
Exercises for Algorithms and Data Structures

Antonio Carzaniga

Faculty of Informatics

USI

(Università della Svizzera italiana)

Edition 3.06

April 2024

(with some solutions)

◮Exercise 1 (m06). Answer the following questions on the big-oh notation.

Question 1: Explain what g(n) = O(f(n)) means. (5’)

Question 2: Explain why it is meaningless to state that “the running time of algorithm A is at least

O(n2).” (5’)

Question 3: Given two functions f = Ω(logn) and g = O(n), consider the following statements.

For each statement, write whether it is true or false. For each false statement, write two functions

f and g that show a counter-example. (5’)

• g(n) = O(f(n))

• f (n) = O(g(n))

• f (n) = Ω(log (g(n)))

• f (n) = Θ(log (g(n)))

• f (n)+ g(n) = Ω(logn)

Question 4: For each one of the following statements, write two functions f and g that satisfy the

given condition. (5’)

• f (n) = O(g2(n))

• f (n) =ω(g(n))

• f (n) =ω(log (g(n)))

• f (n) = Ω(f (n)g(n))

• f (n) = Θ(g(n)) +Ω(g2(n))

◮Exercise 2 (m06). Illustrate the execution of the merge-sort algorithm on the array

A = 〈3,13,89,34,21,44,99,56,9〉

For each fundamental iteration or recursion of the algorithm, write the content of the array. As-

sume the algorithm performs an in-place sort. (20’)

◮Exercise 3 (m06). Consider the array A = 〈29,18,10,15,20,9,5,13,2,4,15〉.
Question 1: Does A satisfy the max-heap property? If not, fix it by swapping two elements. (5’)

Question 2: Using array A (possibly corrected), illustrate the execution of the heap-extract-max

algorithm, which extracts the max element and then rearranges the array to satisfy the max-heap

property. For each iteration or recursion of the algorithm, write the content of the array A. (15’)

◮Exercise 4 (m06). Consider the following binary search tree (BST).

24

9

3 15

1 4

Question 1: List all the possible insertion orders (i.e., permutations) of the keys that could have

produced this BST. (5’)

Question 2: Draw the same BST after the insertion of keys: 6, 45, 32, 98, 55, and 69, in this order. (5’)

Question 3: Draw the BST resulting from the deletion of keys 9 and 45 from the BST resulting from

question 2. (5’)

Question 4: Write at least three insertion orders (permutations) of the keys remaining in the BST

after question 3 that would produce a balanced tree (i.e., a minimum-height tree). (5’)

◮Exercise 5 (m06). Consider a hash table that stores integer keys. The keys are 32-bit unsigned

values, and are always a power of 2. Give the minimum table size t and the hash function h(x)
that takes a key x and produces a number between 1 and t, such that no collision occurs. (10’)

◮Exercise 6 (m06). Explain why the time complexity of searching for elements in a hash table,

where conflicts are resolved by chaining, decreases as its load factor α decreases. Recall that α is

defined as the ratio between the total number of elements stored in the hash table and the number

of slots in the table.

◮Exercise 7 (f06). The binary string below is the title of a song encoded using Huffman codes.

0011000101111101100111011101100000100111010010101

Given the letter frequencies listed in the table below, build the Huffman codes and use them to

decode the title. In cases where there are multiple “greedy” choices, the codes are assembled by

combining the first letters (or groups of letters) from left to right, in the order given in the table.

Also, the codes are assigned by labeling the left and right branches of the prefix/code tree with ‘0’

and ‘1’, respectively.

letter a h v w ‘ ’ e t l o

frequency 1 1 1 1 2 2 2 3 3

(20’)

◮Exercise 8 (f06). You wish to create a database of stars. For each star, the database will store

several megabytes of data. Considering that your database will store billions of stars, choose the

data structure that will provide the best performance. With this data structure you should be able

to find, insert, and delete stars. Justify your choice. (10’)

◮Exercise 9 (f06). You are given a set of persons P and their friendship relation R. That is, (a, b) ∈
R if and only if a is a friend of b. You must find a way to introduce person x to person y through

a chain of friends. Model this problem with a graph and describe a strategy to solve the problem. (10’)

◮Exercise 10 (f06). Answer the following questions

Question 1: Explain what f (n) = Ω(g(n)) means. (5’)

Question 2: Explain what kind of problems are in the P complexity class. (5’)

Question 3: Explain what kind of problems are in the NP complexity class. (5’)

Question 4: Explain what it means for problem A to be polynomially-reducible to problem B. (5’)

Question 5: Write true, false, or unknown depending on whether the assertions below are true,

false, or we do not know. (5’)

• P ⊆ NP

• NP ⊆ P

• n! = O(n100)

• √n = Ω(logn)

• 3n2 + 1
n + 4 = Θ(n2)

Question 6: Consider the following exact-change problem. Given a collection of n values V =
{v1, v2, . . . , vn} representing coins and bills in a cash register, and given a value x, output 1 if

there exists a subset of V whose total value is equal to x, or 0 otherwise. Is the exact-change

problem in NP? Justify your answer. (5’)

◮Exercise 11 (f06). A thief robbing a gourmet store finds n pieces of precious cheeses. For each

piece i, vi designates its value and wi designates its weight. Considering that W is the maximum

weight the thief can carry, and considering that the thief may take any fraction of each piece, you

must find the quantity of each piece the thief must take to maximize the value of the robbery. (20’)

Question 1: Write an algorithm that solves the problem using a greedy or dynamic programming

strategy. Analyze the complexity of your solution.

Question 2: Prove that the problem has an optimal substructure, meaning that an optimal solution

to a problem instance X contains within it some optimal solutions to sub-problems Y ⊆ X.

Question 3: Show the greedy choice property also holds for some greedy-choice strategy. Recall

that the greedy-choice property holds if and only if every greedy choice according to the given

strategy is contained in an optimal solution.

◮Exercise 12 (f06). You are in front of a stack of pancakes of different diameter. Unfortunately,

you cannot eat them unless they are sorted according to their size, with the biggest one at the

bottom. To sort them, you are given a spatula that you can use to split the stack in two parts and

then flip the top part of the stack. Write the an algorithm Sort-Pancakes(P) that sorts the stack

P using only spatula-flip operations. The array P stores the pancakes top-to-bottom, thus P[1]
is the size of the pancake at the top of the stack, while P[P. length] is the size of the pancake at

the bottom of the stack. Your algorithm must indicate a spatula flip with the spatula inserted at

position i with Spatula-Flip(P, i), which flips all the elements in P[1 . . . i]. (20’)

◮Exercise 13 (f06). Explain what it means for a hash function to be perfect for a given set of

keys. Consider the hash function h(x) = x mod m that maps an integer x to a table entry

in {0,1, . . .m − 1}. Find an m ≤ 12 such that h is a perfect hash function on the set of keys

{0,6,9,12,22,31}. (10’)

◮Exercise 14 (f06). Draw the binary search tree obtained when the keys 1,2,3,4,5,6,7 are inserted

in the given order into an initially empty tree. What is the problem of the tree you get? Why is

it a problem? How could you modify the insertion algorithm to solve this problem. Justify your

answer. (10’)

◮Exercise 15 (f06). Consider the following array:

A = 〈4,33,6,90,33,32,31,91,90,89,50,33〉
Question 1: Is A a min-heap? Justify your answer by briefly explaining the min-heap property. (10’)

Question 2: If A is a min-heap, then extract the minimum value and then rearrange the array with

the min-heapify procedure. In doing that, show the array at every iteration of min-heapify. If A is

not a min-heap, then rearrange it to satisfy the min-heap property. (10’)

◮Exercise 16 (f06). Write the pseudo-code of the insertion-sort algorithm. Illustrate the execution

of the algorithm on the array A = 〈3,13,89,34,21,44,99,56,9〉, writing the intermediate values of

A at each iteration of the algorithm. (20’)

◮Exercise 17 (f06). Encode the following sentence with a Huffman code

Common sense is the collection of prejudices acquired by age eighteen

Write the complete construction of the code. (20’)

◮Exercise 18 (f06). Consider the text and query strings:
text: It ain’t over till it’s over.

query: over

Use the Boyer-Moore string-matching algorithm to search for the query in the text. For each char-

acter comparison performed by the algorithm, write the current shift and highlight the character

position considered in the query string. Assume that indexes start from 0. The following table

shows the first comparison as an example. Fill the rest of the table. (10’)

n. shift I t a i n ’ t o v e r t i l l i t ’ s o v e r .

1 0 o v e r

2

...

◮Exercise 19 (f06). Briefly answer the following questions

Question 1: What does f (n) = Θ(g(n)) mean? (5’)

Question 2: What kind of problems are in the P class? Give an example of a problem in P. (5’)

Question 3: What kind of problems are in the NP class? Give an example of a problem in NP. (5’)

Question 4: What does it mean for a problem A to be reducible to a problem B? (5’)

◮Exercise 20 (f06). For each of the following assertions, write “true,” “false,” or “?” depending on

whether the assertion is true, false, or it may be either true or false. (10’)

Question 1: P ⊆ NP

Question 2: The knapsack problem is in P

Question 3: The minimal spanning tree problem is in NP

Question 4: n! = O(n100)

Question 5:
√
n = Ω(log(n))

Question 6: insertion-sort performs like quicksort on an almost sorted sequence

◮Exercise 21 (f06). An application must read a long sequence of numbers given in no particular

order, and perform many searches on that sequence. How would you implement that application

to minimize the overall time-complexity? Write exactly what algorithms you would use, and in

what sequence. In particular, write the high-level structure of a read function, to read and store

the sequence, and a find function too look up a number in the sequence. (10’)

◮Exercise 22 (m07). For each statement below, write whether it is true or false. For each false

statement, write a counter-example. (10’)

• f (n) = Θ(n) ∧ g(n) = Ω(n) ⇒ f (n)g(n) = Ω(n2)

• f (n) = Θ(1) ⇒ nf (n) = O(n)
• f (n) = Ω(n)∧ g(n) = O(n2)⇒ g(n)/f (n) = O(n)
• f (n) = O(n2)∧ g(n) = O(n) ⇒ f (g(n)) = O(n3)

• f (n) = O(logn)⇒ 2f (n) = O(n)
• f = Ω(logn)⇒ 2f (n) = Ω(n)

◮Exercise 23 (m07). Write tight asymptotic bounds for each one of the following definitions of

f (n). (10’)

• g(n) = Ω(n)∧ f (n) = g(n)2 +n3 ⇒ f (n) =
• g(n) = O(n2)∧ f (n) = n log (g(n)) ⇒ f (n) =
• g(n) = Ω(√n)∧ f (n) = g(n+ 216)⇒ f (n) =
• g(n) = Θ(n) ∧ f (n) = 1+ 1/

√
g(n) ⇒ f (n) =

• g(n) = O(n)∧ f (n) = 1+ 1/
√
g(n) ⇒ f (n) =

• g(n) = O(n)∧ f (n) = g(g(n)) ⇒ f (n) =

◮Exercise 24 (m07). Write the ternary-search trie (TST) that represents a dictionary of the strings:

“gnu” “emacs” “gpg” “else” “gnome” “go” “eps2eps” “expr” “exec” “google” “elif” “email” “exit”

“epstopdf” (10’)

◮Exercise 25 (m07). Answer the following questions.

Question 1: A hash table with chaining is implemented through a table of K slots. What is the

expected number of steps for a search operation over a set of N = K/2 keys? Briefly justify your

answers.

Question 2: What are the worst-case, average-case, and best-case complexities of insertion-sort,

bubble-sort, merge-sort, and quicksort? (5’)

◮Exercise 26 (m07). Write the pseudo code of the in-place insertion-sort algorithm, and illustrate

its execution on the array

A = 〈7,17,89,74,21,7,43,9,26,10〉
Do that by writing the content of the array at each main (outer) iteration of the algorithm. (20’)

◮Exercise 27 (m07). Consider a binary tree containing N integer keys whose values are all less

than K, and the following Find-Prime algorithm that operates on this tree.

Find-Prime(T)

1 x = Tree-Min(T)
2 while x ≠ nil

3 x = Tree-Successor(x)
4 if Is-Prime(x.key)
5 return x
6 return x

Is-Prime(n)

1 i = 2

2 while i · i ≤ n
3 if i divides n
4 return false

5 i = i+ 1

6 return true

Hint: these are the relevant binary-tree algorithms.

Tree-Successor(x)

1 if x.right ≠ nil

2 return Tree-Minimum(x.right)
3 y = x.parent

4 while y ≠ nil and x == y.right

5 x = y
6 y = y.parent

7 return y

Tree-Minimum(x)

1 while x. left ≠ nil

2 x = x. left

3 return x

Write the time complexity of Find-Prime. Justify your answer. (10’)

◮Exercise 28 (m07). Consider the following max-heap

H = 〈37,12,30,10,3,9,20,3,7,1,1,7,5〉
Write the exact output of the following Extract-All algorithm run on H

Extract-All(H)

1 while H.heap-size > 0

2 Heap-Extract-Max(H)
3 for i = 1 to H.heap-size

4 output H[i]
5 output “.” end-of-line

Heap-Extract-Max(H)

1 if H.heap-size > 0

2 k = H[1]
3 H[1] = H[H.heap-size]
4 H.heap-size = H.heap-size− 1

5 Max-Heapify(H)

6 return k
(20’)

◮Exercise 29 (m07). Develop an efficient in-place algorithm called Partition-Even-Odd(A) that

partitions an arrayA in even and odd numbers. The algorithm must terminate with A containing all

its even elements preceding all its odd elements. For example, with A = 〈7,17,74,21,7,9,26,10〉,
the result might be A = 〈74,10,26,17,7,21,9,7〉. Partition-Even-Odd must be an in-place algo-

rithm, which means that it may use only a constant memory space in addition to A. In practice,

this means that you may not use another temporary array.

Question 1: Write the pseudo-code for Partition-Even-Odd. (20’)

Question 2: Characterize the complexity of Partition-Even-Odd. Briefly justify your answer. (10’)

Question 3: Formalize the correctness of the partition problem as stated above, and prove that

Partition-Even-Odd is correct using a loop-invariant. (20’)

Question 4: If the complexity of your algorithm is not already linear in the size of the array, write

a new algorithm Partition-Even-Odd-Optimal with complexity O(N) (with N = |A|). (20’)

◮Exercise 30 (f07). The following matrix represents a directed graph over vertices a,b, c, . . . , ℓ.

Rows and columns represent the source and destination of edges, respectively.

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1 1

11

11

1

1 1

11

1 1

1 1

1

1

Sort the vertices in a reverse topological order using the depth-first search algorithm. (Hint: if

you order the vertices from left to right in reverse topological order, then all edges go from right

to left.) Justify your answer by showing the relevant data maintained by the depth-first search

algorithm, and by explaining how that can be used to produce a reverse topological order. (15’)

◮Exercise 31 (f07). Answer the following questions on the complexity classes P an NP. Justify your

answers.

Question 1: P ⊆ NP? (5’)

Question 2: A problem Q is in P and there is a polynomial-time reduction from Q to Q′. What can

we say about Q′? Is Q′ ∈ P? Is Q′ ∈ NP? (5’)

Question 3: Let Q be a problem defined as follows. Input: a set of numbers A = {a1, a2, . . . , aN}
and a number x; Output: 1 if and only if there are two values ai, ak ∈ A such that ai + ak = x. Is

Q in NP? Is Q in P? (5’)

◮Exercise 32 (f07). Consider the subset-sum problem: given a set of numbers A = {a1, a2, . . . , an}
and a number x, output true if there is a subset of numbers in A that add up to x, otherwise

output false. Formally, ∃S ⊆ A such that
∑
y∈S y = x. Write a dynamic-programming algorithm

to solve the subset-sum problem and informally analyze its complexity. (20’)

◮Exercise 33 (f07). Explain the idea of dynamic programming using the shortest-path problem as

an example. (The shortest path problem amounts to finding the shortest path in a given graph

G = (V, E) between two given vertices a and b.) (15’)

◮Exercise 34 (f07). Consider an initially empty B-Tree with minimum degree t = 3. Draw the B-Tree

after the insertion of the keys 27,33,39,1,3,10,7,200,23,21,20, and then after the additional

insertion of the keys 15,18,19,13,34,200,100,50,51. (10’)

◮Exercise 35 (f07). There are three containers whose sizes are 10 pints, 7 pints, and 4 pints,

respectively. The 7-pint and 4-pint containers start out full of water, but the 10-pint container

is initially empty. Only one type of operation is allowed: pouring the contents of one container

into another, stopping only when the source container is empty, or the destination container is

full. Is there a sequence of pourings that leaves exactly two pints in either the 7-pint or the 4-pint

container?

Question 1: Model this as a graph problem: give a precise definition of the graph involved (type of

the graph, labels on vertices, meaning of an edge). Provide the set of all reachable vertices, identify

the initial vertex and the goal vertices. (Hint: all vertices that satisfy the condition imposed by the

problem are reachable, so you don’t have to draw a graph.)

Question 2: State the specific question about this graph that needs to be answered?

Question 3: What algorithm should be applied to solve the problem? Justify your answer. (15’)

◮Exercise 36 (f07). Write an algorithm called MoveToRoot(x, k) that, given a binary tree rooted

at node x and a key k, moves the node containing k to the root position and returns that node

if k is in the tree. If k is not in the tree, the algorithm must return x (the original root) without

modifying the tree. Use the typical notation whereby x.key is the key stored at node x, x. left and

x.right are the left and right children of x, respectively, and x.parent is x’s parent node. (15’)

◮Exercise 37 (f07). Given a sequence of numbers A = 〈a1, a2, . . . , an〉, an increasing subsequence

is a sequence ai1 , ai2 , . . . , aik of elements of A such that 1 ≤ i1 < i2 < . . . < ik ≤ n, and such that

ai1 < ai2 < . . . < aik . You must find the longest increasing subsequence. Solve the problem using

dynamic programming.

Question 1: Define the subproblem structure and the solution of each subproblem. (5’)

Question 2: Write an iterative algorithm that solves the problem. Illustrate the execution of the

algorithm on the sequence A = 〈2,4,5,6,7,9〉. (10’)

Question 3: Write a recursive algorithm that solves the problem. Draw a tree of recursive calls for

the algorithm execution on the sequence A = 〈1,2,3,4,5〉. (10’)

Question 4: Compare the time complexities of the iterative and recursive algorithms. (5’)

◮Exercise 38 (f07). One way to implement a disjoint-set data structure is to represent each set by

a linked list. The first node in each linked list serves as the representative of its set. Each node

contains a key, a pointer to the next node, and a pointer back to the representative node. Each list

maintains the pointers head, to the representative, and tail, to the last node in the list.

Question 1: Write the pseudo-code and analyze the time complexity for the following operations:

• Make-Set(x): creates a new set whose only member is x.

• Union(x,y): returns the representative of the union of the sets that contain x and y .

• Find-Set(x): returns a pointer to the representative of the set containing x.

