Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 25, 2016

■ Basic complexity classes

■ Polynomial reductions
■ NP-completeness

Polynomial Time

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$\underline{\underline{T(n)} \quad \text { is A a polynomial-time algorithm? }}$
$T(n)=n^{2}$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?
$T(n)=n^{2}$
Yes

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes }
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$\underline{T(n) \quad \text { is A a polynomial-time algorithm? }}$

$$
\begin{array}{lr}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$\underline{\underline{T(n)} \quad \text { is A a polynomial-time algorithm? }}$

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No }
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No }
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} & \text { Yes }
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$

$T(n)$
 is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} & \text { Yes } \\
T(n)=5 &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$

$T(n)$
 is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} & \text { Yes } \\
T(n)=5 & \text { Yes }
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n)$
is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \text { No } \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} & \text { Yes } \\
T(n)=5 & \text { Yes } \\
T(n)=n^{-7} \cdot 2^{n / 7} &
\end{array}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on input size n, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$
$T(n) \quad$ is A a polynomial-time algorithm?

$$
\begin{array}{ll}
T(n)=n^{2} & \text { Yes } \\
T(n)=n^{3}-2 n^{2}-5 & \text { Yes } \\
T(n)=\sqrt{n!} & \\
T(n)=n^{7}+7^{n} & \text { No } \\
T(n)=n^{7}+7^{-n} & \text { Nos } \\
T(n)=5 & \text { Yes } \\
T(n)=n^{-7} \cdot 2^{n / 7} & \\
\text { No } \tag{No}
\end{array}
$$

Polynomial-Time Algorithms

■ Examples:
Algorithm

worst-case running time

Polynomial-Time Algorithms

■ Examples:
Algorithm

worst-case running time

AdD

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
$O(n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
$O(n)$
Tree-Minimum

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
$O(n)$
Tree-Minimum
$O(n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
$O(n)$
Tree-Minimum
$O(n)$
RB-INSERT

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum RB-INSERT

$O(n)$
$O(n)$
$O(\log n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum
RB-INSERT
$O(n)$

Inorder-Tree-WaLk

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum RB-INSERT
InORDER-Tree-Walk

$O(n)$
$O(n)$
$O(\log n)$
$O(n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum
RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
$O(n)$
$O(n)$
$O(\log n)$
$O(n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
$O(n)$
$O(n)$
$O(\log n)$
$O(n)$
$O\left(n^{2}\right)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

Add
Tree-Minimum
RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
Heapsort

$$
\begin{gathered}
O(n) \\
O(n) \\
O(\log n) \\
O(n) \\
O\left(n^{2}\right)
\end{gathered}
$$

Polynomial-Time Algorithms

■ Examples:

Algorithm

 worst-case running timeAdd
Tree-Minimum RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
Heapsort
$O(n)$
$O(n)$
$O(\log n)$
$O(n)$
$O\left(n^{2}\right)$
$O(n \log n)$

Polynomial-Time Algorithms

■ Examples:
Algorithm worst-case running time

AdD
Tree-Minimum
RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
Heapsort
Boyer-Moore

$$
\begin{gathered}
O(n) \\
O(n) \\
O(\log n) \\
O(n) \\
O\left(n^{2}\right) \\
O(n \log n)
\end{gathered}
$$

Polynomial-Time Algorithms

■ Examples:

Algorithm

worst-case running time

AdD
Tree-Minimum
RB-INSERT
Inorder-Tree-Walk
Insertion-Sort
Heapsort
Boyer-Moore
$O(n)$
$O(n)$
$O(\log n)$
$O(n)$
$O\left(n^{2}\right)$
$O(n \log n)$
$O\left(n^{2}\right)$

Polynomial-Time Algorithms

■ Examples:

Algorithm	worst-case running time
Add	$O(n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	$O(n \log n)$
BOYER-MOORE	$O\left(n^{2}\right)$

...

Abstract Problems

Abstract Problems

■ An abstract problem Q is a binary relation between a set I of problem instances and a set S of solutions

Abstract Problems

- An abstract problem Q is a binary relation between a set / of problem instances and a set S of solutions

- A concrete problem Q is one where I and S are the set of binary strings $\{0,1\}^{*}$
- for all practical purposes, instances and solutions can be encoded as binary strings (i.e., mapped into $\{0,1\}^{*}$)
- we consider only sensible encodings...

