Dynamic Programming

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 23, 2016

■ Examples

- Dynamic programming strategy

■ More examples

Activity-Selection Problem

Activity-Selection Problem

Greedy choice: earliest finish time

Activity-Selection Problem

Weighted Activity-Selection Problem

Weighted Activity-Selection Problem

Weighted Activity-Selection Problem

Case 1

Case 1: activity i is in the optimal schedule

Case 1

Case 1: activity i is in the optimal schedule

Case 2

Case 2

Case 2: activity i is not in the optimal schedule

Case 2

Case 2: activity i is not in the optimal schedule

Bellman-Ford Algorithm

Bellman-Ford Algorithm

■ Given a graph $G=(V, E)$ and a weight function w, we compute the shortest distance $D_{u}(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

Bellman-Ford Algorithm

■ Given a graph $G=(V, E)$ and a weight function w, we compute the shortest distance $D_{u}(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

$$
D_{u}(v)=\min _{x \in \operatorname{Adj}(u)}\left[w(u, x)+D_{x}(v)\right]
$$

Bellman-Ford Algorithm

■ Given a graph $G=(V, E)$ and a weight function w, we compute the shortest distance $D_{u}(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

$$
D_{u}(v)=\min _{x \in A d j(u)}\left[w(u, x)+D_{x}(v)\right]
$$

Bellman-Ford Algorithm

■ Given a graph $G=(V, E)$ and a weight function w, we compute the shortest distance $D_{u}(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

$$
D_{u}(v)=\min _{x \in \operatorname{Adj}(u)}\left[w(u, x)+D_{x}(v)\right]
$$

Shortest Paths on DAGs

■ Given a directed acyclic graph $G=(V, E)$, this one with unit weights, find the shortest distances to a given node

Shortest Paths on DAGs

■ Given a directed acyclic graph $G=(V, E)$, this one with unit weights, find the shortest distances to a given node

- Considering V in topological order...

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

■ Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

■ Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

■ Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

■ Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in \operatorname{Adj}(x)}\left[w(x, y)+D_{y}(k)\right]
$$

Shortest Paths on DAGs (2)

- Considering V in topological order

$$
D_{x}(k)=\min _{y \in A d j(x)}\left[w(x, y)+D_{y}(k)\right]
$$

■ Since G is a DAG, computing D_{y} with $y \in \operatorname{Adj}(x)$ can be considered a subproblem of computing D_{x}

- we build the solution bottom-up, storing the subproblem solutions

Longest Increasing Subsequence

Longest Increasing Subsequence

■ Given a sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$, an increasing subsequence is any subset $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and such that

$$
a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}
$$

■ You must find the longest increasing subsequence

Longest Increasing Subsequence

■ Given a sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$, an increasing subsequence is any subset $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and such that

$$
a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}
$$

■ You must find the longest increasing subsequence
■ Example: find (one of) the longest increasing subsequence in

$$
\begin{array}{llllllll}
5 & 2 & 8 & 6 & 3 & 6 & 9 & 7
\end{array}
$$

Longest Increasing Subsequence

■ Given a sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$, an increasing subsequence is any subset $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and such that

$$
a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}
$$

■ You must find the longest increasing subsequence
■ Example: find (one of) the longest increasing subsequence in

$$
\begin{array}{llllllll}
5 & 2 & 8 & 6 & 3 & 6 & 9 & 7
\end{array}
$$

A maximal-length subsequence is

$$
\begin{array}{llll}
2 & 3 & 6 & 9
\end{array}
$$

Longest Increasing Subsequence (2)

■ Intuition: let $L(j)$ be the length of the longest subsequence ending at a_{j}

Longest Increasing Subsequence (2)

■ Intuition: let $L(j)$ be the length of the longest subsequence ending at a_{j}

- e.g., in

$$
\begin{array}{llllllll}
5 & 2 & 8 & 6 & 3 & 6 & 9 & 7
\end{array}
$$

we have

$$
L(4)=2
$$

Longest Increasing Subsequence (2)

■ Intuition: let $L(j)$ be the length of the longest subsequence ending at a_{j}

- e.g., in

$$
\begin{array}{llllllll}
5 & 2 & 8 & 6 & 3 & 6 & 9 & 7
\end{array}
$$

we have

$$
L(4)=2
$$

- this is our subproblem structure

Longest Increasing Subsequence (2)

■ Intuition: let $L(j)$ be the length of the longest subsequence ending at a_{j}

- e.g., in

$$
\begin{array}{llllllll}
5 & 2 & 8 & 6 & 3 & 6 & 9 & 7
\end{array}
$$

we have

$$
L(4)=2
$$

- this is our subproblem structure

■ Combining the subproblems

$$
L(j)=1+\max \left\{L(i) \mid i<j \wedge a_{i}<a_{j}\right\}
$$

Dynamic Programming

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"
- Problem domain
- typically optimization problems
- longest sequence, shortest path, etc.