Note that x and y are nodes. (15’)

Question 2: Illustrate the linked list representation of the following sets:

• {c,a,d, b}
• {e, g, f }
• Union(d, g)

(5’)

◮Exercise 39 (r07). Write an algorithm that takes a set of (x,y) coordinates representing points

on a plane, and outputs the coordinates of two points with the maximal distance. The signature of

the algorithm is Maximal-Distance(X, Y), where X and Y are two arrays of the same length repre-

senting the x and y coordinates of each point, respectively. Also, write the asymptotic complexity

of Maximal-Distance. Briefly justify your answer. (10’)

◮Exercise 40 (r07). A directed tree is represented as follows: for each vertex v, v.first-child is ei-

ther the first element in a list of child-vertices, or nil if v is a leaf. For each vertex v, v.next-sibling

is the next element in the list of v’s siblings, or nil if v is the last element in the list. For example,

the arrays on the left represent the tree on the right:

v 1 2 3 4 5 6 7 8 9

first-child 2 4 6 nil nil nil nil nil nil

next-sibling nil 3 9 5 nil 7 8 nil nil
4 5 6 7 8

92 3

1

Question 1: Write two algorithms, Max-Depth(root) and Min-Depth(root), that, given a tree, re-

turn the maximal and minimal depth of any leaf vertex, respectively. (E.g., the results for the

example tree above are 2 and 1, respectively.) (15’)

Question 2: Write an algorithm Depth-First-Order(root) that, given a tree, prints the vertices in

depth-first visitation order, such that a vertices is always preceded by all its children (e.g., the

result for the example tree above is 4,5,2,6,7,8,3,9,1). (10’)

Question 3: Analyze the complexity of Max-Depth, Min-Depth and Depth-First-Order. (5’)

◮Exercise 41 (r07). Write an algorithm called In-Place-Sort(A) that takes an array of numbers,

and sorts the array in-place. That is, using only a constant amount of extra memory. Also, give an

informal analysis of the asymptotic complexity of your algorithm. (10’)

◮Exercise 42 (r07). Given a sequenceA = 〈a1, . . . , an〉 of numbers, the zero-sum-subsequence prob-

lem amounts to deciding whether A contains a sequence of consecutive elements ai, ai+1, . . . , ak,
with 1 ≤ i ≤ k ≤ n, such that ai + ai+1 + · · · + ak = 0. Model this as a dynamic-programming

problem and write a dynamic-programming algorithm Zero-Sum-Sequence(A) that, given an array

A, returns true if A contains a zero-sum subsequence, or false otherwise. Also, give an informal

analysis of the complexity of Zero-Sum-Sequence. (30’)

◮Exercise 43 (r07). Give an example of a randomized algorithm derived from a deterministic algo-

rithm. Explain why there is an advantage in using the randomized variant. (10’)

◮Exercise 44 (r07). Implement a Ternary-Tree-Search(x, k) algorithm that takes the root of a

ternary tree and returns the node containing key k. A ternary tree is conceptually identical to

a binary tree, except that each node x has two keys, x.key1 and x.key2, and three links to child

nodes, x. left, x.center, and x.right, such that the left, center, and right subtrees contains keys that

are, respectively, less than x.key1, between x.key1 and x.key2, and greater than x.key2. Assume

there are no duplicate keys. Also, assuming the tree is balanced, what is the asymptotic complexity

of the algorithm? (10’)

◮Exercise 45 (r07). Answer the following questions. Briefly justify your answers.

Question 1: A hash table that uses chaining has M slots and holds N keys. What is the expected

complexity of a search operation? (5’)

Question 2: The asymptotic complexity of algorithm A is Ω(N logN), while that of B is Θ(N2). Can

we compare the two algorithms? If so, which one is asymptotically faster? (5’)

Question 3: What is the difference between “Las Vegas” and “Monte Carlo” randomized algorithms?

(5’)

Question 4: What is the main difference between the Knuth-Morris-Pratt algorithm and Boyer-Moore

string-matching algorithms in terms of complexity? Which one as the best worst-case complexity?

(5’)

◮Exercise 46 (f08). Consider quick-sort as an in-place sorting algorithm.

Question 1: Write the pseudo-code using only swap operations to modify the input array. (10’)

Question 2: Apply the algorithm of question 1 to the array A = 〈8,2,12,17,4,8,7,1,12〉. Write the

content of the array after each swap operation. (10’)

◮Exercise 47 (f08). Consider this minimal vertex cover problem: given a graph G = (V, E), find a

minimal set of vertices S such that for every edge (u,v) ∈ E, u or v (or both) are in S.

Question 1: Model minimal vertex cover as a dynamic-programming problem. Write the pseudo-

code of a dynamic-programming solution. (15’)

Question 2: Do you think that your model of minimal vertex cover admits a greedy choice? Try at

least one meaningful greedy strategy. Show that it does not work, giving a counter-example graph

for which the strategy produces the wrong result. (Hint: one meaningful strategy is to choose a

maximum-degree vertex first. The degree of a vertex is the number of its incident edges.) (5’)

◮Exercise 48 (f08). The graph G = (V, E) represents a social network in which each vertex repre-

sents a person, and an edge (u,v) ∈ E represents the fact that u and v know each other. Your

problem is to organize the largest party in which nobody knows each other. This is also called the

maximal independent set problem. Formally, given a graph G = (V, E), find a set of vertices S of

maximal size in which no two vertices are adjacent. (I.e., for all u ∈ S and v ∈ S, (u,v) ∉ E.)

Question 1: Formulate a decision variant of maximal independent set. Say whether the problem is

in NP, and briefly explain what that means. (10’)

Question 2: Write a verification algorithm for the maximal independent set problem. This algo-

rithm, called TestIndependentSet(G, S), takes a graph G represented through its adjacency ma-

trix, and a set S of vertices, and returns true if S is a valid independent set for G. (10’)

◮Exercise 49 (f08). A Hamilton cycle is a cycle in a graph that touches every vertex exactly once.

Formally, in G = (V, E), an ordering of all vertices H = v1, v2, . . . , vn forms a Hamilton cycle if

(vn, v1) ∈ E, and (vi, vi+1) ∈ E for all i between 1 and n − 1. Deciding whether a given graph is

Hamiltonian (has a Hamilton cycle) is a well known NP-complete problem.

Question 1: Write a verification algorithm for the Hamiltonian graph problem. This algorithm,

called TestHamiltonCycle(G,H), takes a graph G represented through adjacency lists, and an

array of vertices H , and returns true if H is a valid Hamilton cycle in G. (10’)

Question 2: Give the asymptotic complexity of your implementation of TestHamiltonCycle. (5’)

Question 3: Explain what it means for a problem to be NP-complete. (5’)

◮Exercise 50 (f08). Consider using a b-tree with minimum degree t = 2 as an in-memory data

structure to implement dynamic sets.

Question 1: Compare this data structure with a red-black tree. Is this data structure better, worse,

or the same as a red-black tree in terms of time complexity? Briefly justify your answer. In partic-

ular, characterize the complexity of insertion and search. (10’)

Question 2: Write an iterative (i.e., non-recursive) search algorithm for this degree-2 b-tree. Re-

member that the data structure is in-memory, so there is no need to perform any disk read/write

operation. (10’)

Question 3: Write the data structure after the insertion of keys 10,3,8,21,15,4,6,19,28,31, in this

order, and then after the insertion of keys 25,33,7,1,23,35,24,11,2,5. (10’)

Question 4: Write the insertion algorithm for this degree-2 b-tree. (Hint: since the minimum degree

is fixed at 2, the insertion algorithm may be implemented in a simpler fashion without all the loops

of the full b-tree insertion.) (15’)

◮Exercise 51 (f08). Consider a breadth-first search (BFS) on the following graph, starting from

vertex a.

a b c

d e i j

f g h ok

ℓ n z

m p

t

u yw

q

r

s v x

Write the two vectors π (previous) and d (distance), resulting from the BFS algorithm. (10’)

◮Exercise 52 (r08). Write a sorting algorithm that runs with in time O(n logn) in the average

case (on an input array of size n). Also, characterize the best- and worst-case complexity of your

solution. (20’)

◮Exercise 53 (r08). The following algorithms take an array A of integers. For each algorithm, write

the asymptotic, best- and worst-case complexities as functions of the size of the input n = |A|.
Your characterizations should be as tight as possible. Justify your answers by writing a short

explanation of what each algorithm does. (20’)

Algorithm-I(A)

1 for i = |A| downto 2

2 s = true

3 for j = 2 to i
4 if A[j − 1] > A[j]
5 swap A[j − 1]↔ A[j]
6 s = false

7 if s == true

8 return

Algorithm-II(A)

1 i = 1

2 j = |A|
3 while i < j
4 if A[i] > A[j]
5 swap A[i]↔ A[i+ 1]
6 if i+ 1 < j
7 swap A[i]↔ A[j]
8 i = i+ 1

9 else j = j − 1

◮Exercise 54 (r08). The following algorithms take a binary search tree T containing n keys. For

each algorithm, write the asymptotic, best- and worst-case complexities as functions of n. Your

characterizations should be as tight as possible. Justify your answers by writing a short explana-

tion of what each algorithm does. (20’)

Algorithm-III(T , k)

1 if T == nil

2 return false

3 if T .key == k
4 return true

5 if Algorithm-III(T . left)
6 return true

7 else return Algorithm-III(T .right)

Algorithm-IV(T , k1, k2)

1 if T == nil

2 return 0

3 if k1 > k2

4 swap k1 ↔ k2

5 r = 0

6 if T .key < k2

7 r = r +Algorithm-IV(T .right, k1, k2)
8 if T .key > k1

9 r = r +Algorithm-IV(T . left, k1, k2)
10 if T .key < k2 and T .key > k1

11 r = r + 1

12 return r

◮Exercise 55 (r08). Answer the following questions on complexity theory. Justify your answers.

All problems are decision problems. (Hint: answers are not limited to “yes” or “no.”) (20’)

Question 1: An algorithm A solves a problem P of size n in time O(n3). Is P in NP?

Question 2: An algorithm A solves a problem P of size n in time Ω(n logn). Is P in P? Is it in NP?

Question 3: A problem P in NP can be polynomially reduced into a problem Q. Is Q in P? Is Q in

NP?

Question 4: A problem P can be polynomially reduced into a problem Q in NP. Is P in P? Is P
NP-hard?

Question 5: A problem P of size n does not admit to any algorithmic solution with complexity

O(2n). Is P in P? Is P in NP?

Question 6: An algorithm A takes an instance of a problem P of size n and a “certificate” of

size O(nc), for some constant c, and verifies in time O(n2) that the solution to given problem is

affirmative. Is P in P? Is P in NP? Is P NP-complete?

◮Exercise 56 (r08). Write an algorithm TSTCountGreater(T , s) that takes the root T of a ternary-

search trie (TST) and a string s, and returns the number of strings stored in the trie that are

lexicographically greater than s. Given a node T , T . left, T .middle, and T .right are the left, middle,

and right subtrees, respectively; T .value is the value stored in T . The TST uses the special char-

acter ‘#’ as the string terminator. Given two characters a and b, the relation a < b defines the

lexicographical order, and the terminator character is less than every other character. (Hint: first

write an algorithm that, given a tree (node) counts all the strings stored in that tree.) (20’)

◮Exercise 57 (r08). Consider a depth-first search (DFS) on the following graph.

a b c

d e i j

f g h o

k ℓ n z

m p

t

u ywq r

s v x

Write the three vectors π , d, and f that, for each vertex represent the previous vertex in the

depth-first forest, the discovery time, and the finish time, respectively. Whenever necessary, iterate

through vertexes in alphabetic order. (20’)

◮Exercise 58 (r08). Consider the following algorithm:

Algo-A(X)

1 d = ∞
2 for i = 1 to X. length− 1

3 for j = i+ 1 to X. length

4 if |X[i]−X[j]| < d
5 d = |X[i]−X[j]|
6 return d

Question 1: Interpreting X as an array of coordinates of points on the x-axis, explain concisely

what algorithm Algo-A does, and give a tight asymptotic bound for the complexity of Algo-A. (5’)

Question 2: Write an algorithm Better-A(X) that is functionally equivalent to Algo-A(X), but with

a better asymptotic complexity. (15’)

◮Exercise 59 (r08). A set of keys is stored in a max-heap H and in a binary search tree T . Which

data structure offers the most efficient algorithm to output all the keys in descending order? Or

are the two equivalent? Write both algorithms. Your algorithms may change the data structures. (20’)

◮Exercise 60 (r08). Answer the following questions. Briefly justify your answers. (10’)

Question 1: Let A be an array of numbers sorted in descending order. Does A represent a max-heap

(with A.heap-size = A. length)?

Question 2: A hash table has T slots and uses chaining to resolve collisions. What are the worst-

case and average-case complexities of a search operation when the hash table contains N keys?

Question 3: A hash table with 9 slots, uses chaining to resolve collision, and uses the hash function

h(k) = k mod 9 (slots are numbered 0, . . . ,8). Draw the hash table after the insertion of keys 5,

28, 19, 15, 20, 33, 12, 17, and 10.

Question 4: Is the operation of deletion in a binary search tree commutative in the sense that

deleting x and then y from a binary search tree leaves the same tree as deleting y and then x?

Argue why it is, or give a counter-example.

◮Exercise 61 (m09). Draw a binary search tree containing keys 8,27,13,15,32,20,12,50,29,11,

inserted in this order. Then, add keys 14,18,30,31, in this order, and again draw the tree. Then

delete keys 29 and 27, in this order, and again draw the tree. (10’)

◮Exercise 62 (m09). Consider a max-heap containing keys 8,27,13,15,32,20,12,50,29,11, in-

serted in this order in an initially empty heap. Write the content of the array that stores the heap.

Then, insert keys 43 and 51, and again write the content of the array. Then, extract the maximum

value three times, and again write the content of the array. In all three cases, write the heap as an

array. (10’)

◮Exercise 63 (m09). Consider a min-heap H and the following algorithm.

BST-From-Min-Heap(H)

1 T = New-Empty-Tree()
2 for i = 1 to H.heap-length

3 Tree-Insert(T ,H[i]) // binary-search-tree insertion

4 return T

Prove that BST-From-Min-Heap does not always produce minimum-height binary trees. (10’)

◮Exercise 64 (m09). Consider an array A containing n numbers and satisfying the min-heap prop-

erty. Write an algorithm Min-Heap-Fast-Search(A, k) that finds k in A with a time complexity that

is better than linear in n whenever at most
√
n of the values in A are less than k. (20’)

◮Exercise 65 (m09). Write an algorithm B-Tree-Top-K(R, k) that, given the root R of a b-tree of

minimum degree t, and an integer k, outputs the largest k keys in the b-tree. You may assume that

the entire b-tree resides in main memory, so no disk access is required. Recall that a node x in a b-

tree has the following properties: x.n is the number of keys, X.key[1] ≤ x.key[2] ≤ . . . x.key[x.n]
are the keys, x. leaf tells whether x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n+ 1] are the pointers

to x’s children. (30’)

◮Exercise 66 (m09). Your computer has a special machine instruction called Sort-Five(A, i) that,

given an array A and a position i, sorts in-place and in a single step the elements A[i . . . i + 5] (or

A[i . . . |A|] if |A| < i + 5). Write an in-place sorting algorithm called Sort-With-Sort-Five that

uses only Sort-Five to modify the array A. Also, analyze the complexity of Sort-With-Sort-Five.

(20’)

◮Exercise 67 (m09). For each of the following statements, briefly argue why they are true, or show

a counter-example. (10’)

Question 1: f (n) = O(n!) =⇒ log (f (n)) = O(n logn)

Question 2: f (n) = Θ(f (n/2))
Question 3: f (n)+ g(n) = Θ(min (f (n), g(n)))

Question 4: f (n)g(n) = O(max (f (n), g(n)))

Question 5: f (g(n)) = Ω(min (f (n), g(n)))

◮Exercise 68 (m09). Analyze the complexity of the following algorithm. (10’)

Shuffle-A-Bit(A)

1 i = 1

2 j = A. length

3 if j > i
4 while j > i
5 p = Choose-Uniformly({0,1})
6 if p == 1

7 swap A[i] ↔ A[j]
8 j = j − 1

9 i = i+ 1

10 Shuffle-A-Bit(A[1 . . . j])
11 Shuffle-A-Bit(A[i . . . A. length])

◮Exercise 69 (f09). Answer the following questions. For each question, write “yes” when the an-

swer is always true, “no” when it is always false, “undefined” when it can be true or false. (10’)

Question 1: Algorithm A solves decision problem X in time O(n logn). Is X in NP?

Question 2: Is X in P?

Question 3: Decision problem X in P can be polynomially reduced to problem Y . Is there a

polynomial-time algorithm to solve Y?

Question 4: Decision problem X can be polynomially reduced to a problem Y for which there is a

polynomial-time verification algorithm. Is X in NP?

Question 5: Is X in P?

Question 6: An NP-hard decision problem X can be polynomially reduced to problem Y . Is Y in

NP?

Question 7: Is Y NP-hard?

Question 8: Algorithm A solves decision problem X in time Θ(2n). Is X in NP?

Question 9: Is X in P?

◮Exercise 70 (f09). Write a minimal character-based binary code for the following sentence:

in theory, there is no difference between theory and practice; in practice, there is.

The code must map each character, including spaces and punctuation marks, to a binary string

so that the total length of the encoded sentence is minimal. Use a Huffman code and show the

derivation of the code. (20’)

◮Exercise 71 (f09). The following matrix represents a directed graph over 12 vertices labeled

a,b, . . . , ℓ. Rows and columns represent the source and destination of edges, respectively. For

example, the value 1 in row a and column f indicates an edge from a to f .

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1 1

1 1 1

1 1 1

1

1 1 1 1 1

1

1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1

1

Run a breadth-first search on the graph starting from vertex a. Using the table below, write the two

vectors π (previous) and d (distance) at each main iteration of the BFS algorithm. Write the pair

π,d in each cell; for each iteration, write only the values that change. Also, write the complete BFS

tree after the termination of the algorithm. (20’)

a b c d e f g h i j k ℓ
a,0 −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞

◮Exercise 72 (f09). A graph coloring associates a color with each vertex of a graph so that adjacent

vertices have different colors. Write a greedy algorithm that tries to color a given graph with the

least number of colors. This is a well known and difficult problem for which, most likely, there is no

perfect greedy strategy. So, you should use a reasonable strategy, and it is okay if your algorithm

does not return the absolute best coloring. The result must be a color array, where v.color is a

number representing the color of vertex v. Write the algorithm, analyze its complexity, and also

show an example in which the algorithm does not achieve the best possible result. (20’)

◮Exercise 73 (f09). Given an array A and a positive integer k, the selection problem amounts to

finding the largest element x ∈ A such that at most k elements of A are less than or equal to x, or

nil if no such element exists. A simple way to implement it is as follows:

SimpleSelection(A, k)

1 if k > A. length

2 return nil

3 else sort A in ascending order

4 return A[k]

Write another algorithm that solves the selection problem without first sorting A. (Hint: use

a divide-and-conquer strategy that “divides” A using one of its elements.) Also, illustrate the

execution of the algorithm on the following input by writing its state at each main iteration or

recursion.