Decision Problems

Decision Problems

- A decision problem Q is one where the set of solutions is $S=\{0,1\}$

Decision Problems

- A decision problem Q is one where the set of solutions is $S=\{0,1\}$

Example:

1	\longrightarrow	0
10	\longrightarrow	1
11	\longrightarrow	1
100	\longrightarrow	0
101	\longrightarrow	1
110	\longrightarrow	0
111	\longrightarrow	1
1000	\longrightarrow	0
1001	\longrightarrow	0
1010	\longrightarrow	0
1011	\longrightarrow	1

Decision Problems

- A decision problem Q is one where the set of solutions is $S=\{0,1\}$

Example:

1	\longrightarrow	0
10	\longrightarrow	1
11	\longrightarrow	1
100	\longrightarrow	0
101	\longrightarrow	1
110	\longrightarrow	0
111	\longrightarrow	1
1000	\longrightarrow	0
1001	\longrightarrow	0
1010	\longrightarrow	0
1011	\longrightarrow	1

Decision Problems (2)

■ Many "optimization" problems have a corresponding decision problem

■ Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$
G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z \longrightarrow a, c, \ldots, z
$$

- input: a graph G, a start vertex (a), and an end vertex (z)
- output: a sequence of vertexes a, c, \ldots, z

■ Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$
G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z \longrightarrow a, c, \ldots, z
$$

- input: a graph G, a start vertex (a), and an end vertex (z)
- output: a sequence of vertexes a, c, \ldots, z

Shortest path as a decision problem

$$
G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z, 10 \longrightarrow 1
$$

- input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
- output: 1 if there is a path of (at most) the given length

Decision Problems (3)

■ We focus on decision problems only

- We focus on decision problems only

■ An optimization problem is at least as hard as its corresponding decision problem

- having a solution to the optimization gives an immediate solution to the decision problem

■ We focus on decision problems only

- An optimization problem is at least as hard as its corresponding decision problem
- having a solution to the optimization gives an immediate solution to the decision problem

■ An optimization problem is not much harder than the corresponding decision problem

Decision Problems (3)

■ We focus on decision problems only

- An optimization problem is at least as hard as its corresponding decision problem
- having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is not much harder than the corresponding decision problem
- having a solution to the decision problem does not give an immediate solution to the optimization problem
- but we can typically use the decision problem as a subroutine in some kind of (binary) search to solve the corresponding optimization problem

The Complexity Class P

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

■ Examples

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete decision problems that are polynomial-time solvable

■ Examples

- shortest path (decision variant)

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)—Dijkstra's algorithm

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class P is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)—Dijkstra's algorithm
- primality

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

■ Examples

- shortest path (decision variant)—Dijkstra's algorithm
- primality—a relatively recent theoretical result. . .
- in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
- Neeraj Kayal and Nitin Saxena were Bachelor students!

The Complexity Class P

- A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

■ Examples

- shortest path (decision variant)—Dijkstra's algorithm
- primality—a relatively recent theoretical result. . .
- in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
- Neeraj Kayal and Nitin Saxena were Bachelor students!
- parsing a Java program
- ...

Verifying is Easy

■ Example: Vertex cover

- Input: A graph $G=(V, E)$ and a number K
- Output: A set of k vertices S such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$

Verifying is Easy

■ Example: Vertex cover

- Input: A graph $G=(V, E)$ and a number K
- Output: A set of k vertices S such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$

$$
K=7
$$

Verifying is Easy

■ Example: Vertex cover

- Input: A graph $G=(V, E)$ and a number K
- Output: A set of k vertices S such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$

$$
K=7
$$

Verifying is Easy

■ Example: Vertex cover

- Input: A graph $G=(V, E)$ and a number K
- Output: A set of k vertices S such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$

$$
K=6 ?
$$

Polynomial-Time Verification

Polynomial-Time Verification

■ We might not know how to solve a problem in polynomial-time

Polynomial-Time Verification

- We might not know how to solve a problem in polynomial-time

■ But we might know how to verify a given solution in polynomial-time

Polynomial-Time Verification

- We might not know how to solve a problem in polynomial-time

■ But we might know how to verify a given solution in polynomial-time

- Examples
- longest path (decision variant)
- knapsack (decision variant)

The Complexity Class NP

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$ such that $A(x, y)=1$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$ such that $A(x, y)=1$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$ such that $A(x, y)=1$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

- it means "non-deterministic polynomial"

The Complexity Class NP

- A concrete decision problem Q is polynomial-time verifiable if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$ such that $A(x, y)=1$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

- it means "non-deterministic polynomial"

■ polynomial-time solvable \Longrightarrow polynomial-time verifiable

$$
P \subseteq N P
$$

The Big Open Question

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

The Big Open Question

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

The Big Open Question

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

The Big Open Question

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

■ Most theoretical computing scientists believe that $\mathrm{P} \neq \mathrm{NP}$

The Big Open Question

- polynomial-time verifiable $\xlongequal{?}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

■ Most theoretical computing scientists believe that $\mathrm{P} \neq \mathrm{NP}$
■ Finding a solution to a problem is believed to be inherently more difficult than verifying a given solution or a proof of a solution

Example: SAT

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

$$
\text { - } \neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y)
$$

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

$$
\text { - } \neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)
$$

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z)$

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$
- SAT $\in N P$?