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"
- Problem domain
- typically optimization problems
- longest sequence, shortest path, etc.

■ General strategy

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

■ Problem domain

- typically optimization problems
- longest sequence, shortest path, etc.

■ General strategy

- decompose a problem in (smaller) subproblems

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

■ Problem domain

- typically optimization problems
- longest sequence, shortest path, etc.

■ General strategy

- decompose a problem in (smaller) subproblems
- must satisfy the optimal substructure property

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

■ Problem domain

- typically optimization problems
- longest sequence, shortest path, etc.

■ General strategy

- decompose a problem in (smaller) subproblems
- must satisfy the optimal substructure property
- subproblems may overlap (indeed they should overlap!)

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

■ Problem domain

- typically optimization problems
- longest sequence, shortest path, etc.
- General strategy
- decompose a problem in (smaller) subproblems
- must satisfy the optimal substructure property
- subproblems may overlap (indeed they should overlap!)
- solve the subproblems

Dynamic Programming

■ First, the name "dynamic programming"

- does not mean writing a computer program
- term used in the 1950s, when "programming" meant "planning"

■ Problem domain

- typically optimization problems
- longest sequence, shortest path, etc.
- General strategy
- decompose a problem in (smaller) subproblems
- must satisfy the optimal substructure property
- subproblems may overlap (indeed they should overlap!)
- solve the subproblems
- derive the solution from (one of) the solutions to the subproblems

Examples

■ Unweighted shortest path: given $G=(V, E)$, find the length of the shortest path from u to v

Examples

■ Unweighted shortest path: given $G=(V, E)$, find the length of the shortest path from u to v

- decompose $u \leadsto v$ into $u \leadsto w \leadsto v$

■ Unweighted shortest path: given $G=(V, E)$, find the length of the shortest path from u to v

- decompose $u \leadsto v$ into $u \leadsto w \leadsto v$
- easy to prove that, if $u \leadsto w \leadsto v$ is minimal, then $w \leadsto v$ is also minimal
- this is the optimal substructure property

■ Unweighted shortest path: given $G=(V, E)$, find the length of the shortest path from u to v

- decompose $u \leadsto v$ into $u \leadsto w \leadsto v$
- easy to prove that, if $u \leadsto w \leadsto v$ is minimal, then $w \leadsto v$ is also minimal
- this is the optimal substructure property

■ Unweighted longest simple path: given $G=(V, E)$, find the length of the longest simple (i.e., no cycles) path from u to v

- we can also decompose $u \leadsto v$ into $u \leadsto w \leadsto v$
- however, we can not prove that, if $u \leadsto w \leadsto v$ is maximal, then $w \leadsto v$ is also maximal

Examples

■ Unweighted shortest path: given $G=(V, E)$, find the length of the shortest path from u to v

- decompose $u \leadsto v$ into $u \leadsto w \leadsto v$
- easy to prove that, if $u \leadsto w \leadsto v$ is minimal, then $w \leadsto v$ is also minimal
- this is the optimal substructure property

■ Unweighted longest simple path: given $G=(V, E)$, find the length of the longest simple (i.e., no cycles) path from u to v

- we can also decompose $u \leadsto v$ into $u \leadsto w \leadsto v$
- however, we can not prove that, if $u \leadsto w \leadsto v$ is maximal, then $w \leadsto v$ is also maximal
- exercise: find a counter-example

Dynamic Programming vs. Divide-and-Conquer

■ Divide-and-conquer is also about decomposing a problem into subproblems

Dynamic Programming vs. Divide-and-Conquer

■ Divide-and-conquer is also about decomposing a problem into subproblems

■ Divide-and-conquer works by breaking the problem into significantly smaller subproblems

- in dynamic programming, it is typical to reduce $L(j)$ into $L(j-1)$
- this is one reason why recursion does not work so well for dynamic programming

Dynamic Programming vs. Divide-and-Conquer

■ Divide-and-conquer is also about decomposing a problem into subproblems

■ Divide-and-conquer works by breaking the problem into significantly smaller subproblems

- in dynamic programming, it is typical to reduce $L(j)$ into $L(j-1)$
- this is one reason why recursion does not work so well for dynamic programming

■ Divide-and-conquer splits the problem into independent subproblems

- in dynamic programming, subproblems typically overlap
- pretty much the same argument as above

Dynamic Programming vs. Greedy

■ Greedy: requires the greedy-choice property

- greedy: greedy choice plus one subproblem
- greedy choice typically before proceeding to the subproblem
- no need to store the result of each subproblem