A = 〈29,28,35,20,9,33,8,9,11,6,21,28,18,36,1〉 k = 6
(20’)

◮Exercise 74 (f09). Consider the following maximum-value contiguous subsequence problem: given

a sequence of numbers A = 〈a1, a2, . . . , an〉, find two positions i and j, with 1 ≤ i ≤ j ≤ n, such

that the sum ai + ai+1 + · · · + aj is maximal.

Question 1: Write an algorithm to solve the problem and analyze its complexity. (10’)

Question 2: If you have not already done so for question 1, write an algorithm that solves the

maximum-value contiguous subsequence problem in time O(n). (Hint: one such algorithm uses

dynamic-programming.) (20’)

◮Exercise 75 (m10). Consider the following intuitive definition of the size of a binary search

(sub)tree t: size(t) = 0 if t is nil, or size(t) = 1 + size(t. left) + size(t.right) otherwise. For each

node t in a tree, let attribute t.size denote the size of the subtree rooted at t.

Question 1: Prove that, if for each node t in a tree T , max{size(t. left), size(t.right)} ≤ 2
3
size(t),

then the height of T is O(logn), where n = size(T). (10’)

Question 2: Write the rotation procedures Rotate-Left(t) and Rotate-Right(t) that return the

left- and right rotation of tree t maintaining the correct size attributes. (10’)

Question 3: Write an algorithm called Selection(T , i) that, given a tree T where each node t carries

its size in t.size, returns the i-th key in T . (10’)

Question 4: A tree T is perfectly balanced when max{size(t. left), size(t.right)} = ⌊size(t)/2⌋ for all

nodes t ∈ T . Write an algorithm called Balance(T) that, using the rotation procedures defined in

question 2, balances T perfectly. (Hint: the essential operation is to move the median value of a

subtree to the root of that subtree.) (30’)

◮Exercise 76 (m10). Write the heap-sort algorithm and illustrate its execution on the following

sequence.

A = 〈1,1,24,8,3,36,34,23,4,30〉
Assuming the sequence A is stored in an array passed to the algorithm, for each main iteration (or

recursion) of the algorithm, write the content of the array. (10’)

◮Exercise 77 (m10). A radix tree is used to represent a dictionary of words defined over the alpha-

bet of the 26 letters of the English language. Assume that letters from A to Z are represented as

numbers from 1 to 26. For each node x of the tree, x. links is the array of links to other nodes,

and x.value is a Boolean value that is true when x represents a word in the dictionary. Write an

algorithm Print-Radix-Tree(T) that outputs all the words in the dictionary rooted at T . (10’)

◮Exercise 78 (m10). Consider the following algorithm that takes an array A of length A. length:

Algo-X(A)

1 for i = 3 to A. length

2 for j = 2 to i− 1

3 for k = 1 to j − 1

4 if |A[i]−A[j]| == |A[j] −A[k]|
or |A[i]−A[k]| == |A[k]−A[j]|
or |A[k]−A[i]| == |A[i]−A[j]|

5 return true

6 return false

Write an algorithm Better-Algo-X(A) equivalent to Algo-X(A) (for all A) but with a strictly better

asymptotic complexity than Algo-X(A). (20’)

◮Exercise 79 (m10). For each of the following statements, write whether it is correct or not. Justify

your answer by briefly arguing why it is correct, or otherwise by giving a counter example. (10’)

Question 1: If f (n) = O(g2(n)) then f (n) = Ω(g(n)).
Question 2: If f (n) = Θ(2n) then f (n) = Θ(3n).
Question 3: If f (n) = O(n3) then log (f (n)) = O(logn).

Question 4: f (n) = Θ(f (2n))
Question 5: f (2n) = Ω(f (n))

◮Exercise 80 (m10). Write an algorithm Partition(A, k) that, given an array A of numbers and a

value k, changes A in-place by only swapping two of its elements at a time so that all elements that

are less then or equal to k precede all other elements. (10’)

◮Exercise 81 (f10). Consider an initially empty B-Tree with minimum degree t = 2.

Question 1: Draw the tree after the insertion of keys 81, 56, 16, 31, 50, 71, 58, 83, 0, and 60 in this

order. (10’)

Question 2: Can a different insertion order produce a different tree? If so, write the same set of

keys in a different order and the corresponding B-Tree. If not, explain why. (10’)

◮Exercise 82 (f10). Consider the following decision problem. Given a set of integers A, output 1 if

some of the numbers in A add up to a multiple of 10, or 0 otherwise.

Question 1: Is this problem in NP? If it is, then write a corresponding verification algorithm. If not,

explain why not. (5’)

Question 2: Is this problem in P? If it is, then write a polynomial-time solution algorithm. Other-

wise, argue why not. (Hint: consider the input values modulo 10. That is, for each input value,

consider the remainder of its division by 10.) (15’)

◮Exercise 83 (f10). The following greedy algorithm is intended to find the shortest path between

vertices u and v in a graph G = (V, E,w), where w(x,y) is the length of edge (x,y) ∈ E.

Greedy-Shortest-Path(G = (V, E,w),u,v)
1 Visited = {u} // this is a set

2 path = 〈u〉 // this is a sequence

3 while path not empty

4 x = last vertex in path

5 if x == v
6 return path

7 y = vertex y ∈ Adj[x] such that y 6∈ Visited and w(x,y) is minimal

// y is x’s closest neighbor not already visited

8 if y == undefined // all neighbors of x have already been visited

9 path = path− 〈x〉 // removes the last element y from path

10 else Visited = Visited ∪ {y}
11 path = path+ 〈y〉 // append y to path

12 return undefined // there is no path between u and v

Does this algorithm find the shortest path always, sometimes, or never? If it always works, then

explain its correctness by defining a suitable invariant for the main loop, or explain why the greedy

choice is correct. If it works sometimes (but not always) show a positive example and a negative

example, and briefly explain why the greedy choice does not work. If it is never correct, show an

example and briefly explain why the greedy choice does not work. (20’)

◮Exercise 84 (f10). Write the quick-sort algorithm as a deterministic in-place algorithm, and then

apply it to the array

〈50,47,92,78,76,7,60,36,59,30,50,43〉
Show the application of the algorithm by writing the content of the array after each main iteration

or recursion. (20’)

◮Exercise 85 (f10). Consider an undirected graph G of n vertices represented by its adjacency

matrix A. Write an algorithm called Is-Cyclic(A) that, given the adjacency matrix A, returns true

if G contains a cycle, or false if G is acyclic. Also, give a precise analysis of the complexity of your

algorithm. (20’)

◮Exercise 86 (f10). A palindrome is a sequence of characters that is identical when read left-to-

right and right-to-left. For example, the word “racecar” is a palindrome, as is the phrase “rats

live on no evil star.” Write an algorithm called Longest-Palindrome(T) that, given an array of

characters T , prints the longest palindrome in T , or any one of them if there are more than one.

For example, if T is the text “radar radiations” then your algorithm should output “dar rad”. Also,

give a precise analysis of the complexity of your algorithm. (20’)

◮Exercise 87 (r10). Write an algorithm called occurrences that, given an array of numbers A,

prints all the distinct values in A each followed by its number of occurrences. For example, if

A = 〈28,1,0,1,0,3,4,0,0,3〉, the algorithm should output the following five lines (here separated

by a semicolon) “28 1; 1 2; 0 4; 3 2; 4 1”. The algorithm may modify the content of A, but may not

use any other memory. Each distinct value must be printed exactly once. Values may be printed in

any order. The complexity of the algorithm must be o(n2), that is, strictly lower than O(n2). (20’)

◮Exercise 88 (r10). The following algorithm takes an array of line segments. Each line segment s is

defined by its two end-points s.a and s.b, each defined by their Cartesian coordinates (s.a.x, s.a.y)
and (s.b.x, s.b.y), respectively, and ordered such that either s.a.x < s.b.x or s.a.x = s.b.x and

s.a.y < s.b.y. That is, s.b is never to the left of s.a, and if s.a and s.b have the same x coordinates,

then s.a is below s.b.

Equals(p, q)

// tests whether p and q are the same point

1 if p.x == q.x and p.y == q.y
2 return true

3 else return false

Algo-X(A)

1 for i = 1 to A. length

2 for j = 1 to A. length

3 if Equals(A[i].b, A[j].a)
4 for k = 1 to A. length

5 if Equals(A[j].b, A[k].b) and Equals(A[i].a, A[k].a)
6 return true

7 return false

Question 1: Analyze the asymptotic complexity of Algo-X (10’)

Question 2: Write an algorithm Algo-Y that does exactly what Algo-X does but with a better

asymptotic complexity. Also, write the asymptotic complexity of Algo-Y. (20’)

◮Exercise 89 (r10). Write an algorithm called Tree-to-Vine that, given a binary search tree T ,

returns the same tree changed into a vine, that is, a tree containing exactly the same nodes but

restructured so that no node has a left child (i.e., the returned tree looks like a linked list). The

algorithm must not destroy or create nodes or use any additional memory other than what is

already in the tree, and therefore must operate through a sequence of rotations. Write explicitly all

the rotation algorithms used in Tree-to-Vine. Also, analyze the complexity of Tree-to-Vine. (15’)

◮Exercise 90 (r10). We say that a binary tree T is perfectly balanced if, for each node n in T , the

number of keys in the left and right subtrees of n differ at most by 1. Write an algorithm called

Is-Perfectly-Balanced that, given a binary tree T returns true if T is perfectly balanced, and

false otherwise. Also, analyze the complexity of Is-Perfectly-Balanced. (15’)

◮Exercise 91 (r10). Two graphs G and H are isomorphic if there exists a bijection f : V(G) → V(H)
between the vertexes of G and H (i.e., a one-to-one correspondence) such that any two vertices

u and v in G are adjacent (in G) if and only if f (u) and f (v) are adjacent in H . The graph-

isomorphism problem is the problem of deciding whether two given graphs are isomorphic.

Question 1: Is graph isomorphism in NP? If so, explain why and write a verification procedure. If

not, argue why not. (10’)

Question 2: Consider the following algorithm to solve the graph-isomorphism problem:

Isomorphic(G,H)

1 if |V(G)| 6= |V(H)|
2 return false

3 A = V(G) sorted by degree // A is a sequence of the vertices of G
4 B = V(H) sorted by degree // B is a sequence of the vertices of H
5 for i = 1 to |V(G)|
6 if degree(A[i]) 6= degree(B[i])
7 return false

8 return true

Is Isomorphic correct? If so, explain at a high level what the algorithm does and informally but

precisely why it works. If not, show a counter-example. (10’)

◮Exercise 92 (r10). Write an algorithm Heap-Print-In-Order(H) that takes a min heap H contain-

ing unique elements (no element appears twice in H) and prints the elements of H in increasing

order. The algorithm must not modify H and may only use a constant amount of additional mem-

ory. Also, analyze the complexity of Heap-Print-In-Order. (20’)

◮Exercise 93 (m11). Write an algorithm BST-Range-Weight(T ,a, b) that takes a well balanced

binary search tree T (or more specifically the root T of such a tree) and two keys a and b, with

a ≤ b, and returns the number of keys in T that are between a and b. Assuming there are o(n)
such keys, then the algorithm should have a complexity of o(n), that is, strictly better than linear

in the size of the tree. Analyze the complexity of BST-Range-Weight. (10’)

◮Exercise 94 (m11). Let (a, b) represent an interval (or range) of values x such that a ≤ x ≤ b.

Consider an array X = 〈a1, b1, a2, b2, . . . , an, bn〉 of 2n numbers representing n intervals (ai, bi),

where ai = X[2i−1] and bi = X[2i] and ai ≤ bi. Write an algorithm called Simplify-Intervals(X)
that takes an array X representing n intervals, and simplifies X in-place. The “simplification” of

a set of intervals X is a minimal set of intervals representing the union of all the intervals in X.

Notice that the union of two disjoint intervals can not be simplified, but the union of two partially

overlapping intervals can be simplified into a single interval. For example, a correct solution for

the simplification of X = 〈3,7,1,5,10,12,6,8〉 is X = 〈10,12,1,8〉. An array X can be shrunk

by setting its length (effectively removing elements at the end of the array). In this example,

X.length should be 4 after the execution of the simplification algorithm. Analyze the complexity

of Simplify-Intervals. (30’)

◮Exercise 95 (m11). Write an algorithm Simplify-Intervals-Fast(X) that solves Exercise 94 with

a complexity of O(n logn). (20’)

◮Exercise 96 (m11). Consider the following algorithm:

Algo-X(A, k)

1 i = 1

2 while i ≤ A. length

3 if A[i] == k
4 Algo-Y(A, i)
5 else i = i+ 1

Algo-Y(A, i)

1 while i < A. length

2 A[i] = A[i+ 1]
3 i = i+ 1

4 A. length = A. length− 1 // discards last element

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X that does exactly

the same thing, but with a strictly better asymptotic complexity. Analyze the complexity of Better-

Algo-X. (20’)

◮Exercise 97 (m11). Write an in-place partition algorithm called Modulo-Partition(A) that takes

an arrayA of n numbers and changesA in such a way that (1) the final content ofA is a permutation

of the initial content of A, and (2) all the values that are equivalent to 0 mod 10 precede all

the values equivalent to 1 mod 10, which precede all the values equivalent to 2 mod 10, etc.

Being an in-place algorithm, Modulo-Partition must not allocate more than a constant amount

of memory. For example, for an input array A = 〈7,62,5,57,12,39,5,8,16,48〉, a correct result

would be A = 〈12,62,5,5,16,57,7,8,48,39〉. Analyze the complexity of Modulo-Partition. (30’)

◮Exercise 98 (m11). Write the merge sort algorithm and analyze its complexity. (10’)

◮Exercise 99 (f11). Write an algorithm called Longest-Repeated-Substring(T) that takes a string

T representing some text, and finds the longest string that occurs at least twice in T . The algorithm

returns three numbers begin1, end1, and begin2, where begin1 ≤ end1 represent the first and last

position of the longest substring of T that also occurs starting at another position begin2 6= begin1

in T . If no such substring exist, then the algorithm returns “None.” Analyze the time and space

complexity of your algorithm. (20’)

◮Exercise 100 (f11). Answer the following questions on complexity theory. Recall that SAT is the

Boolean satisfiability problem, which is a well-known NP-complete problem.

Question 1: A decision problem Q is polynomially-reducible to SAT. Can we say for sure that Q is

NP-complete? (2’)

Question 2: SAT is polynomially-reducible to a decision problem Q. Can we say for sure that Q is

NP-complete? (2’)

Question 3: A decision problemQ is polynomially reducible to a problemQ′ andQ′ is polynomially

reducible to SAT. Can we say for sure that Q is in NP? (2’)

Question 4: An algorithm A solves every instance of a decision problem Q of size n in O(n3) time.

Also, Q is polynomially reducible to another problem Q′. Can we say for sure that Q′ is in NP? (2’)

Question 5: A decision problem Q is polynomially reducible to another decision problem Q′, and

an algorithm A solves Q′ with complexity O(n logn). Can we say for sure that Q is in NP? (2’)

Question 6: Consider the following decision problemQ: given a graph G, output 1 if G is connected

(i.e., there exists a path between each pair of vertices) or 0 otherwise. Is Q in P? If so, outline an

algorithm that proves it, if not argue why not. (10’)

Question 7: Consider the following decision problem Q: given a graph G and an integer k, output

1 if G contains a cycle of size k. Is Q in NP? If so, outline an algorithm that proves it, if not argue

why not. (10’)

◮Exercise 101 (f11). Consider an initially empty B-tree with minimum degree t = 3. Draw the

B-tree after the insertion of the keys 84, 13, 36, 91, 98, 14, 81, 95, 12, 63, 31, and then after the

additional insertion of the keys 65, 62, 187, 188, 57, 127, 6, 195, 25. (10’)

◮Exercise 102 (f11). Write an algorithm B-Tree-Range(T , k1, k2) that takes a B-tree T and two keys

k1 ≤ k2, and prints all the keys in T between k1 and k2 (inclusive). (20’)

◮Exercise 103 (f11). Write an algorithm called Find-Triangle(G) that takes a graph represented

by its adjacency list G and returns true if G contains a triangle. A triangle in a graph G is a

triple of vertices u,v,w such that all three edges (u,v), (v,w), and (u,w) are in G. Analyze the

complexity of Find-Triangle. (15’)

◮Exercise 104 (f11). Write an algorithm Min-Heap-Insert(H, k) that inserts a key k in a min-heap

H . Also, illustrate the algorithm by writing the content of the array H after the insertion of keys

84, 13, 36, 91, 98, 14, 81, 95, 12, 63, 31, and then after the additional insertion of the key 15. (15’)

◮Exercise 105 (m12). Implement a priority queue by writing two algorithms:

• Enqueue(Q,x,p) enqueues an object x with priority p, and

• Dequeue(Q) extracts and returns an object from the queue.

The behavior of Enqueue and Dequeue is such that, if a call Enqueue(Q,x1, p1) is followed (not

necessarily immediately) by another call Enqueue(Q,x2, p2), then x1 is dequeued before x2 unless

p2 > p1. Implement Enqueue and Dequeue such that their complexity is o(n) for a queue of n
elements (i.e., strictly less than linear). (20’)

◮Exercise 106 (m12). Write an algorithm called Max-Heap-Merge-New(H1,H2) that takes two

max-heaps H1 and H2, and returns a new max-heap that contains all the elements of H1 and

H2. Max-Heap-Merge-New must create a new max heap, therefore it must allocate a new heap H
and somehow copy all the elements from H1 and H2 into H without modifying H1 and H2. Also,

analyze the complexity of Max-Heap-Merge-New. (20’)

◮Exercise 107 (m12). Write an algorithm called BST-Merge-Inplace(T1, T2) that takes two binary-

search trees T1 and T2, and returns a new binary-search tree by merging all the elements of T1

and T2. BST-Merge-Inplace is in-place in the sense that it must rearrange the nodes of T1 and

T2 in a single binary-search tree without creating any new node. Also, analyze the complexity of

BST-Merge-Inplace. (20’)

◮Exercise 108 (m12). Let A be an array of points in the 2D Euclidean space, each with its Cartesian

coordinates A[i].x and A[i].y. Write an algorithm Minimum-Bounding-Rectangle(A) that, given

an array A of n points, in O(n) time returns the smallest axis-aligned rectangle that contains all

the points in A. Minimum-Bounding-Rectangle must return a pair of points corresponding to

the bottom-left and top-right corners of the rectangle, respectively. (10’)

◮Exercise 109 (m12). Let A be an array of points in the 2D Euclidean space, each with its Cartesian

coordinates A[i].x and A[i].y. Write an algorithm Largest-Cluster(A, ℓ) that, given an arrayA of

points and a length ℓ, returns the maximum number of points in A that are contained in a square

of size ℓ. Also, analyze the complexity of Largest-Cluster. (30’)

◮Exercise 110 (m12). Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 i = 1

2 j = 1

3 m = 0

4 c = 0

5 while i ≤ |A|
6 if A[i] == A[j]
7 c = c + 1

8 j = j + 1

9 if j > |A|
10 if c > m
11 m = c
12 c = 0

13 i = i+ 1

14 j = i
15 return m

Question 1: Analyze the complexity of Algo-X. (5’)

Question 2: Write an algorithm that does exactly the same thing as Algo-X but with a strictly better

asymptotic time complexity. (15’)

◮Exercise 111 (f12). Write a Three-Way-Merge(A, B,C) algorithm that merges three sorted se-

quences into a single sorted sequence, and use it to implement a Three-Way-Merge-Sort(L) al-

gorithm. Also, analyze the complexity of Three-Way-Merge-Sort. (20’)

◮Exercise 112 (f12). Write an algorithm Is-Simple-Polygon(A) that takes a sequence A of 2D

points, where each point A[i] is defined by its Cartesian coordinates A[i].x and A[i].y , and re-

turns true if A defines a simple polygon, or false otherwise. Also, analyze the complexity of

Is-Simple-Polygon. A polygon is simple if its line segments do not intersect.