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$
- SAT $\in N P$?
- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT $\in N P$?

- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

■ SAT $\in P$?

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT $\in N P$?

- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

■ SAT $\in P$?

- we don't know

Reduction

Reduction

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ We do that with polynomial-time reductions

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ We do that with polynomial-time reductions

Reduction

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ We do that with polynomial-time reductions

Reduction

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ We do that with polynomial-time reductions

- an instance q of Q is transformed into an instance q^{\prime} of Q^{\prime} through a polynomial-time algorithm

Reduction

■ In our theory of complexity we want to show that a problem is just as hard as another problem

■ We do that with polynomial-time reductions

- an instance q of Q is transformed into an instance q^{\prime} of Q^{\prime} through a polynomial-time algorithm
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

■ Solution by polynomial-time reductions to a solvable problem

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

- if A is polynomial-time, then of A_{Q} is also polynomial time

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

- if A is polynomial-time, then of A_{Q} is also polynomial time
- therefore if $Q^{\prime} \in P$, then $Q \in P$

Example: 2-CNF-SAT

Example: 2-CNF-SAT

- 2-CNF-SAT problem

Input:

- f is a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- f is in conjunctive normal form (CNF), so $f=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$
- every clause C_{i} of f contains exactly two literals (a variable or its negation)

Output: 1 iff f is satisfiable

- there is an assignment of variables that satisfies f

Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

2-CNF-SAT to Implicative Form

2-CNF-SAT to Implicative Form

■ Consider each clause C_{i}

$$
(a \vee b) \equiv(\neg a \Rightarrow b) \equiv(\neg b \Rightarrow a)
$$

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)
$$

2-CNF-SAT to Implicative Form

■ Consider each clause C_{i}

$$
(a \vee b) \equiv(\neg a \Rightarrow b) \equiv(\neg b \Rightarrow a)
$$

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)
$$

is equivalent to

$$
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right)
$$

2-CNF-SAT to Graph Reachability

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
& \left.\downarrow \uparrow x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
& \left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{aligned}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right), \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
& \left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{aligned}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \uparrow \\
& \left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{aligned}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{aligned}
& \quad\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
& \left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{aligned}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left.\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

not satisfiable if and only if $x_{i} \leadsto \neg x_{i} \leadsto x_{i}$ for some i

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

> not satisfiable if and only if $x_{i} \leadsto \neg x_{i} \leadsto x_{i}$ for some i
depth-first search
(or strongly connected components)

Reduction of 2-CNF-SAT

Reduction of 2-CNF-SAT

- 2-CNF-SAT $\in P$

■ 2-CNF-SAT $\in P$

Reduction of 2-CNF-SAT

■ 2-CNF-SAT $\in P$

- 2-CNF-SAT $\in P$

NP-Completeness

- A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

NP-Completeness

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

NP-Completeness

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1
- A problem Q^{\prime} is $N P$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

NP-Completeness

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1
- A problem Q^{\prime} is $\boldsymbol{N P}$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q^{\prime} is $N P$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard

NP-Completeness

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1
- A problem Q^{\prime} is NP-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}
- A problem Q^{\prime} is $N P$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard
- If Q^{\prime} is NP-hard and polynomial-time reducible to $Q^{\prime \prime}$, then $Q^{\prime \prime}$ is NP-hard

NP-Completeness

- A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction
- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1
- A problem Q^{\prime} is $N P$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q^{\prime} is $N P$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard

- If Q^{\prime} is NP-hard and polynomial-time reducible to $Q^{\prime \prime}$, then $Q^{\prime \prime}$ is NP-hard

■ If Q^{\prime} is NP-hard and polynomial-time solvable, then $P=N P$

- i.e., most researchers believe that there is no such Q^{\prime}

The First NP-Complete Problem

■ Is there any NP-complete problem?

■ Is there any NP-complete problem?

■ Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT \in NP, also NP-complete

■ Is there any NP-complete problem?

- Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT \in NP, also NP-complete

■ Many other problems were then proved NP-complete through polynomial reductions

- e.g., SAT is polynomial-time reducible to the longest path problem
- therefore, the longest path problem is also NP-complete