Dynamic Programming vs. Greedy

■ Greedy: requires the greedy-choice property

- greedy: greedy choice plus one subproblem
- greedy choice typically before proceeding to the subproblem
- no need to store the result of each subproblem

■ Dynamic programming: more general

- does not need the greedy-choice property
- typically looks at several subproblems
- "dynamically" choose one of them to obtain a global solution
- typically works bottom-up
- typically reuses solutions of the subproblems

Typical Subproblem Structures

■ Prefix/suffix subproblems

- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Subproblem: $x_{1}, x_{2}, \ldots, x_{i}$, with $i<n$
- O(n) subproblems

Typical Subproblem Structures

■ Prefix/suffix subproblems

- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Subproblem: $x_{1}, x_{2}, \ldots, x_{i}$, with $i<n$
- O(n) subproblems

■ Subsequence subproblems

- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Subproblem: $x_{i}, x_{i+1}, \ldots, x_{j}$, with $1 \leq i<j \leq n$

Typical Subproblem Structures

■ Prefix/suffix subproblems

- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Subproblem: $x_{1}, x_{2}, \ldots, x_{i}$, with $i<n$
- O(n) subproblems

■ Subsequence subproblems

- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Subproblem: $x_{i}, x_{i+1}, \ldots, x_{j}$, with $1 \leq i<j \leq n$
- $O\left(n^{2}\right)$ subproblems

Edit Distance

- Given two strings x and y, find the smallest set of edit operations that transform x into y

Edit Distance

- Given two strings x and y, find the smallest set of edit operations that transform x into y
- edit operations: delete, insert, and modify a single character
- very important applications
- spell checker
- DNA sequencing

Edit Distance

- Given two strings x and y, find the smallest set of edit operations that transform x into y
- edit operations: delete, insert, and modify a single character
- very important applications
- spell checker
- DNA sequencing

■ Example: transform "Carzaniga" into "Jazayeri"

Edit Distance

- Given two strings x and y, find the smallest set of edit operations that transform x into y
- edit operations: delete, insert, and modify a single character
- very important applications
- spell checker
- DNA sequencing

■ Example: transform "Carzaniga" into "Jazayeri"

$$
\begin{aligned}
& \text { C a r z a n } \quad \text { i } \mathrm{g} \text { a } \\
& \text { J a } \mathrm{z} \text { a y er i }
\end{aligned}
$$

Edit Distance

- Given two strings x and y, find the smallest set of edit operations that transform x into y
- edit operations: delete, insert, and modify a single character
- very important applications
- spell checker
- DNA sequencing

■ Example: transform "Carzaniga" into "Jazayeri"

$$
\begin{aligned}
& \text { J a z a y e r i }
\end{aligned}
$$

Edit Distance (2)

■ Align the two strings x and y, possibly inserting "gaps" between letters

- a gap in the source means insertion
- a gap in the destination means deletion
- two different character in the same position means modification

Edit Distance (2)

■ Align the two strings x and y, possibly inserting "gaps" between letters

- a gap in the source means insertion
- a gap in the destination means deletion
- two different character in the same position means modification

■ Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance

Edit Distance (2)

■ Align the two strings x and y, possibly inserting "gaps" between letters

- a gap in the source means insertion
- a gap in the destination means deletion
- two different character in the same position means modification

■ Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance

■ So, how do we solve this problem?

Edit Distance (2)

■ Align the two strings x and y, possibly inserting "gaps" between letters

- a gap in the source means insertion
- a gap in the destination means deletion
- two different character in the same position means modification

■ Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance

■ So, how do we solve this problem?

■ What are the subproblems?

Edit Distance (3)

- Idea: consider a prefix of x and a prefix of y
- Idea: consider a prefix of x and a prefix of y

■ Let $E(i, j)$ be the smallest set of changes that turn the first i characters of x into the first j characters of y

- Idea: consider a prefix of x and a prefix of y
- Let $E(i, j)$ be the smallest set of changes that turn the first i characters of x into the first j characters of y

■ Now, the last column of the alignment of $E(i, j)$ can have either

- a gap for x (i.e., insertion)
- a gap for y (i.e., deletion)
- no gaps (i.e., modification iff $x[i] \neq y[j]$)

Edit Distance (3)

- Idea: consider a prefix of x and a prefix of y
- Let $E(i, j)$ be the smallest set of changes that turn the first i characters of x into the first j characters of y

■ Now, the last column of the alignment of $E(i, j)$ can have either

- a gap for x (i.e., insertion)
- a gap for y (i.e., deletion)
- no gaps (i.e., modification iff $x[i] \neq y[j]$)