Example:
A

b

b

b

b

b

b

Is-Simple-Polygon(A) = true

A

b

b

b

b

b

b

Is-Simple-Polygon(A) = false

Hint: Use the following Direction-ABC algorithm to determine whether a point c is on the left

side, collinear, or on the right side of a segment ab:

Direction-ABC(a, b, c)

1 d = (b.x − a.x)(c.y − a.y)− (b.y − a.y)(c.x − a.x)
2 if d > 0

3 return left

4 elseif d == 0

5 return co-linear

6 else return right

Example:
c

a

b

Direction-ABC(a, b, c) = left
(20’)

◮Exercise 113 (f12). Implement a dictionary that supports longest prefix matching. Specifically,

write the following algorithms:

• Build-Dictionary(W) takes a list W of n strings and builds the dictionary.

• Longest-Prefix(k) takes a string k and returns the longest prefix of k found in the dictionary,

or null if none exists. The time complexity of Longest-Prefix(k) must be o(n), that is,

sublinear in the size n of the dictionary.

For example, assuming the dictionary was built with strings, “luna”, “lunatic”, “a”, “al”, “algo”, “an”,

“anto”, then if k is “algorithms”, then Longest-Prefix(k) should return “algo”, or if k is “anarchy”

then Longest-Prefix(k) should return “an”, or if k is “lugano” then Longest-Prefix(k) should

return null. (20’)

◮Exercise 114 (f12). Consider the following decision problem: given a set S of character strings,

with characters of a fixed alphabet (e.g., the Roman alphabet), and given an integer k, return true

if there are at least k strings in S that have a common substring.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (5’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (15’)

◮Exercise 115 (f12). Draw a red-black tree containing the following set of keys, clearly indicating

the color of each node.

{8,7,7,35,23,35,13,7,23,18,3,19,22}
(10’)

◮Exercise 116 (f12). Consider the following algorithm Algo-X that takes an array A of n numbers:

Algo-X(A)

1 return Algo-XR(A,0,1,2)

Algo-XR(A, t, i, r)

1 while i ≤ A. length

2 if r == 0

3 if A[i] == t
4 return true

5 else if Algo-XR(A, t −A[i], i+ 1, r − 1)
6 return true

7 i = i+ 1

8 return false

Analyze the complexity of Algo-X and then write an algorithm Better-Algo-X that does exactly

the same thing but with a strictly better time complexity. (30’)

◮Exercise 117 (r12). A Eulerian cycle in a graph is a cycle that goes through each edge exactly once.

As it turns out, a graph contains a Eulerian cycle if (1) it is connected, and (2) all its vertexes have

even degree. Write an algorithm Eulerian(G) that takes a graph G represented as an adjacency

matrix, and returns true when G contains a Eulerian cycle. (10’)

◮Exercise 118 (r12). Consider a social network system that, for each user u, stores u’s friends in

a list friends(u). Implement an algorithm Top-Three-Friends-Of-Friends(u) that, given a user

u, recommends the three other users that are not already among u’s friends but are among the

friends of most of u’s friends. Also, analyze the complexity of the Top-Three-Friends-Of-Friends

algorithm. (20’)

◮Exercise 119 (r12). Consider the following algorithm:

Algo-X(A)

1 for i = 3 to A. length

2 for j = 2 to i− 1

3 for k = 1 to j − 1

4 x = A[i]
5 y = A[j]
6 z = A[k]
7 if x > y
8 swap x ↔ y
9 if y > z

10 swap y ↔ z
11 if x > y
12 swap x ↔ y
13 if y − x == z −y
14 return true

15 return false

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X(A) that does the

same as Algo-X(A) but with a strictly better asymptotic time complexity and with the same space

complexity. (20’)

◮Exercise 120 (r12). The weather service stores the daily temperature measurements for each city

as vectors of real numbers.

Question 1: Write an algorithm called Hot-Days(A, t) that takes an array A of daily temperature

measurements for a city and a temperature t, and returns the maximum number of consecutive

days with a recorded temperature above t. Also, analyze the complexity of Hot-Days(A, t). (5’)

Question 2: Now imagine that a particular analysis would call the Hot-Days algorithm several

times with the same series A of temperature measurements (but with different temperature values)

and therefore it would be more efficient to somehow index or precompute the results. To do that,

write the following two algorithms:

• A preprocessing algorithm called Hot-Days-Init(A) that takes the series of temperature mea-

surements A and creates an auxiliary data structure X (an index of some sort).

• An algorithm called Hot-Days-Fast(X, t) that takes the index X and a temperature t and

returns the maximum number of consecutive days with a temperature above t. Hot-Days-

Fast must run in sub-linear time in the size of A.

Also, analyze the complexity of Hot-Days-Init and Hot-Days-Fast. (25’)

◮Exercise 121 (r12). Consider the following decision problem: given a sequence A of numbers and

given an integer k, return true if A contains either an increasing or a decreasing subsequence of

length k. The elements of the subsequence must maintain their order in A but do not have to be

contiguous.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 122 (r12). Write an algorithm Heap-Delete(H, i) that, given a max-heap H , deletes the

element at position i from H . (10’)

◮Exercise 123 (m13). Write an algorithm Max-Cluster(A,d) that takes an array A of numbers

(not necessarily integers) and a number d, and prints a maximal set of numbers in A that differ by

at most d. The output can be given in any order. Your algorithm must have a complexity that is

strictly better than O(n2). For example, with

A = 〈7,15,16,3,10,43,8,1,29,13,4.5,28〉 d = 5

Max-Cluster(A,d) would output 7,3,4.5,8 (or the same numbers in any other order) since those

numbers differ by at most 5 and there is no larger set of numbers in A that differ by at most 5.

Also, analyze the complexity of Max-Cluster. (20’)

◮Exercise 124 (m13). Consider the following algorithm that takes a non-empty array of numbers

Algo-X(A)

1 B = make a copy of A
2 i = 1

3 while i ≤ B. length

4 j = i+ 1

5 while j ≤ B. length

6 if B[j] == B[i]
7 i = i+ 1

8 swap B[i]↔ B[j]
9 j = j + 1

10 i = i+ 1

11 q = B[1]
12 n = 1

13 m = 1

14 for i = 2 to B. length

15 if B[i] == q
16 n = n+ 1

17 if n >m
18 m = m+ 1

19 else q = B[i]
20 n = 1

21 return m

Question 1: Briefly explain what Algo-X does, and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm called Better-Algo-X that is functionally identical to Algo-X but

with a strictly better complexity. Analyze the complexity of Better-Algo-X. (10’)

◮Exercise 125 (m13). Write the heap-sort algorithm and then illustrate how heap-sort processes

the following array in-place:

A = 〈33,28,23,48,32,46,40,12,21,41,14,37,38,0,25〉

In particular, show the content of the array at each main iteration of the algorithm. (20’)

◮Exercise 126 (m13). Write an algorithm BST-Print-Longest-Path(T) that, given a binary search

tree T , outputs the sequence of nodes (values) of the path from the root to any node of maximal

depth. Also, analyze the complexity of BST-Print-Longest-Path. (30’)

◮Exercise 127 (m13). Consider insertion in a binary search tree.

Question 1: Write a valid insertion algorithm BST-Insert. (10’)

Question 2: Illustrate how BST-Insert works by drawing the binary search tree resulting from the

insertion of the following keys in this order:

33,28,23,48,32,46,40,12,21,41,14,37,38,0,25

Also, if the resulting tree is not already of minimal depth, write an alternative insertion order that

would result in a tree of minimal depth. (10’)

Question 3: Write an algorithm Best-BST-Insert-Order(A) that takes an array of numbers A and

outputs the elements of A in an order that, if used with BST-Insert would lead to a binary search

tree of minimal depth. (10’)

◮Exercise 128 (f13). Write an algorithm called Find-Negative-Cycle that, given a weighted di-

rected graph G = (V, E), with weight function w : E → R, finds and outputs a negative-weight cycle

in G if one such cycle exists. Also, analyze the complexity of Find-Negative-Cycle. (20’)

◮Exercise 129 (f13). Consider a text composed of n lines of up to 80 characters each. The text is

stored in an array T where each line T[i] is an array of characters containing words separated by

a single space.

Question 1: Write an algorithm Sort-Lines-By-Word-Count(T) that, with a worst-case complexity

of O(n), sorts the lines in T in non-decreasing order of the number of words in the line. (Hint:

lines have at most 80 characters, so the number of words in a line is also limited.) (20’)

Question 2: If you did not already do that for exercise 1, write an in-place variant of the Sort-

Lines-By-Word-Count algorithm. This algorithm, called Sort-Lines-By-Word-Count-In-Place,

must also have a O(n) complexity to sort the set of lines, and may use only a constant amount of

extra space to do that. (20’)

◮Exercise 130 (f13). Consider a weighted undirected graph G = (V, E) representing a group of

programmers and their affinity for team work, such that the weight w(e) of an edge e = (u,v) is

a number representing the ability of programmers u and v to work together on the same project.

Write an algorithm Best-Team-Of-Three that outputs the best team of three programmers. The

value of a team is considered to be the lowest affinity level between any two members of the team.

So, the best team is the group of programmers for which the lowest affinity level between members

of the group is maximal. (20’)

◮Exercise 131 (f13). Write an algorithm Maximal-Non-Adjacent-Sum(A) that, given a sequence

of numbers A = 〈a1, a2, ..., an〉, computes, with worst-case complexity O(n), the maximal sum

of non-adjacent elements in A. A subsequence of non-adjacent elements may include ai or ai+1

but not both, for all i. For example, with A = 〈2,9,6,2,6,8,5〉, Maximal-Non-Adjacent-Sum(A)
should return 20. (Hint: use a dynamic programming algorithm that scans the input once.) (20’)

◮Exercise 132 (f13). Consider a trie rooted at node T that represents a set of character strings.

For simplicity, assume that characters are from the Roman alphabet and that the letters of the

alphabet are encoded with numeric values between 1 and 26. Write an algorithm Print-Trie(T)
that prints all the strings stored in the trie. (20’)

◮Exercise 133 (r13). Write an algorithm Print-In-Three-Columns(A) that takes an array of words

A and prints all the words in A, in the given order left-to-right and top-to-bottom, such that the

words are left-aligned in three columns. Words must be separated by at least one space horizon-

tally, but in order to align words, the algorithm might have to print more spaces between words.

For example, if A contains the words exam, algorithms, asymptotic, complexity, graph, greedy,

lugano, np, quicksort, retake, september, then the output should be

exam algorithms asymptotic

complexity graph greedy

lugano np quicksort

retake september
(20’)

◮Exercise 134 (r13). Consider a binary search tree.

Question 1: Write an algorithm BST-Median(T) that takes the root T of a binary search tree and

returns the median element contained in the tree. Also analyze the complexity of BST-Median(T).
Can you do better? (10’)

Question 2: Assume now that the tree is balanced and also that each node t has an attribute

t.weight corresponding to the total number of nodes in the subtree rooted at t (including t it-

self). Write an algorithm Better-BST-Median(T) that improves on the complexity of BST-Median.

Analyze the complexity of Better-BST-Median. (10’)

◮Exercise 135 (r13). Consider the following decision problem. Given a set of strings S, a number

w, and a number k, output YES when there are at least k strings in S that share a common sub-

string of length w, or NO otherwise. For example, if S contains the strings exam, algorithms,

asymptotic, complexity, graph, greedy, lugano, np, quicksort, retake, september, theory, practice,

programming, math, art, truth, justice, with w = 2 and k = 3 the output should be YES, because

the 3 strings graph, greedy, and programming share a common substring “gr” of length 2. The

output should also be YES for w = 3 and k = 3 and for w = 2 and k = 4, but it should be NO for

w = 3 and k = 4.

Question 1: Is this problem in NP? Write an algorithm that proves it is, or argue that it is not. (10’)

Question 2: Is this problem in P? Write an algorithm that proves it is, or argue that it is not. (Hint:

a string of length ℓ has O(ℓ2) sub-strings of any length.) (20’)

◮Exercise 136 (r13). Consider the following sorting problem: you must reorder the elements of

an array of numbers in-place so that odd numbers are in odd positions while even numbers are

in even positions. If there are more even elements than odd ones in A (or vice-versa) then those

additional elements will be grouped at the end of the array. For example, with an initial sequence

A = 〈50,47,92,78,76,7,60,36,59,30,50,43〉

the result could be this:

A = 〈47,50,7,78,59,76,43,92,36,60,30,50〉

Question 1: Write an algorithm called Alternate-Even-Odd(A) that sorts A in place as explained

above. Also, analyze the complexity of Alternate-Even-Odd. (You might want to consider ques-

tion 2 before you start solving this problem.) (20’)

Question 2: If you have not done so already, write a variant of Alternate-Even-Odd that runs in

O(n) steps for an array A of n elements. (10’)

◮Exercise 137 (r13). Write an algorithm called Four-Cycle(G) that takes a directed graph repre-

sented with its adjacency matrix G, and that returns true if and only if G contains a 4-cycle. A

4-cycle is a sequence of four distinct vertexes a,b, c, d such that there is an arc from a to b, from

b to c, from c to d, and from d to a. Also, analyze the complexity of Four-Cycle(G). (20’)

◮Exercise 138 (m14). Write an algorithm Find-Equal-Distance(A) that takes an array A of num-

bers, and returns four distinct elements a,b, c, d of A such that a − b = c − d, or nil if no such

elements exist. Find-Equal-Distance must run in O(n2 logn) time. (20’)

◮Exercise 139 (m14). Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 i = 1

2 while i < A. length

3 if A[i] > A[i+ 1]
4 swap A[i]↔ A[i+ 1]
5 p = i
6 q = i+ 1

7 for j = i+ 2 to A. length

8 if A[j] < A[p]
9 p = j

10 else if A[j] > A[q]
11 q = j
12 swap A[i]↔ A[p]
13 swap A[i+ 1]↔ A[q]
14 i = i+ 2

Question 1: Explain what Algo-X does and analyze its complexity. (5’)

Question 2: Write an algorithm Better-Algo-X that is functionally equivalent to Algo-X but with

a strictly better time complexity. (15’)

◮Exercise 140 (m14). Consider the following definition of the height of a node t in a binary tree:

height(t) =
{

0 if t == nil

1+max{height(t. left),height(t.right)} otherwise.

Question 1: Write an algorithm Height(t) that computes the height of a node t. Also, analyze the

complexity of your Height algorithm when t is the root of a tree of n nodes. (5’)

Question 2: Consider now a binary search tree in which each node t has an attribute t.height that

denotes the height of that node. Write a constant-time rotation algorithm Left-Rotate(t) that

performs a left rotation around node t and also updates the height attributes as needed. (5’)

◮Exercise 141 (m14). Consider the following classic insertion algorithm for a binary search tree:

BST-Insert(t, k)

1 if t == nil

2 return new-node(k)
3 else if k ≤ t.key

4 t. left = BST-Insert(t. left, k)
5 else t.right = BST-Insert(t.right, k)
6 return t

Write an algorithm Sort-For-Balanced-BST(A) that takes an array of numbers A, and prints the

elements of A so that, if passed to BST-Insert, the resulting BST would be of minimal height. Also,

analyze the complexity of your solution. (20’)

◮Exercise 142 (m14). Consider the array of numbers:

A = 〈69,36,68,18,36,36,50,9,36,36,18,18,8,10〉

Question 1: Does A satisfy the max-heap property? If not, fix it by swapping two elements. (5’)

Question 2: Write an algorithm Max-Heap-Insert(H, k) that inserts a key k in a max-heap H . (10’)

Question 3: Illustrate the behavior of Max-Heap-Insert by applying it to array A (possibly cor-

rected). In particular, write the content of the array after the insertion of each of the following

keys, in this order: 69,50,60,70. (5’)

◮Exercise 143 (m14). Consider the following algorithm that takes an array of numbers:

Algo-Y(A)

1 a = 0

2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 x = 0

5 for k = i to j
6 if A[k] is even:

7 x = x + 1

8 else x = x − 1

9 if x == 0 and j − i > a
10 a = j − i
11 return a

Question 1: Explain what Algo-Y does and analyze its complexity. (5’)

Question 2: Write an algorithm Better-Algo-Y that is functionally equivalent to Algo-Y but with

a strictly better time complexity. Also analyze the time complexity of Better-Algo-Y. (10’)

Question 3: If you have not already done so for question 2, write a Better-Algo-Y that is function-

ally equivalent to Algo-Y but that runs in time O(n). (15’)

◮Exercise 144 (f14). Write an algorithm Three-Way-Partition(A,v) that takes an array A of n
numbers, and partitions A in-place in three parts, some of which might be empty, so that the left

part A[1 . . . p − 1] contains all the elements less than v, the middle part A[p . . . q − 1] contains

all the elements equal to v, and the right part A[q . . .n] contains all the elements greater than v.

Three-Way-Partition must return the positions p and q and must run in time O(n). (20’)

◮Exercise 145 (f14). A DNA strand is a sequence of nucleotides, and can be represented as a string

over the alphabet Σ = {A,C,G,T}. Consider the problem of determining whether two DNA strands

s1 and s2 are k-related in the sense that they share a sub-sequence of at least k nucleotides.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue that it is not. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue that it is not. (20’)

◮Exercise 146 (f14). Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 y = −∞
2 i = 1

3 j = 1

4 x = 0

5 while i ≤ A. length

6 x = x +A[j]
7 if x > y
8 y = x
9 if j == A. length

10 i = i+ 1

11 j = i
12 x = 0

13 else j = j + 1

14 return y

Question 1: Explain what Algo-X does and analyze its complexity. (10’)

Question 2: Write an algorithm Better-Algo-X that is functionally equivalent to Algo-X but with

a strictly better time complexity. (20’)

◮Exercise 147 (f14). Write an algorithm Maximal-Connected-Subgraph(G) that takes an undi-

rected graph G = (V, E) and prints the vertices of a maximal connected subgraph of G. (20’)

◮Exercise 148 (f14). A system collects the positions of cars along a highway that connects two

cities, A and B. The positions are grouped by direction in two arrays, A and B. Thus A contains

the distances in kilometers from city A of the cars traveling towards city A. Write an algorithm

Congestion(A) that takes the array A and prints a list of congested sections of the highway. A

congested interval is a contiguous stretch of highway of 1km or more in which the density of cars

is more than 50 cars per kilometer. Congestion(A) must run in O(n logn) time. (20’)

◮Exercise 149 (r14). The following matrix represents a directed graph over vertices a,b, c, . . . , ℓ.

