition X

5. Prove that X A C = P, which means that A is correct
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SELECTION-SORT(A)

1 n = length(A)
2 fori=1ton-1

3 smallest = i

4 forj=i+1ton

5 if A[j] < A[smallest]
6 smallest = j

7

swap A[/] and A[smallest]
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2 fori=1ton-1

3 smallest = i

4 forj=i+1ton

5 if A[j] < A[smallest]
6 smallest = j

7

swap A[/] and A[smallest]
m Correctness?
» loop invariant?

m Complexity?

» worst, best, and average case?
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Exercise: Analyze Bubblesort

BUBBLESORT(A)

1 fori = 1 to/ength(A)

2 for j = length(A) downto j + 1
3 if Alj] < A[j — 1]

4 swap A[j] and A[j — 1]

m Correctness?
> loop invariant?

m Complexity?

» worst, best, and average case?