■ This suggests a way to combine the subproblems; let $\operatorname{diff}(i, j)=1$ iff $x[i] \neq y[j]$ or 0 otherwise

$$
\begin{aligned}
E(i, j)=\min \{1 & +E(i-1, j) \\
& 1+E(i, j-1) \\
& \operatorname{diff}(i, j)+E(i-1, j-1)\}
\end{aligned}
$$

■ Problem definition

- Input: a set of n objects with their weights $w_{1}, w_{2}, \ldots w_{n}$ and their values $v_{1}, v_{2}, \ldots v_{n}$, and a maximum weight W
- Output: a subset K of the objects such that $\sum_{i \in K} w_{i} \leq W$ and such that $\sum_{i \in K} v_{i}$ is maximal

Knapsack

- Problem definition
- Input: a set of n objects with their weights $w_{1}, w_{2}, \ldots w_{n}$ and their values $v_{1}, v_{2}, \ldots v_{n}$, and a maximum weight W
- Output: a subset K of the objects such that $\sum_{i \in K} w_{i} \leq W$ and such that $\sum_{i \in K} v_{i}$ is maximal
- Dynamic-programming solution
- let $K(w, j)$ be the maximum value achievable at maximum capacity w using the first j items (i.e., items 1 . . .j)
- considering the j th element, we can either "use it or loose it," so

$$
K(w, j)=\max \left\{K\left(w-w_{j}, j-1\right)+v_{j}, K(w, j-1)\right\}
$$

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
- No! As we already said, recursion doesn't quite work here

■ The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?

- No! As we already said, recursion doesn't quite work here
- Why?

■ Remember Fibonacci?

■ The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?

- No! As we already said, recursion doesn't quite work here
- Why?

■ Remember Fibonacci?

```
Fibonacci( \(n\) )
1 if \(n==0\)
2 return 0
3 elseif \(n==1\)
4 return 1
5 else return \(\operatorname{FIBONACCI}(n-1)+\operatorname{FIBONACCI}(n-2)\)
```

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
- No! As we already said, recursion doesn't quite work here
- Why?

■ Remember Fibonacci?

```
Fibonacci( \(n\) )
1 if \(n==0\)
2 return 0
3 elseif \(n==1\)
4 return 1
5 else return \(\operatorname{FiboNACCI}(n-1)+\operatorname{FIBONACCI}(n-2)\)
```

- Recursion solves the same problem over and over again

Memoization

■ Problem: recursion solves the same problems repeatedly
■ Idea: "cache" the results

■ Problem: recursion solves the same problems repeatedly
■ Idea: "cache" the results

```
FIBONACCI(n)
1 if }n==
    return 0
    elseif n == 1
        return 1
        elseif (n,x) \inH // a hash table H "caches" results
        return }
        else }x=\operatorname{FIbONACCI}(n-1)+\boldsymbol{FIbONACCI}(n-2
| INSERT(H, n, x)
9return }
```

■ Idea also known as memoization

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

- the complexity of the greedy strategy per-se is $\Theta(n)$

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

- the complexity of the greedy strategy per-se is $\Theta(n)$

■ Dynamic programming

1. break down the problem in subproblems

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

- the complexity of the greedy strategy per-se is $\Theta(n)$

■ Dynamic programming

1. break down the problem in subproblems- $O(1), O(n), O\left(n^{2}\right)$, ...subproblems

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

- the complexity of the greedy strategy per-se is $\Theta(n)$

■ Dynamic programming

1. break down the problem in subproblems- $O(1), O(n), O\left(n^{2}\right)$, ...subproblems
2. you solve the main problem by choosing one of the subproblems

Complexity

■ Greedy

1. start with the greedy choice
2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

- the complexity of the greedy strategy per-se is $\Theta(n)$

■ Dynamic programming

1. break down the problem in subproblems- $O(1), O(n), O\left(n^{2}\right)$, ...subproblems
2. you solve the main problem by choosing one of the subproblems
3. in practice, solve the subproblems bottom-up

Exercise

Exercise

■ Puzzle 0: is it possible to insert some ' + ' signs in the string " 213478 " so that the resulting expression would equal 214 ?

Exercise

■ Puzzle 0: is it possible to insert some '+' signs in the string " 213478 " so that the resulting expression would equal 214 ?

- Yes, because $2+134+78=214$

■ Puzzle 1: is it possible to insert some '+' signs in the strings of digits to obtain the corresponding target number?

digits	target
646805736141599100791159198	472004
6152732017763987430884029264512187586207273294807	560351
48796142803774467559157928	326306
195961521219109124054410617072018922584281838218	7779515