Rows and columns represent the source and destination of edges, respectively.

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1

1 1 1

11

1 1 1

1 1 1

1 1

1 1

1 1

1

1

Write the graph and the DFS numbering of the vertexes using the DFS algorithm. Every iteration

through vertexes or adjacent edges is performed in alphabetic order. (Hint: the DFS numbering of

a vertex v is a pair of numbers representing the “time” at which DFS discovers v and the time DFS

leaves v.) (20’)

◮Exercise 150 (r14). Consider an array A of n numbers that is initially sorted, in ascending order,

and then modified so that k of its elements are decreased in value.

Question 1: Write an algorithm that sorts A in-place in time O(kn). (10’)

Question 2: Write an algorithm that sorts A in time O(n+ k logk) but not necessarily in-place. (20’)

◮Exercise 151 (r14). Consider the decision version of the well-known vertex cover problem: given

a graph G = (V, E) and an integer k, output 1 if G contains a vertex cover of size k. A vertex cover

is a set of vertexes S ⊆ V such that, for each edge (u,v) ∈ E, either vertex u is in S or vertex v is

in S. Write an algorithm that proves that vertex cover is in NP. (20’)

◮Exercise 152 (r14). Write an algorithm that transforms a min-heap H into a max-heap in-place. (10’)

◮Exercise 153 (r14). We say that two words x and y are linked to each other if they differ by

a single letter, or more specifically by one edit operation, meaning an insertion, a deletion, or a

change in a single character. For example, “fun” and “pun” are linked, as are “flower” and “lower”,

“port” and “post”, “canton” and “cannon”, and “cat” and “cast”.

Question 1: Write an algorithm Linked(x,y) that takes two words x and y and, in linear time,

returns true if x and y are linked to each other, or false otherwise. (10’)

Question 2: Write an algorithm Word-Chain(W,x,y) that takes an array of words W and two

words x and y , and outputs a minimal sequence of words x,w1,w2, . . . , y that starts with x and

ends with y wherew1,w2, . . . are all words from W , and each word in the sequence is linked to the

words adjacent to it. For example, if W is a dictionary of English words, and x and y are “first”

and “last”, respectively, then the output might be: first fist list last. (30’)

◮Exercise 154 (m15). Write an algorithm Max-Heap-Insert(H, k) that inserts a new value k in a

max-heap H . Briefly analyze the complexity of your solution. (10’)

◮Exercise 155 (m15). Consider an algorithm Find-Elements-At-Distance(A, k) that takes an ar-

ray A of n integers sorted in non decreasing order and returns true if and only if A contains two

elements ai and aj such that ai − aj = k.

Question 1: Write a version of the Find-Elements-At-Distance algorithm that runs in O(n logn)
time. Briefly analyze the complexity of your solution. (10’)

Question 2: Write a version of the Find-Elements-At-Distance algorithm that runs in O(n) time.

Briefly analyze the complexity of your solution. (20’)

◮Exercise 156 (m15). Write an algorithm Partition-Primes-Composites(A) that takes an array A
of n integers such that 1 < A[i] ≤m for all i, and partitions A in-place so that all primes precede

all composites in A. Analyze the complexity of your solution as a function of n and m. Recall that

an integer greater than 1 is prime if it is divisible by only two positive integers (itself and 1) or

otherwise it is composite. (20’)

◮Exercise 157 (m15). Consider the following classic insertion algorithm for a binary search tree:

BST-Insert(t, k)

1 if t == nil

2 return new-node(k)
3 else if k ≤ t.key

4 t. left = BST-Insert(t. left, k)
5 else t.right = BST-Insert(t.right, k)
6 return t

Write an algorithm Sort-For-Balanced-BST(A) that takes an array of numbers A, and prints the

elements of A in a new order so that, if the printed sequence is passed to BST-Insert, the resulting

BST would be of minimal height. Also, analyze the complexity of your solution. (20’)

◮Exercise 158 (m15). Consider a game in which, given a multiset of positive numbers A (possibly

with repeated values) a player can simplify A by removing, one at a time, an element ak if there

are two other elements ai, aj such that ai + aj = ak.
Question 1: Write an algorithm called Minimal-Simplified-Subset(A) that, given a multiset A of n
numbers, returns a minimal simplified subset X ⊆ A. The result X is minimal in the sense that no

smaller set can be obtained with a sequence of simplifications starting from A. For example, with

A = {7,89,11,88,106,4,28,71,17}, a valid result would be X = {7,89,4,71,17}. Briefly analyze

the complexity of your solution. (10’)

Question 2: Write a Minimal-Simplified-Subset(A) algorithm that runs in O(n2). If you have

already done so for exercise 1, then simply say so. (20’)

◮Exercise 159 (m15). Consider the following algorithm that takes an integer n as input:

Algorithm-X(n)

1 c = 0

2 a = n
3 while a > 1

4 b = 1

5 while b ≤ a2

6 c = c + 1

7 b = 2b
8 a = a/2
9 return c

Write the complexity of Algorithm-X as a function of n. Justify your answer. (10’)

◮Exercise 160 (f15). Write an algorithm Find-Cycle(G) that, given a directed graph G, returns

true if and only if G contains a cycle. You may assume the representation of your choice for G. (20’)

◮Exercise 161 (f15). A breadth-first search over a graph G returns a vector π that represents the

resulting breadth-first tree, where the parent π[v] of a vertex v is the next-hop from v on the tree

towards the source of the breadth-first search.

Question 1: Write an algorithm BFS-First-Common-Ancestor(π,u,v) that finds the first common

ancestor of two given nodes in the breadth-first tree, or null if u and v are not connected in G. The

complexity of BFS-First-Common-Ancestor must be O(n). Briefly analyze the space complexity

of your solution. (10’)

Question 2: Write an algorithm BFS-First-Common-Ancestor-2(π,D,u,v) that is also given the

distance vector D resulting from the same breadth first search. BFS-First-Common-Ancestor-2

must be functionally equivalent to BFS-First-Common-Ancestor (as defined in Exercise 1) but

with space complexity O(1). (20’)

◮Exercise 162 (f15). Consider the height and the black height of a red-black tree.

Question 1: What are the minimum and maximum heights of a red-black tree containing 10 keys?

Exemplify your answers by drawing a minimal and a maximal tree. Clearly identify each node as

red or black. (10’)

Question 2: What are the minimum and maximum black heights of a red-black tree containing 10

keys? Exemplify your answers by drawing a minimal and a maximal tree. Clearly identify each

node as red or black. (10’)

◮Exercise 163 (f15). Consider an algorithm BST-Find-Sum(T , v) that, given a binary search tree T
containing n distinct numeric keys, and given a target value v, finds and returns two nodes in T
whose keys add up to v. The algorithm returns null if no such keys exist in T . BST-Find-Sum may

not modify the tree, and may only use a constant amount of memory.

Question 1: Write BST-Find-Sum. You may use the basic algorithms that operate on binary search

trees (BST-Min, BST-Successor, BST-Search, etc.) without defining them explicitly. (10’)

Question 2: Write a variant of BST-Find-Sum(T , v) that works in O(n) time. If your solution to

Exercise 1 already has this complexity bound, then simply say so. (20’)

◮Exercise 164 (f15). Consider this decision problem: given a set of integers X = {x1, x2, . . . , xn},
and an integer k, return 1 if there are k elements in X that are pairwise relatively prime, or return

0 otherwise. Two integers are relatively prime if their only common divisor is 1. For example, for

X = {5,6,10,14,18,21,49} and k = 3, the result is 1, since the 3 elements 5,18,49 are pairwise

relatively prime (5 and 18 have no common divisor other than 1, and the same is true for 5 and 49,

and 18 and 49). However, for the same set X = {5,6,10,14,18,21,49} and k = 4, the solution is 0,

since no four elements from X are all pairwise relatively prime.

Question 1: Is this problem in NP? Write an algorithm that proves it is, or argue that it is not. (20’)

Question 2: (BONUS) Is this problem NP-hard? Prove it. (60’)

◮Exercise 165 (r15). You are given a square matrixM ∈ Rn×n whose elements are sorted both row-

wise and column-wise. In other words, rows and columns are non-decreasing sequences. Formally,

for every element mi,j ∈ M , (j < n ⇒ mi,j ≤ mi,j+1) ∧ (i < n ⇒ mi,j ≤ mi+1,j). Write an

algorithm Search-In-Sorted-Matrix(M,x) that returns true if x ∈ M or false otherwise. The

time complexity of Search-In-Sorted-Matrix must be O(n logn). Justify that your solution has

such a complexity. (20’)

◮Exercise 166 (r15). Consider the following algorithm that takes an array A of positive integers:

Algo-X(A)

1 B = copy of A
2 i = 1

3 x = 1

4 while i ≤ A. length

5 B[i] = B[i]− 1

6 if B[i] == 0

7 B[i] = A[i]
8 i = i+ 1

9 else x = x + 1

10 i = 1

11 return x

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm called Better-Algo-X that is functionally identical to Algo-X but

with a strictly better complexity. Analyze the complexity of Better-Algo-X. (10’)

◮Exercise 167 (r15). Consider the following algorithm that takes an array A of numbers:

Algo-Y(A)

1 i = 2

2 j = 1

3 x = −∞
4 while i ≤ A. length

5 if |A[i]−A[j]| > x
6 x = |A[i]−A[j]|
7 j = j + 1

8 if j == i
9 i = i+ 1

10 j = 1

11 return x

Question 1: Briefly explain what Algo-Y does and analyze the complexity of Algo-Y. (10’)

Question 2: Write an algorithm called Better-Algo-Y that is functionally identical to Algo-Y but

with a complexity O(n). (10’)

◮Exercise 168 (r15). Write an algorithm BTree-Lower-Bound(T , k) that, given a B-tree T and a

value k, returns the least key v in T such that k ≤ v, or null if no such key exist. Also, analyze the

complexity of BTree-Lower-Bound. Recall that a node x in a B-tree has the following properties:

x.n is the number of keys, X.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the keys, x. leaf tells whether

x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n+ 1] are the pointers to x’s children. (20’)

◮Exercise 169 (r15). Write an algorithm BST-Least-Difference(T) that, given a binary search tree

T containing numeric keys, returns in O(n) time the minimal distance between any two keys in

the tree. (20’)

◮Exercise 170 (r15). A connected component of an undirected graph G is a maximal set of ver-

tices that are connected to each other (directly or indirectly). Thus the vertices of a graph can

be partitioned into connected components. Write an algorithm Connected-Components(G) that,

given an undirected graph G, returns the number of connected components in G. Also, analyze the

complexity of Connected-Components. (20’)

◮Exercise 171 (m16). Rank the following functions in decreasing order of growth by indicating

their rank next to the function, as in the first line (nn
n

is the fastest growing function). If any two

functions fi and fj are such that fi = Θ(fj), then rank them at the same level. (10’)

function rank

f0(n) = nnn 1

f1(n) = log2(n)

f2(n) = n!

f3(n) = log(n2)

f4(n) = n
f5(n) = log(n!)

f6(n) = log logn

f7(n) = n logn

f8(n) =
√
n3

f9(n) = 2n

Hint: as a reminder, consider the following mathematical definitions and facts: (definition of fac-

torial) n! = 1 ·2 ·3 · · · (n−1) ·n; (facts about the logarithm) log (ab) = loga+ logb, and therefore

log (ak) = k loga.

◮Exercise 172 (m16). Write an algorithm called Minimal-Covering-Square(P) that takes a se-

quence P of n points in the 2D Euclidean plane, each defined by its Cartesian coordinates P[i].x
and P[i].y, and returns the area of a minimal axis-aligned square that covers all points in P . An

axis-aligned square is one in which the sides are parallel to X and Y axes. Minimal-Covering-

Square must run in time O(n). (10’)

◮Exercise 173 (m16). A sequence of numbers is called unimodal if it is first strictly increasing

and then strictly decreasing. For example, the sequence 1,5,19,17,12,8,5,3,2 is unimodal, while

the sequence 1,5,3,7,4,2 is not. Write an algorithm Unimodal-Find-Maximum(A) that finds the

maximum of a unimodal sequence A of n numbers in time O(logn). (20’)

◮Exercise 174 (m16). Consider the following algorithm Algo-X(A, k) that takes an array A of n
objects and an integer k:

Algo-X(A, k)

1 l = −∞
2 r = +∞
3 for i = 1 to A. length− k
4 for j = i+ 1 to A. length

5 if Algo-Y(A, i, j) ≥ k
6 if r − l > j − i
7 l = i
8 r = j
9 return l, r

Algo-Y(A,a, b)

1 m = 1

2 for i = a to b
3 c = 1

4 for j = i+ 1 to b
5 if A[i] == A[j]
6 c = c + 1

7 if c > m
8 m = c
9 return m

Question 1: Explain what Algo-X(A, k) does and analyze its complexity. Do not simply paraphrase

the code. Instead, explain the high level semantics, independent of the code. (10’)

Question 2: Write an algorithm Better-Algo-X(A, k) with the same functionality as Algo-X(A, k),
but with a strictly better complexity. Also, analyze the complexity of Better-Algo-X(A, k). (20’)

◮Exercise 175 (m16). An algorithm Three-Way-Partition(A,begin, end) chooses a pivot element

from the sub-array A[begin . . . end − 1], and partitions that sub-array in-place into three parts

(two of which might be empty): A[begin . . . q1 − 1] containing all the elements less than the pivot,

A[q1 . . . q2 − 1] containing all the elements equal to the pivot, and A[q2 . . . end − 1] containing all

elements greater than the pivot.

Question 1: Write a Three-Way-Partition(A,begin, end) algorithm that runs in time O(n), where

n = end − begin, and that returns the partition boundaries q1, q2. You may assume that begin <
end. (20’)

Question 2: Use the Three-Way-Partition algorithm to write a better variant of the classic quick-

sort algorithm. Also, describe in which cases this variant would perform significantly better than

the classic algorithm. (10’)

◮Exercise 176 (m16). The following algorithm Sum(A, s) takes an array A of n numbers and a

number s. Describe what Sum(A, s) does at a high level and analyze its complexity in the best and

worst cases. Justify your answer by clearly describing the best- and worst-case input, as well as

the behavior of the algorithm in each case. (20’)

Sum(A, s)

1 return Sum-R(A, s,1, A. length)

Sum-R(A, s, b, e)

1 if b > e and s == 0

2 return true

3 elseif b ≤ e and Sum-R(A, s, b + 1, e)
4 return true

5 elseif b ≤ e and Sum-R(A, s −A[b], b + 1, e)
6 return true

7 else return false

◮Exercise 177 (f16). Big Brother tracks a set of m cell-phone users by recording every cell an-

tenna the user connects to. In particular, for each user ui, Big Brother stores a time-ordered

sequence Si = (t1, a1), (t2, a2), . . . that records that user ui was connected to antenna a1 starting

at time t1, and later switched to antenna a2 at time t2 > t1, and so on. Write an algorithm called

Group-Of-K(S1, S2, . . . , Sm, k) that finds whether there is a time t∗ when a group of at least k users

are connected to the same antenna. In this case, Group-Of-K must output the time t∗ and the

antenna a∗. Otherwise, Group-Of-K must output null. Group-Of-K must run in time O(n logm)
where n is the total number of entries in all the sequences, so n = |S1| + |S2| + · · · + |Sm|. You

may use common data structures and algorithms without specifying those algorithms completely.

(20’)

◮Exercise 178 (f16). Consider the following algorithm that takes an array A of integers:

Algo-X(A)

1 i = 1

2 j = A. length+ 1

3 while i < j
4 if A[i] ≡ 0 mod 2

// A[i] is even

5 j = j − 1

6 v = A[i]
7 Algo-Y(A, i, j)
8 A[j] = v
9 else i = i+ 1

10 return j

Algo-Y(A,p, q)

1 while p < q
2 A[p] = A[p + 1]
3 p = p + 1

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm Better-Algo-X that is functionally identical to Algo-X but with a

strictly better complexity. Also briefly analyze the complexity of Better-Algo-X. (10’)

◮Exercise 179 (f16). Write an algorithm BTree-Print-Range(T ,a, b) that, given a B-tree T and two

values a < b, prints all the keys k in T that are between a and b, that is, a < k < b. Recall that a

node x in a B-tree has the following properties: x.n is the number of keys, x.key[1] ≤ x.key[2] ≤
. . . x.key[x.n] are the keys, x. leaf tells whether x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n + 1]
are the pointers to x’s children. (20’)

◮Exercise 180 (f16). Consider the following decision problem: given a weighted graph G and a

number k, where w(e) is the weight of an edge e = (u,v) ∈ E(G), return true if and only if there

are at least two nodes u and v at distance d(u,v) = k. Is the problem in NP? Write an algorithm

that proves it is, or argue the opposite. Is the problem in P? Write an algorithm that proves it is, or

argue the opposite. Recall that the distance d(u,v) in a graph is the minimal length of any path

connecting u and v. (20’)

◮Exercise 181 (f16). A highway traffic app sends the coordinates of each vehicle to a server that

reports on congested sections of highway. Consider the highway as a straight line in which each

position is identified by a single x coordinate. Write an algorithm Most-Congested-Segment(A, ℓ)
that, given an array A of vehicle positions and a length ℓ, outputs the position of a maximally

congested highway segment of length at most ℓ. A segment of highway between positions x and

x + ℓ is considered maximally congested if there are no other segments of length at most ℓ with

more vehicles. Coordinates as well as the length ℓ are real numbers, not necessarily integers; ℓ is

positive (it is a distance). (20’)

◮Exercise 182 (f16). Consider the following decision problem: given a graph G represented as

an adjacency matrix G, and an integer k, return true if and only if there are at least k nodes

v1, v2, . . . , vk in G that form a fully connected sub-graph of G, meaning that for every pair i, j ∈
1, . . . , k, edge (vi, vj) is in G. Is the problem in NP? Write an algorithm that proves it is, or argue

the opposite. (20’)

◮Exercise 183 (r16). Write an algorithm Max-Heap-Top-Three(H) that takes a heap H and prints

the three highest values stored in the heap. The algorithm must run in O(1) time, may not allocate

more than a constant amount of memory, and may not modify the heap in any way. If the heap

contains less than three values, then Max-Heap-Top-Three must print whatever elements exist. (20’)

◮Exercise 184 (r16). Let P be a sequence of points representing an alpine road where, for each

point p ∈ P , p.x is the distance from the beginning of the road and p.y is the elevation (meters

above sea level). Write an algorithm Longest-Stretch(P,h) that takes a sequence of points P and

an altitude range (difference) h, and returns the maximal length of a stretch of road that remains

within an altitude range of at most h. For example, if h = 0, the algorithm must return the maximal

length of road that is absolutely flat (that is, contiguous points at the same elevation). Analyze the

complexity of your solutions showing a worst-case input. (20’)

◮Exercise 185 (r16). An undirected graph G is bipartite when its vertices can be partitioned into

two sets VA, VB such that each edge in G connects a vertex in VA with a vertex in VB . In other words,

no two vertices in VA are adjacent, and no two vertices in VB are adjacent. To exemplify, see the

graphs below.

G1 G2 G3 G4

bipartite bipartite not bipartite bipartite

(same as G1)

Write an algorithm Is-Bipartite(G) that takes an undirected graph G and outputs true if and only

if G is bipartite. (Hint: you may use a simple BFS in which you keep track of which vertex is in

which partition.) (20’)

◮Exercise 186 (r16). Algorithm Is-Good(x) classifies a number x as “good” or “not good” in con-

stant time O(1).

Question 1: Write an algorithm Good-Are-Adjacent(A) that takes a sequence of numbers and,

using algorithm Is-Good, returns true if all the “good” numbers in A are adjacent, or false oth-

erwise. Good-Are-Adjacent(A) must not change the input sequence A in any way, may allocate

only a constant amount of memory, and must run in time O(n). (10’)

Question 2: Write an algorithm Make-Good-Adjacent(A) that takes a sequence of numbers A and

changes A in-place so that all “good” numbers are adjacent. Make-Good-Adjacent may allocate

only a constant amount of memory and must run in time O(n). (10’)

◮Exercise 187 (r16). Consider the following decision problem: given a sequence of numbers A
and an integer k, returns true if A contains at least k identical values, or false otherwise. Is the

problem in NP? Write an algorithm that proves it is, or argue the opposite. Is the problem in P?

Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 188 (r16). Write an algorithm Maximal-Common-Substring(X, Y) that, given strings

X and Y , returns the maximal length of a common substring of X and Y . For example, with

X = “BDDBADCDCCDCBAD” and Y = “DDCBCDAABAAC”, the output should be 3, since there

is a 3-character common substring (“DCB”) but no 4-character common substring. Analyze the

complexity of your solution. (20’)

◮Exercise 189 (m17). We say that a node in a binary tree is unbalanced when the number of nodes

in its left subtree is more than twice the number of nodes in its right subtree plus one, or vice-

versa. Write an algorithm BST-Count-Unbalanced-Nodes(t) that takes a binary search tree t
(the root), and returns the number of unbalanced nodes in the tree. Analyze the complexity of

BST-Count-Unbalanced-Nodes(t). (Hint: an algorithm can return multiple values. For example,

the statement return x,y returns a pair of values, and if f() returns a pair of values, you can read

them with a,b = f().) (20’)

◮Exercise 190 (m17). Consider the following algorithm that takes an array A of numbers:

Algo-X(A)

1 x = 0

2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 if Algo-Y(A, i, j) and A[j] −A[i] > x
5 x = A[j] −A[i]
6 return x

Algo-Y(A, i, j)

1 for k = i to j − 1

2 if A[k] > A[k+ 1]
3 return false

4 return true

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing

a worst-case input. (10’)

Question 2: Write an algorithm Linear-Algo-X(A) that is equivalent to Algo-X but runs in linear

time. (20’)

◮Exercise 191 (m17). Let P be an array of points on a plane, each with its Cartesian coordinates

P[i].x and P[i].y.

Question 1: Write an algorithm Find-Square(P) that returns true if and only if there are four

points in P that form a square. Briefly analyze the complexity of your solution. (10’)

Question 2: Write an algorithm Find-Square(P) that solves the problem of Exercise 1 in time

O(n2 logn). If your solution for Exercise 1 already does that, then simply say so. (20’)

◮Exercise 192 (m17). Implement a priority queue based on a heap. You must implement the

following algorithms:

• Initialize(Q) creates an empty queue. The complexity of Initialize must be O(1).

• Enqueue(Q,obj, p) adds an object obj with priority p to a queue Q. The complexity of

Enqueue must be O(logn).

• Dequeue(Q) extracts and returns an object from a queue Q. The returned object must be

among the objects in the queue that were inserted with the lowest priority. The complexity

of Dequeue must be O(logn).

(Hint: Consider Q as an object to which you can add attributes. For example, you may write

Q.A = new array, and then later write Q.A[i].) (20’)

◮Exercise 193 (m17). Implement an algorithm Maximal-Distance(A) that takes an array A of

numbers and returns the maximal distance between any two distinct elements in A, or 0 if A
contains less than two elements. Maximal-Distance(A) must run in time O(n). (10’)

◮Exercise 194 (m17). The height of a binary tree is the maximal number of nodes on a branch

from the root to a leaf node. In other words, it is the maximal number of nodes traversed by a

simple path starting at the root. Implement an algorithm BST-Height(t) that returns the height of

a binary search tree rooted at node t. BST-Height(t) must run in time O(n). (10’)

◮Exercise 195 (f17). Consider the following decision problem: given a graph G = (V, E) where the

edges are weighted by a weight function w : E → R, and given a number t, output true if there is a

set of non-adjacent edges S = {e1, e2, . . . , ek} of total weight greater or equal to t, so
∑
w(ei) ≥ t;

or output false otherwise. For example, the vertices could represent people, say the students in

the Algorithms class, and an edge e = (u,v) with weight w(e) could represent the affinity of

the couple (u,v). The question is then, given an affinity value t, tell whether the students in the

Algorithms class can form monogamous couples of total affinity value at least t. Argue whether

this decision problem is in NP or not, and if it is, then write an algorithm that proves it. (20’)

◮Exercise 196 (f17). Consider the following game: you are given a set of n valuable objects placed

on a 2D plane with non-negative x,y coordinates. In practice, you are given three arrays X,Y , V ,

such that X[i], Y[i], and V[i] are the x and y coordinates and the value of object i, respectively.

You start from position 0,0, and can only move horizontally to the right (increasing your x coordi-

nate) or vertically upward (increasing your y coordinate). Your goal is to reach and collect valuable

objects. Write an algorithm Maximal-Game-Value(X, Y , V) that returns the maximal total value

you can achieve in a given game. (30’)

◮Exercise 197 (f17). Write an algorithm Maximal-Substring(S) that takes an array S of strings,

and returns a string x of maximal length such that x is a substring of every string S[i]. Also,

analyze the complexity of Maximal-Substring as a function of the size n = |S| of the input array,

and the maximal size m of any string in S. (20’)

◮Exercise 198 (f17). Consider the following algorithm that takes an array A of numbers:

Algo-X(A)

1 x = 0

2 y = 0

3 for i = 1 to A. length

4 k = 1

5 for j = i+ 1 to A. length

6 if A[i] == A[j]
7 k = k+ 1

8 if x < k
9 x = k

10 y = A[i]
11 return y

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing

a worst-case input. (10’)

Question 2: Write an algorithm Better-Algo-X that does the same as Algo-X but with a strictly

better time complexity. Also analyze the complexity of Better-Algo-X. (10’)

◮Exercise 199 (f17). Write an algorithm Graph-Degree(G) that takes an undirected graph repre-

sented by its adjacency matrix G and computes the degree of G. The degree of a graph is the

maximal degree of any vertex of G. The degree of a vertex v is the number of edges that are

adjacent to v. Also analyze the complexity of Graph-Degree(G). (15’)

◮Exercise 200 (f17). Write an algorithm Find-3-Cycle(G) that takes an undirected graph repre-

sented as an adjacency list, and returns true if G contains a cycle of length 3, or false otherwise.

Also, analyze the complexity of Find-3-Cycle(G). (15’)

◮Exercise 201 (r17). Write an algorithm Longest-Common-Prefix(S) that takes an array of strings

S, and returns the maximal length of a string that is a prefix of at least two strings in S. Also,

analyze the complexity of your solution as a function of the size n of the input array S, and the

maximal size m of any string in S. For example, with S = [“ciao”, “lugano”, “bella”] the result

is 0, because the only common prefix is the empty string, while with S = [“professor”, “prefers”,

“to”, “teach”,“programming”] the result is 3 because “pro” is a prefix of at least two strings. (20’)

◮Exercise 202 (r17). Write an algorithm Longest-K-Common-Prefix(S, k) that takes an array of

strings S and an integer k, and returns the maximal length of a string that is a prefix of at least

k strings in S. Also, analyze the complexity of your solution as a function of k, the size n of the

input array S, and the maximal size m of any string in S. For example, with S = [“algorithms”,

“and”, “data”, “structures”] and k = 3, the result is 0, because the only common prefix com-

mon to at least three strings is the empty string. While with S = [“professor”, “prefers”, “to”,

“teach”,“programming”] and k = 3, the result is 2 because the longest prefix common to at least

three strings is “pr”. (20’)

◮Exercise 203 (r17). Consider the following decision problem: given a directed and weighted graph

G (with weighted arcs), output true if and only if G contains a path of length 3 and of negative

total weight; otherwise output false. Is the problem in NP? Write an algorithm that proves it is, or

argue the opposite. Is the problem in P? Write an algorithm that proves it is, or argue the opposite.

(20’)

◮Exercise 204 (r17). Given a collection A of numbers and a number x, the upper bound of x in A
is the minimal value a ∈ A such that x ≤ a, or null if no such value exists. For example, given

A = [7,20,1,3,4,3,31,50,9,11], the upper bound of x = 15 is 20, while the upper bound of x = 9

is 9 and the upper bound of x = 51 is null.

Question 1: Write an algorithm Upper-Bound(A,x) that returns the upper bound of x in an array

A. Also analyze the complexity of Upper-Bound. (20’)

Question 2: Write an algorithm Upper-Bound-Sorted(A,x) that returns the upper bound of x in

a sorted array A in time o(n). Analyze the complexity of Upper-Bound-Sorted. (20’)

Question 3: Write an algorithm Upper-Bound-BST(T ,x) that returns the upper bound of x in a

binary search tree T . Analyze the complexity of Upper-Bound-BST. (20’)

◮Exercise 205 (m18). Write an algorithm Sum-Of-Three(A, s) that takes an array A of n numbers

and a number s, and in O(n2) time decides whether A contains three distinct elements that add

up to s. That is, Sum-Of-Three(A, s) returns true if there are three indexes 1 ≤ i < j < k ≤ n
such that A[i]+A[j]+A[k] = s, or false otherwise. Analyze the complexity of your solution and

briefly explain the algorithm by commenting on its non-obvious parts. (20’)

◮Exercise 206 (m18). The following algorithm takes an array A of numbers, and a number x:

Algo-X(A,x)

1 i = A. length

2 j = 1

3 while i > 0

4 if j == i
5 j = 1

6 i = i− 1

7 elseif A[i]−A[j] > x or A[j] −A[i] > x
8 return true

9 else j = j + 1

10 return false

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing

a worst-case input. (10’)

Question 2: Write an algorithm Better-Algo-X(A,x) that is functionally equivalent to Algo-X but

with a strictly better time complexity. Analyze the complexity of your solution and briefly explain

the algorithm by commenting on its non-obvious parts. (10’)

◮Exercise 207 (m18). Consider the following algorithm that takes an array A of numbers, and an

integer k:

Algo-S(A, k)

1 for i = 1 to A. length

2 if Algo-R(A,A[i]) == k
3 return A[i]
4 return null

Algo-R(A,y)

1 c = 0

2 for i = 1 to A. length

3 if A[i] < y
4 c = c + 1

5 return c

Question 1: Briefly explain what Algo-S does and analyze the complexity of Algo-S by describing

a worst-case input. (10’)

Question 2: Write an algorithm Better-Algo-S(A, k) that is functionally equivalent to Algo-S(A, k)
but with a strictly better complexity. Analyze the complexity of your solution and briefly explain

the algorithm by commenting on its non-obvious parts. (10’)

◮Exercise 208 (m18). An array A of n numbers contains only four values, possibly repeated many

times. Write an algorithm Sort-Special(A) that sorts A in-place and in time O(n). Analyze the

complexity of your solution and briefly explain the algorithm by commenting on its non-obvious

parts. (20’)

◮Exercise 209 (m18). Write an algorithm Heap-Properties(A) that takes an array A of n numbers

and in O(n) time returns one of four values: −1, if A satisfies the min-heap property; 1, if A
satisfies the max-heap property; 2, if A satisfies both the max-heap and min-heap properties; 0, if

A does not satisfy either the max-heap or min-heap properties. Analyze the complexity of your

solution and briefly explain the algorithm by commenting on its non-obvious parts. (20’)

◮Exercise 210 (m18). You are given a constant-time decision algorithm compatible(x,y) that,

given two objects x and y tells whether x and y are compatible. The relation expressed by the

compatible algorithm is symmetric, meaning that compatible(x,y) implies compatible(y,x),
and transitive, meaning that compatible(x,y) and compatible(y, z) imply compatible(x, z). In

other words, it is an equivalence relation.

Write an algorithm Max-Compatible-Pairing(A) that takes an array of n objects, and in O(n2)
time, returns the maximum number of compatible pairs that can be formed from the objects in A.

A compatible pair is a pair of distinct compatible elements, that is, a pair of indexes 1 ≤ i < j ≤ n
such that compatible(A[i],A[j]) == true. Each element (index) may appear in only one pair.

Analyze the complexity of your solution and briefly explain the algorithm by commenting on its

non-obvious parts. (20’)

◮Exercise 211 (f18). Consider an infinite chessboard in which the rows and columns are num-

bered with corresponding integers in their natural order (. . .−3,−2,−1,0,1,2,3, . . .). You are given

two arrays W and B of positions of white and black queens, respectively, such that W[i].row

and W[i].col are the row and column of the i-th white queen, and correspondingly B[i].row and

B[i].col are the row and column of the i-th black queen.

Write an algorithm White-Attacks-Black(W,B) that takes the two arrays of white and black

queens, and returns true if and only if there is a white queen that attacks a black queen. The

complexity of your solution must be o(n2), meaning strictly less than quadratic. (Recall that a

queen in row i and column j attacks all positions in row i, all positions in column j, and all

positions in the two 45-degree diagonals that pass through the square in row i and column j.) (20’)

◮Exercise 212 (f18). We say that a node in a binary search tree is full if it has both a left and a

right child.

Question 1: Write an algorithm called Count-Full-Nodes(t) that takes a binary search tree rooted

at node t, and returns the number of full nodes in the tree. Analyze the complexity of your

solution. (10’)

Question 2: Write an algorithm called No-Full-Nodes(t) that takes a binary search tree rooted at

node t, and changes the tree in-place, using only rotations, so that the tree does not contain any

full node. Analyze the complexity of your solution. (20’)

◮Exercise 213 (f18). Consider the following decision problem: given two arrays A and B, both

containing n numbers, output true if and only if there is a number k and a permutation A′ of A
such that A′[i]+ B[i] = k for all positions i ∈ {1, . . . , n}.
Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue otherwise. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue otherwise. (20’)

◮Exercise 214 (f18). Write an algorithm called Minimal-Contiguous-Sum(A) that takes an array

A of numbers, and outputs the value of the minimal contiguous sub-sequence sum in time O(n).
A contiguous sub-sequence sum is the sum of some contiguous elements of A. For example, if A is

the sequence

−1,2,−2,−4,1,−2,5− 2− 3,1,2,−1

then the minimal contiguous sub-sequence sum is −7, which is the sum of elements −2,−4,1,−2. (20’)

◮Exercise 215 (f18). Write an algorithm called Has-Cycle(G) that takes a directed graph G repre-

sented as an adjacency list, and returns true whenever G contains one or more cycles. You can

denote the adjacency list of a vertex v in G as G.Adj[v]. Your solution must have a polynomial

and possibly linear complexity. Briefly analyze the complexity of your solution. (20’)

◮Exercise 216 (r18). A DNA sequence S is an array of characters (a string) where each character

S[i] is one of ‘A’, ‘C’, ‘G’, or ‘T’. Write an algorithm DNA-Permutation-Substring(S,X) that takes

a large DNA sequence S and a smaller sequence X, and in linear time returns true if and only

if S contains a contiguous subsequence (a substring) that is a permutation of X. For example,

DNA-Permutation-Substring(“GCCATCAGTGACGAAGCT”, “TAGG”) would return true, because

the long sequence contains the contiguous subsequence “AGTG”, which is a permutation of the

sequence “TAGG”. (30’)

◮Exercise 217 (r18). Consider the following algorithm that takes a non-empty array A of numbers:

Algo-X(A)

1 n = A. length

2 let B be an array of size n
3 for i = 1 to n
4 B[i] = 0

5 m = 1

6 x = A[1]
7 for i = 1 to n
8 if B[i] == 0

9 B[i] = 1

10 for j = i+ 1 to n
11 if A[i] == A[j]
12 B[i] = B[i]+ 1

13 B[j] = 1

14 if m < B[i] or (m == B[i] and x > A[i])
15 x = A[i]
16 m = B[i]
17 return x

Question 1: Briefly describe what Algo-X does and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing, but with a

strictly better asymptotic complexity. Analyze the complexity of Better-Algo-X. (20’)

◮Exercise 218 (r18). Consider the problem of comparing two binary search trees.

Question 1: Write an algorithm BST-Equals(t1, t2) that takes the roots t1 and t2 of two binary

search trees and returns true if and only if the tree rooted t1 is exactly the same as the tree rooted

at t2, meaning that the two trees have nodes with the same keys connected in exactly the same

way. Also, analyze the complexity of your solution. (10’)

Question 2: Write an algorithm BST-Equal-Keys(t1, t2) that takes the roots t1 and t2 of two binary

search trees and returns true if and only if the tree rooted t1 contains exactly the same keys as

the tree rooted at t2. (20’)

◮Exercise 219 (r18). Consider an infinite chessboard in which the rows and columns are numbered

with corresponding integers in their natural order (. . .− 3,−2,−1,0,1,2,3, . . .). Write an algorithm

Knight-Distance(r1, c1, r2, c2) that takes two positions on the chessboard, identified by the re-

spective row and column numbers, and returns the minimal number of hops it would take a knight

to go from the first position to the second position. Also, analyze the complexity of your solution.

Hints: a knight moves in a single hop by two squares horizontally and by one square vertically,

or vice-versa. Notice that what matters is the distance, not the absolute positions, so consider

computing the distance between any position (r , c) and the (0,0) position. Consider a dynamic-

programming solution. Also notice that the problem has symmetries that can greatly simplify the

solution. For example, the distance from (0,0) to position (a, b) is the same as to position (b,a). (30’)

◮Exercise 220 (r18b). Consider a directed graph G of 20 vertexes, numbered from 1 to 20, and

defined by the following adjacency list

v → adj(v)
1 → 2

2 → 8 9

3 → 2 4 5 6

4 → 10 11 12 13 14 15 5 9

5 → 18 7

6 → 5 7

7 → 18 19 4

8 → 9

9 → 10

10 → 11

11 → 12 14

12 → 14

13 → 14 17 20

15 → 13 16 5

16 → 13 17 5

17 → 18 19

18 → 19

20 → 14 17

(Hint: draw the graph and use the drawing to answer the following questions.)

Question 1: Compute a depth-first search on G. Write the three vectors P , D, and F that, for each

vertex, hold the previous vertex in the depth-first forest, the discovery time, and the finish time,

respectively. Whenever necessary, iterate through vertexes in numeric order. (20’)

Question 2: Compute a breadth-first search on G starting from vertex 1. Write the two vectors

P and D that, for each vertex, hold the previous vertex in the breadth-first tree and the distance,

respectively. Whenever necessary, iterate through vertexes in numeric order. (20’)

◮Exercise 221 (r18b). Consider the following decision problem: given a sequence A of numbers

and given an integer k, return true if and only if A contains either an increasing or a decreasing

subsequence of length k. The elements of the subsequence must maintain their order in A but do

not have to be contiguous. For example, A = [4,5,3,8,3,9] contains an increasing sequence of

length k = 4 (4, 5, 8, 9), but neither an increasing or decreasing sequence of length k = 5.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 222 (r18b). Given a sequence of numbers A = 〈a1, a2, . . . , an〉, we define a maximal

contiguous subsequence as a contiguous subsequence of numbers in A, starting at position i and

ending at position j with 1 ≤ i ≤ j ≤ n, whose sum is maximal.

Question 1: Write an algorithm MCS-Value(A) that, given a sequence A, returns the sum of a

maximal contiguous subsequence in A. Also, analyze the complexity of your solution. (10’)

Question 2: Write an algorithm MCS-Value-Linear(A) that, given a sequence A, returns the sum

of a maximal contiguous subsequence in A with O(n) complexity. (20’)

◮Exercise 223 (r18b). Analyze the following algorithms that take an array A of integers. First,

briefly describe what the algorithm does, and then analyze the best- and worst-case complexity as

functions of the size of the input n = |A|. Your characterizations should be as tight as possible.

Briefly justify your answers.

Question 1: Describe and analyze the following Algo-X (10’)

Algo-X(A)

1 for i = |A| downto 2

2 s = true

3 for j = 2 to i
4 if A[j − 1] > A[j]
5 swap A[j − 1]↔ A[j]
6 s = false

7 if s == true

8 return

Question 2: Describe and analyze the following Algo-Y (10’)

Algo-Y(A)

1 i = 1

2 j = |A|
3 while i < j
4 if A[i] > A[j]
5 swap A[i]↔ A[i+ 1]
6 if i+ 1 < j
7 swap A[i]↔ A[j]
8 i = i+ 1

9 else j = j − 1

◮Exercise 224 (m19). Write an algorithm Partition-Zero(A) that takes an array of numbers A
and, in O(n) time, rearranges the elements of A in-place so that all the negative elements of A pre-

cede all the elements equal to zero that precede all the positive elements. For example, with an ini-

tial array A = [2,5,0,−1,3,−7,0,3,−1,10], a valid (but not unique) result of Partition-Zero(A)
would be the permuted array A = [−1,−7,−1,0,0,2,5,3,3,10]. (20’)

◮Exercise 225 (m19). Implement a priority queue. Given two objects x and y , you can test whether

x has a higher priority than y by testing the condition x > y . Briefly describe the data structure

(data and meta-data) and then write three algorithms: PQ-Init(n) creates, initializes, and returns

a priority queue Q of maximal size n; PQ-Enqueue(Q,x) enqueues an object x into queue Q;

PQ-Dequeue(Q) extracts and returns an object x such that there is no other object y in Q such

that y > x. Both PQ-Enqueue and PQ-Dequeue must have a complexity O(logn). (30’)

◮Exercise 226 (m19). Consider the following algorithm Algo-X(A, B) that takes two arrays of num-

bers

Algo-X(A, B)

1 C = copy of array B
2 n = C. length

3 for i = 1 to A. length

4 j = 1

5 while j ≤ n
6 if A[i] == C[j]
7 swap C[j] ↔ C[n]
8 n = n− 1

9 else j = j + 1

10 if n == 0

11 return true

12 else return false

Question 1: Briefly explain what Algo-X does, and analyze its complexity by also describing a

worst-case input. (10’)

Question 2: Write a an algorithm Better-Algo-X that is functionally identical to Algo-X but with

a strictly better time complexity. (20’)

◮Exercise 227 (m19). Consider the following algorithm Questionable-Sort(A) that takes an array

of numbers A and intends to sort it in-place.

Questionable-Sort(A)

1 for i = 1 to A. length− 1

2 for j = i+ 1 to A. length

3 if A[i] > A[j]
4 swap A[i]↔ A[j]

Question 1: Is Questionable-Sort correct? If so, explain how the algorithm works. If not, show a

counter-example. (10’)

Question 2: Write an algorithm Better-Sort that sorts in-place with a strictly better average-case

complexity than Questionable-Sort. (10’)

◮Exercise 228 (m19). Write an algorithm Lower-Bound(A,x) that takes a sorted array A of num-

bers and, in O(logn) time returns the least (smallest) number ai in A such that ai ≥ x. If no such

value exists, Lower-Bound(A,x) must return a “not-found” error. (20’)

◮Exercise 229 (f19). Write an algorithm Contains-Square(A) that takes an ℓ × ℓ matrix A of

numbers, and returns true if and only if A contains a square pattern of equal numbers, that is,

a set of equal elements Ax,y whose positions, interpreted as points with Cartesian coordinates

(x,y), lay on the perimeter of a square. A square pattern consists of at least four elements, so a

single number is not a valid square pattern. For example, the following matrix contains a square

pattern consisting of elements with value 3. Notice in fact that there are two such square patterns.




7 8 3 8 8 3

7 8 3 3 3 3

1 3 3 5 8 3

7 6 3 5 3 3

0 4 3 3 3 3

9 9 1 3 7 3




Also, analyze the complexity of your solution as a function of n = ℓ2. (20’)

◮Exercise 230 (f19). Write an algorithm Min-Heap-Change(H, i, x) that takes a min-heap H of

size n, an index i, and a value x, and changes the value H[i] to x, possibly adjusting the heap so

as to maintain the min-heap property. Min-Heap-Change must run in O(logn) time. Analyze the

complexity of your solution. (20’)

◮Exercise 231 (f19). Write an algorithm BST-subset(T1, T2) that takes two binary search trees T1

and T2 (the roots) and returns true if and only if T1 contains a subset of the keys in T2. Your

solution must run in time O(n), where n is the total size of the two input trees. Analyze the

complexity of your solution. (20’)

◮Exercise 232 (f19). Consider the following decision problem: given a graph G = (V, E) and an

integer k, return true if G contains a cycle of length k, or otherwise false. Is this problem in NP?

Show a proof of your answer. (20’)

◮Exercise 233 (f19). Consider the following decision problem: given a graph G = (V, E), return

true if G contains a cycle of length 4, or otherwise false. Is this problem in P? Show a proof of

your answer. (20’)

◮Exercise 234 (f19). Write an algorithm Sums-One-Two-Three(n) that takes an integer n and, in

time O(n), returns the number of possible ways to write n as a sum of 1, 2, and 3. For example,

Sums-One-Two-Three(4)must return 7 because there are 7 ways to write 4 as a sum of ones, twos,

and threes (1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 2+ 1, 2+ 1+ 1, 2+ 2, 1+ 3, 3+ 1). Analyze the complexity

of your solution. Hint: use dynamic programming. (20’)

◮Exercise 235 (r19). Write an algorithm Two-Primes(n) that takes a number n and returns true

if and only if n is the sum of two primes. For example, Two-Primes(12) returns true because

12 = 5 + 7, and 5 and 7 are primes, but Two-Primes(11) returns false, because it can not be

expressed as the sum of two primes. Analyze the complexity of your solution as a function of n.

Recall that a prime p is a positive integer that can not be written as the product of two positive

integers smaller than p. Thus 2,3,5,7,11, . . . are primes, but 1 and 4 are not. (20’)

◮Exercise 236 (r19). Consider the following algorithm Algo-X(A) that takes a non-empty array A
of objects each with two numeric attributes: weight and category.

Algo-X(A)

1 c = A[1].category

2 w = −∞
3 for i = 1 to A. length

4 t = 0

5 for j = 1 to A. length

6 if A[j].category == A[i].category

7 t = t +A[j].weight

8 if t > w or (t == w and c > A[i].category)
9 c = A[i].category

10 w = t
11 return c

Question 1: Describe at a high-level what Algo-X does, and analyze its complexity. (10’)

Question 2: Write an algorithm Better-Algo-X that is functionally equivalent to Algo-X but with

a strictly better time complexity. (20’)

◮Exercise 237 (r19). Consider a min-heap represented internally as an array H with an additional

attribute H.heap-size representing the number of elements in the heap.

Question 1: Write an algorithm Min-Heap-Insert(H,x) that takes a valid min-heap H and inserts

a new value x in H . Analyze the complexity of your solution. (10’)

Question 2: Write an algorithm Min-Heap-Depth(H) that computes the depth of a given min-heap

in O(logn) time. (10’)

◮Exercise 238 (r19). Consider the following algorithm Algo-Y(A) that takes an array A of num-

bers.

Algo-Y(A)

1 m = −∞
2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 if A[i]+A[j] > m
5 m = A[i]+A[j]
6 return m

Question 1: Describe at a high-level what Algo-Y does and analyze its complexity. (10’)

Question 2: Write an algorithm Better-Algo-Y that is functionally equivalent to Algo-Y and that

runs in O(n) time. (20’)

◮Exercise 239 (r19). Consider the following decision problem: given an array A of numbers, a

number m, and an integer k, output true if A contains k distinct elements A[i1],A[i2], . . . , A[ik]
such that A[i1]+A[i2]+ · · · +A[ik] ≥m, or false otherwise. Is this problem in P? Show a proof

of your answer. (20’)

◮Exercise 240 (m20). Given a number k, a step-k sequence of length ℓ is a sequence of ℓ numbers (20’)

a1, a2, . . . , aℓ such that either ai = ai+1 + k for all pairs of adjacent elements ai, ai+1, or ai + k =
ai+1 for all pairs of adjacent elements ai, ai+1. For example, the sequence 2,3.5,5,6.5,8 is a step-

1.5 sequence, and 7,4,1,−2 is a step-3 sequence.

Write a python function called maximal_step_k_length(A,k) that takes a sequence of numbers A,

and a number k, and returns the maximal length ℓ such that there is at least one contiguous

sequence of elements in A that form a step-k sequence. You solution must have a time complexity

O(n), where n is the length of A.

For example, maximal_step_k_length([2,4,5,6,8,6,4,2,0,2,4,6,10,3,1],2) must return 5.

◮Exercise 241 (m20). Your sport watch is equipped with an altitude sensor that, every second, (30’)

measures your altitude in meters. Given an array A = [a1, a2, . . . , an] of n consecutive altitude

measurements, you want to determine whether you had a high-power run. A high-power run

occurs when there is a certain total altitude gain over a period of time, where the total altitude

gain is the sum of all altitude gains (positive altitude variations) over that period. For example, the

sequence of measurements 10,10,12,11,10,11,12 corresponds to a total altitude gain of 4 meters

(10,12 and then 10,11,12).

Write a Python function called high_power_run(A,h,t) that takes a vector A of altitude measure-

ments taken consecutively every second, an altitude gain h, and a time limit t, and returns True if A
indicates a steep climb of at least h meters in at most t seconds, or False otherwise. Your solution

must have a complexity O(n). For example, high_power_run([10,6,1,3,2,1,3,4,6,5,6,4,3,4],6,5)

must return True, because the measurements 1,3,4,6,5,6 indicate a total gain of 6 meters in 5

seconds. However, high_power_run([10,6,1,3,2,1,3,4,6,5,6,4,3,4],6,4) must return False, because

there is no total gain of at least 6 meters in 4 seconds.

◮Exercise 242 (m20). An array A = [a1, a2, . . . , an] of numbers is said to be in “peak” order if (20’)

ai ≥ ai−1 for all 1 < i ≤ (n+1)/2, and aj ≥ aj+1 for all (n+1)/2 ≤ j < n. In essence, A is in peak

order when its first half is in ascending order while the second half is in descending order. Write a

Python function called peak_order(A) that takes an array of numbers A and reorders its elements

into a peak order. peak_order(A) must change the array A in-place, and must run in O(n logn)
time.

◮Exercise 243 (m20). A left-rotation of an array A is defined as a permutation of A such that every

element is shifted by one position to the left except for the first element that is moved to the

last position. For example, with A = [1,2,3,4,5,6,7,8,9], a left-rotation would change A into

A = [2,3,4,5,6,7,8,9,1].
Question 1: Write an algorithm rotate(A,k) that takes an array A and performs k left-rotations on (10’)

A. The complexity of your algorithm must be O(n), which means that the complexity must not

depend on k.

Question 2: Write a function rotate_inplace(A,k) that takes an array A and, in O(n) steps, performs (30’)

k left-rotations in-place. In-place means that rotate_inplace(A,k) may not use more than a constant

amount of extra memory. If your implementation of rotate(A,k) is already in-place, then you may

use it directly to implement rotate_inplace(A,k).

◮Exercise 244 (m20). Write a function is_sorted(A) that returns True if A is sorted in either ascend- (10’)

ing or descending order. Analyze the complexity of is_sorted(A).

◮Exercise 245 (f20). Given a set of integers A, define C(A) as the set of all the subsets of A that

contain at most one number whose decimal representation ends in the same digit. So, for example,

if A = {7,31,17,20} then C(A) contains {7}, {31}, and {7,31,20}, but does not contain the set

{7,20,17} because {7,20,17} contains more than one element whose decimal representation ends

in the same digit (7).

Question 1: Write a function count_C(A) that takes an array of distinct integers A and returns the (20’)

size of C(A). count_C(A) must run in linear time and must allocate only a constant amount of

memory. Hint: the decimal representation of a number a ends in digit d when a ≡ d mod 10, that

is, when the remainder of the integer division of a by 10 is d, which you can check in python with

the condition a % 10 == d.

For example, print_C([7, 31, 17, 20]) must return 11.

Question 2: Write a function print_C(A) that prints C(A), with each set in C(A) on a separate line. (20’)

print_C(A) must have a linear complexity in the size of C(A), that is, it must be linear in the size of

its output and therefore minimal.

For example, print_C([7, 31, 17, 20]) should output the following lines (in any order):

7

17

31

31 7

31 17

20

20 7

20 17

20 31

20 31 7

20 31 17

◮Exercise 246 (f20). Consider the following number-matching game. A pair of numbers a and b
is worth 3 point if a = b; 5 if a 6= b but a divides b exactly or vice-versa b divides a; 9 points if

a = b2 or b = a2; and 1 point otherwise. Notice that if a = b2, it is also the case that b divides a,

but the value is still 9 points.

The game starts with two lists of numbers, A and B, from which you can remove any number of

elements, resulting in two new sub-sequences A′ = [a1, a2, . . . , aℓ] and B′ = [b1, b2, . . . , bℓ]. The

score is the total value of all the pairs (a1, b1), (a2, b2), . . . (aℓ, bℓ). Notice that if A′ and B′ are not

of the same size ℓ, the total score is still the same as the score of two lists trimmed to the smaller

size ℓ.

For example, the initial score with A = [4,9,5,100] and B = [1,2,2,10,3] is 16, but you can

remove the second element from A and the first element from B to obtain A′ = [4,5,100] and

B′ = [2,2,10,3] with a score of 19.

Question 1: Write an algorithm Maximal-Score(A, B) that computes the maximal score achievable (10’)

at the number-matching game with input sequences A and B. Analyze the complexity of your

solution.

Question 2: Write a Python function maximal_score(A,B) that takes two arrays of integers A and B, (20’)

and returns the maximal score achievable at the number-matching game.

◮Exercise 247 (f20). Consider the following decision problem. Given an undirected graph G = (20’)

(V, E), and a number k, output 1 if G contains a subgraph H that is a tree of size k, or 0 otherwise.

Recall that a subgraph H = (VH , EH) is defined by a subset VH ⊆ V and by all the edges Eh ⊆ E that

connect vertices in VH . In other words, a subgraph can be obtained by removing a set of vertices

and all the edges adjacent to them. Recall also that a tree over n vertices is a connected graph with

no cycles, and therefore with n− 1 edges.

Is this problem in NP? Show a proof of your answer in a text file called ex3.txt.

◮Exercise 248 (f20). Consider the following algorithm Algo-X(P) that takes a sequence of n dis-

tinct 2D points P = [(x1, y1), (x2, y2), . . . , (xn, yn)] each represented by its Cartesian coordinates,

such that P[i].x and P[i].y are the coordinates of point P[i], respectively.

Algo-X(P = [(x1, y1), (x2, y2), . . . , (xn, yn)])

1 n = P. length

2 for i = 1 to n
3 for j = 1 to n
4 if j 6= i
5 ax = P[j].x − P[i].x
6 ay = P[j].y − P[i].y
7 for k = j + 1 to n
8 if k 6= i
9 bx = P[k].x − P[i].x

10 by = P[k].y − P[i].y
11 if axbx + ayby == 0

12 return true

13 return false

Question 1: Describe what Algo-X does and analyze its complexity. Give a high-level, conceptual (10’)

description of the functionality expressed by the algorithm. Do not simply paraphrase the pseudo-

code. Hint: recall from basic linear algebra that the dot-product of two vectors a and b relates to

the angle between a and b. In particular, a ·b = 0 means that a and b are orthogonal, that is, they

form a right angle.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X (20’)

but with a strictly better time complexity. Analyze the complexity of your solution.

◮Exercise 249 (r20). You are given an arrayA of objects. The objects are opaque, meaning that you (20’)

do not know their structure. An equivalence relation exists between objects, that can be checked

in constant-time with an algorithm Equals(x,y). No other relation exists, in particular there are

no order relations between the objects. Write an algorithm Cluster(A) that changes A in-place so

that equal objects are contiguous. Also, analyze the worst-case and best-case complexities of your

solution.

As an example, imagine that objects are letters with the usual case-insensitive equality relation

(but without a lexicographical or any other ordering relation). Then, given an input

A = [A,n,t,o,n,i,o,C,a,r,z,a,n,i,g,a]

Cluster(A) could change A as follows

A = [C,i,i,a,A,a,a,o,o,r,z,t,n,n,n,g].

Notice that no particular order is required. The only requirement is that equal objects be contigu-

ous in A. Notice also that the algorithm must be in-place. In practice this means that you may not

use any additional data structure to store the elements of A.

◮Exercise 250 (r20). An array M holds a set of measurements of temperature and humidity in

a forest. M[i].time is the time of measurement i, M[i].temperature is the temperature, and

M[i].humidity is the humidity. Measurements in M are time-ordered, so for i < j, M[i].time <
M[j].time. A series of measurements M[i],M[i+ 1], . . . ,M[j] (with i < j) indicates a fire danger

when the temperature is monotonically increasing, soM[i].temperature < M[i+1].temperature <
· · · < M[j].temperature, and the humidity is monotonically decreasing, so M[i].humidity >
M[i+ 1].humidity > · · · > M[j].humidity.

Question 1: Write an algorithm Maximal-Danger-Period(M) that finds the maximal duration of (10’)

any fire-danger period in M , that is, the maximal interval M[j].time −M[i].time (i > j) such that

the measurements between i and j indicate a fire danger. The result should be 0 if there are no

fire-danger periods in M . Also, analyze the best and worst-case complexity of your solution.

Question 2: Write a Python function max_danger_linear(M) that finds the maximal duration of any (20’)

fire-danger period in O(n) time. You may assume that the input array M contains objects with

numeric attributes time, temperature, and humidity.

◮Exercise 251 (r20). Consider the following algorithm Algo-X(A, B, k) that takes two arrays of

numbers A and B and an integer k:

Algo-X(A, B, k)

1 for i = 1 to A. length− k+ 1

2 d = 0

3 j = 1

4 while j + k− 1 ≤ B. length

5 if d == k
6 return true

7 elseif A[i+ d] == B[j + d]
8 d = d+ 1

9 else d = 0

10 j = j + 1

11 return false

Question 1: Describe what Algo-X does and analyze its complexity. Do not just paraphrase the (10’)

code. Explain the behavior of the algorithm at a high-level.

Question 2: Consider the following algorithm: (20’)

Algo-Y(A, B)

1 if Algo-X(A, B,1)
2 return false

3 else return true

Write an algorithm Better-Algo-Y(A, B) that is exactly equivalent to Algo-Y(A, B) and that runs

in O(n logn) time, where n is the combined length of A and B.

◮Exercise 252 (r20). Consider the following decision problem: Given an undirected graph G and

an integer k, return true if and only if G contains at least k vertices that are all reachable from

each other. Answer the following questions about this problem in a text file called ex4.txt.

Question 1: Is this problem in NP? Show a proof of your answer. (10’)

Question 2: Is this problem in P? Show a proof of your answer. (20’)

Question 3: Can this problem be solved in linear time? Show a proof of your answer. (10’)

◮Exercise 253 (m21). Consider the following algorithm Algo-X(A, k) that takes a sequence A of n
numbers and a positive integer k:

Algo-X(A, k)

1 B = Algo-Y(A,1, A. length+ 1)
2 c = 0

3 for i = 1 to B. length

4 if i ≤ k
5 c = c + B[i]
6 else return c
7 return c

Algo-Y(A, i, j)

1 D = empty sequence

2 if j − i == 1

3 append A[i] to D
4 elseif j − i > 1

5 k = ⌊(i+ j)/2⌋
6 B = Algo-Y(A, i, k)
7 C = Algo-Y(A, k, j)
8 b = 1

9 c = 1

10 while b ≤ k− i or c ≤ j − k
11 if c > j − k or (b ≤ k− i and B[b] < C[c])
12 append B[b] to D
13 b = b + 1

14 else append C[c] to D
15 c = c + 1

16 return D

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best- and worst- (5’)

case complexity? If so, describe a best-case and a worst-case input of size n, as well as the behavior

of the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (20’)

but with a strictly better complexity in the average case. Analyze the complexity of Better-Algo-X.

Notice that if Algo-X modifies the content of the input array A, then Better-Algo-X must do the

same. Otherwise, if Algo-X does not modify A, then Better-Algo-X must not modify A.

◮Exercise 254 (m21). Consider the following algorithm Algo-X(A,x) that takes a sorted sequence

A of n numbers and a positive number x.

Algo-X(A,x)

1 for i = 1 to A. length

2 if Algo-Y(A, i,A. length+ 1, A[i]+ x)
3 return true

4 return false

Algo-Y(A, i, j, x)

1 while j > i
2 k = ⌊(i+ j)/2⌋
3 if x < A[k]
4 j = k
5 elseif x > A[k]
6 i = k+ 1

7 else return true

8 return false

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best- and worst- (5’)

case complexity? If so, describe a best-case and a worst-case input of size n, as well as the behavior

of the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (20’)

but with a strictly better complexity in the worst case. Analyze the complexity of Better-Algo-X,

showing a best-case and a worst-case input. Notice that if Algo-X modifies the content of the

input array A, then Better-Algo-X must do the same. Otherwise, if Algo-X does not modify A,

then Better-Algo-X must not modify A.

◮Exercise 255 (m21). Given a sequence of 2n numbers A = x1, y1, x2, y2, . . . , xn, yn representing

the Cartesian coordinates of n points in the plane, p1 = (x1, y1), p2 = (x2, y2), . . . pn = (xn, yn),
consider the line segments pi–pj defined by pairs of distinct points in A. You may assume that no

two points in A are identical. That is, i 6= j implies pi 6= pj .

Question 1: Write two Python functions, count_vertical(A) and count_horizontal(A), that (10’)

given the sequence A structured as above, return the number of vertical and horizontal segments

in A, respectively. Also, write an analysis of the complexity of your solution.

Question 2: Write a Python function intersection(A) that returns True if A contains at least one (20’)

vertical segment that intersects at least one horizontal segment, or False otherwise. Also, write

an analysis of the complexity of your solution, in particular describing a worst-case input.

Two segments intersect when they have at least one point in common. For example, the vertical

segment (1,7)–(1,0) intersects the horizontal segment (0,1)–(10,1). Similarly, the vertical seg-

ment (1,7)–(1,0) intersects the horizontal segment (1,0)–(3,0). However, the vertical segment

(1,7)–(1,0) does not intersect the horizontal segment (0,10)–(10,10). Therefore, as an example,

intersection([9,3,5,6,0,9,3,2,6,7,7,9,3,5,1,8,8,4,9,0]) must return False, since the

set of points (9,3), (5,6), (0,9), (3,2), (6,7), (7,9), (3,5), (1,8), (8,4), (9,0) do not define inter-

secting vertical and horizontal segments. Instead, with the sequence of points (5,1), (9,0), (2,3),
(2,2), (9,2), (5,4), (0,3), (7,2), (8,6), (4,2), intersection must return True, since horizontal

segment (2,2)–(9,2) intersects vertical segment (5,1)–(5,4); and with the sequence (2,6), (8,6),
(3,6), (7,5), (5,3), (1,6), (7,1), (5,0), (8,8), (5,6), the result must be True because horizontal

segment (2,6)–(8,6) intersects vertical segment (8,6)–(8,8).

◮Exercise 256 (m21). Given a sequence of numbers A = a1, a2, a3, . . . , an, we say that a subse- (30’)

quence ai, ai+1, . . . , aj of length j − i + 1 ≥ 2 is strictly increasing if ai < ai+1 < · · · < aj , or

strictly decreasing if ai > ai+1 > · · · > aj.
Write a Python function increasing_or_decreasing(A) that, given a sequence of numbers A, in

time O(n) returns the string ’increasing’ if A contains a strictly increasing subsequence that is

longer than any strictly decreasing subsequence in A; or vice-versa the result is ’decreasing’ if A
contains a strictly decreasing subsequence that is longer than any strictly increasing subsequence

in A. If there are no strictly increasing or strictly decreasing subsequences, then the return value

must be the string ’flat’. If there are strictly increasing and strictly decreasing subsequences,

but the maximal sequences of the two kinds are of equal length, then the return value must be

’equal’. Also, write an analysis of the complexity of your solution.

You may use the following examples to test your code:

>>> increasing_or_decreasing([1])

’flat’

>>> increasing_or_decreasing([1,1,1,1,1])

’flat’

>>> increasing_or_decreasing([1,2,1,2,1])

’equal’

>>> increasing_or_decreasing([1,2,1,2,10,1])

’increasing’

>>> increasing_or_decreasing([1,2,3,2,8,10,1,0])

’equal’

>>> increasing_or_decreasing([1,20,11,10,1,0])

’decreasing’

◮Exercise 257 (f21). Consider the following algorithm Algo-X(A) that takes a sequence A of n
numbers.

Algo-X(A)

1 for i = 2 to A. length

2 j = i− 1

3 a = remainder of the integer division A[i]/4
4 s = true

5 while j > 0

6 b = remainder of the integer division A[j]/4
7 if a < b
8 swap A[j] ↔ A[j + 1]
9 j = j − 1

10 else j = 0

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics, independent of the code. Also, analyze the complexity of Algo-X.

Question 2: Write an algorithm called Linear-Algo-X that does exactly the same thing as Algo-X, (25’)

but with a O(n) time complexity. Notice that if Algo-X modifies the content of the input array

A, then Linear-Algo-X must do the same. Otherwise, if Algo-X does not modify A, then Linear-

Algo-X must not modify A.

◮Exercise 258 (f21). You are given a set of n persons represented by the set P = {1,2, . . . , n}, and

a symmetric relation knows ⊆ P ×P represented as a Boolean function knows(p, q), with p,q ∈ P ,

such that knows(p, q) = true (and knows(q,p) = true) if persons p and q have met at least

once, or knows(p, q) = knows(q,p) = false otherwise. We are only interested in the relation

p knows q between two distinct persons p 6= q, so knows(p,p) is always false, by definition.

Question 1: With P and the knows function, you are also given two positive integers k and ℓ, and (10’)

with that you must decide whether there are at least k persons that have each met at least ℓ other

persons. Is this decision problem in P? Write an algorithm that proves it is, or argue otherwise.

Question 2: With P and the knows function, you are also given a positive integers k, and with (20’)

that you must decide whether there are at least k persons that have never met each other. Is this

decision problem in NP? Write an algorithm that proves it is, or argue otherwise.

◮Exercise 259 (f21). Consider the following algorithm Algo-Y(A, k) that takes a sequence A of n
distinct numbers, and a positive integer k.

Algo-Y(A, k)

1 for i = 1 to A. length− 1

2 for j = i+ 1 to A. length

3 if A[j] ·A[j] == A[i]
4 k = k− 1

5 if k == 0

6 return true

7 return false

Question 1: Explain what Algo-Y does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics, independent of the code. Also, analyze the complexity of Algo-Y.

Question 2: Write an algorithm called Better-Algo-Y that does exactly the same thing as Algo- (25’)

Y, but with a strictly better time complexity. Analyze the complexity of Better-Algo-Y. Notice

that if Algo-Y modifies the content of the input array A, then Better-Algo-Y must do the same.

Otherwise, if Algo-Y does not modify A, then Better-Algo-Y must not modify A.

◮Exercise 260 (f21). Given two sequences A and B, a mirror sequence for A and B is a contiguous

subsequence of A that also appears in reverse as a contiguous subsequence of B.

Question 1: Write a Python function longest_mirror_seq(A,B) that, given two sequences A and (10’)

B of total length n, returns the maximal length of a mirror subsequence for A and B. Also analyze

the complexity of your solution as a function of n.

For example, with A=[3,7,4,5,7] and B=[3,7,5,4,3], longest_mirror_seq(A,B) must return

3, because the sequence 4,5,7 in A mirrors the sequence 7,5,4 in B, and that sequence is maximal

in length.

Question 2: Write a Python function longest_mirror_seq2(A,B) that returns the maximal length (20’)

of a mirror subsequence for A and B in timeO(n2). If your solution for Question 1 already satisfies

this complexity requirement, then simply say so.

◮Exercise 261 (r21). You are given three sequences of numbers, A = a1, . . . , an, B = b1, . . . , bn, (20’)

and C = c1, . . . , cn, containing the precise daily measurements of the high temperature in three

locations, LA, LB , and LC , respectively. The measurements in A, B, and C are for the same sequence

of n consecutive days. Write an algorithm Count-Inversions(A, B,C) that, in time O(n), returns

the number of inversions in the given sequences. An inversion occurs when the ranking of the

three locations in terms of their temperatures changes from one day to the next. For example,

there is an inversion if one day the temperature at location LA is higher than the temperature in

LC but the temperature in LC is instead higher the next day. Notice that if one day the ranking

changes from the previous day, you must count one inversion for that day, no matter how the

ranking changes. You may assume that the temperatures are always different at the tree locations,

that is, ai 6= bi, ai 6= ci, ci 6= bi for all i.

◮Exercise 262 (r21). Write a linear-time algorithm At-Most-Three-Values(A) that returns true (20’)

if and only if the input sequence A contains at most three distinct values, or false otherwise. For

example, A = [2, “xyz”,2,−1, “xyz”,2] contains six elements but only three distinct values, so in

this case At-Most-Three-Values(A) would return true. As you can see from this example, the

input array may contain values of different types (strings and numbers) that therefore compare

not-equal.

◮Exercise 263 (r21). You are given a sequence A = a1, a2, . . . , an of n numbers representing mea-

surements collected at regular intervals at times t = 1,2, . . . , n. Therefore, A defines n points on

a chart with Cartesian coordinates (1, a1), (2, a2), . . . , (n,an), respectively. Consider the following

algorithm Algo-X operating on sequence A:

Algo-X(A)

1 for i = 1 to A. length

2 for j = i+ 1 to A. length

3 if Algo-Y(A, i, j)
4 return true

5 return false

Algo-Y(A, i, j)

1 p = nil

2 r = nil

3 for k = 1 to A. length

4 if k 6= i and k 6= j
5 if p == nil

6 p = k
7 elseif r == nil

8 r = (A[k]−A[p])/(k− p)
9 elseif r 6= (A[k]−A[p])/(k− p)

10 return false

11 return true

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing (10’)

a worst-case input.

Question 2: Write an algorithm Better-Algo-X that does the same as Algo-X but with a strictly (20’)

better time complexity. Notice that, if Algo-X modifies its input, then Better-Algo-X should also

modify its input in the same way. Conversely, if Algo-X does not modify its input, then Better-

Algo-X should not do that either. Also analyze the complexity of Better-Algo-X.

Question 3: Write an algorithm Linear-Algo-X that does the same as Algo-X with a O(n) time (20’)

complexity. If your solution for Question 2 is a valid solution for this question, then simply say so.

◮Exercise 264 (r21). Consider a directed graph G = (V,A) representing a set of software com- (30’)

ponents (e.g., functions or methods) and their direct dependencies, such that, for two software

components u,v ∈ V , there is an arc (u,v) ∈ A from vertex u to vertex v, if u directly uses v
(e.g., u invokes v). Let d(v) be the number of unique components that directly or indirectly use v.

Write an algorithm Max-Dependencies(G = (V,Adj)) that, given the adjacency-list representation

of graph G, returns the maximum value of d(v) for any component v in G. Also, analyze the

complexity of your solution.

◮Exercise 265 (m22). Write an algorithm Max-Heap-Insert(H,x) that inserts a value x in a max- (20’)

heap H . Also, write the content of H (as an array) after the insertion of each of the following

values, in the given order, starting from an empty max-heap:

3,7,3,2,9,5,9,8,5,2,9,4,7,3,9

◮Exercise 266 (m22). The following algorithm Algo-X(A) takes an array A of n numbers.

Algo-X(A)

1 for i = 1 to A. length

2 s = 0

3 for j = 1 to A. length

4 if i 6= j
5 s = s +A[j]
6 if A[i] == s
7 return true

8 return false

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics of the algorithm independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best and worst- (5’)

case complexity? If so, describe a best and a worst-case input of size n, as well as the behavior of

the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X (10’)

in O(n) time.

◮Exercise 267 (m22). The following algorithm Algo-Y(A, r , c) operates on an r × c matrix of n =
rc elements, where r and c are the numbers of rows and columns of the matrix, and the matrix is

stored row-wise in the given array A. This means that the first c elements of A are the c elements

of the first row of the matrix, the following c elements of A are the c elements of the second row

of the matrix, and so on.

Algo-Y(A, r , c)

1 for i = 1 to rc
2 for j = i+ 1 to rc
3 if A[i] == A[j]
4 a = ⌊(i− 1)/c⌋ // integer division

5 b = ⌊(j − 1)/c⌋ // integer division

6 if a == b or a == b − 1

7 if i− ac == j − bc or i− ac == j − bc + 1 or i− ac == j − bc − 1

8 return true

9 return false

Question 1: Explain what Algo-Y does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics of the algorithm independent of the code.

Question 2: Analyze the complexity of Algo-Y. Is there a difference between the best and worst- (5’)

case complexity? If so, describe a best and a worst-case input of size n, as well as the behavior of

the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-Y that does exactly the same thing as Algo-Y, (20’)

but with a strictly better complexity in the worst case. Analyze the complexity of Better-Algo-Y.

◮Exercise 268 (m22). Write an algorithm Find-Avg-Point(A) that takes an array of n ≥ 2 num- (20’)

bers, and returns a position i where the values in A cross the average between the first and last

element. More specifically, letting m = (A[n] + A[1])/2, Find-Avg-Point(A) must return an in-

dex i such that A[i] ≤ m ≤ A[i + 1] or A[i] ≥ m ≥ A[i + 1]. Find-Avg-Point(A) must have

a worst-case time complexity of o(n), meaning strictly better than linear time. Also, analyze the

complexity of Find-Avg-Point. (Hint: interpret the values in A as a series of points with coordi-

nates (i,A[i]) connected by line segments. Find-Avg-Point(A) must return a position i where the

segment crosses or touches the horizontal line at level m.)

◮Exercise 269 (m22). We say that an array A is in “e-top” order when A[i] ≤ A[j] for all i, j (30’)

such that i is odd and j is even. Write an algorithm Sort-E-Top(A) that sorts an array A in e-top

order with an average-case time complexity of O(n). You may want to use standard, well-known

algorithms. However, you must explicitly write their pseudo-code.

◮Exercise 270 (f22). Write an algorithm BST-Count-In-Range(T ,a, b) that, given the root t of a (20’)

binary search tree and two values a and b, returns the number of keys in the tree that are between

a and b. Also, analyze the best and worst-case complexity of your solution.

◮Exercise 271 (f22). Some sensors equipped with a radio transmitter/receiver are deployed over

a flat region. The location of each sensor is identified by its Cartesian coordinates (x,y). The

sensors are supposed to send data to a central station located at coordinates (0,0), which is also

equipped with the same radio transmitter/receiver. All transmitters/receivers have an effective

range r , meaning that two radios can communicate if and only if their distance is at most r .

However, the sensors and the base station establish a network, such that two devices that are not

within direct radio communication can still communicate indirectly through one or more other

devices that act as relay stations. See the example below.

S

a
b

c

d

r

We have four sensors, a,b, c, d, and a base station S. The

circles represent the range of each radio. Sensor a can

communicate with the base station directly, and sensor b
can also communicate with the base station through a act-

ing as a relay. Sensors c and d can communicate with each

other but not with S.

Question 1: Write an algorithm Check-Connectivity(X, Y , r) that, given the coordinates of all (20’)

the sensors stored in arrays X and Y , such that sensor i is located at coordinates (X[i], Y[i]), and

given the communication range r , returns true if all sensors can transmit their data to the base

station, or false if one or more sensors can not do that. Also, analyze the complexity of your

solution.

Question 2: Write an algorithm Minimal-Connectivity-Range(X, Y , t) that, given the coordinates (20’)

of all the sensors stored in arrays X and Y , and given a precision threshold t, returns the minimal

radio range r that would guarantee full connectivity. The resulting radius r may be an approxi-

mation of the actual minimal radius r up to a threshold t, meaning that |r − r | ≤ t. Hint: you

can use the Check-Connectivity algorithm of Question 1. You may use Check-Connectivity

even if you did not write that algorithm correctly or at all. Analyze the complexity of Minimal-

Connectivity-Range.

◮Exercise 272 (f22). Given an array A of n numbers, we say that A contains a pair of value v if

there are two elements ai, aj ∈ A (i 6= j) such that ai + aj = v. Now, given a positive integer k,

you must decide whether the elements of A can form at least k pairs of the same value v. Notice

that an element ai may appear in at most one pair. For simplicity, you may assume that the values

in A are distinct, that is, i 6= j implies that A[i] 6= A[j].
For example, for k = 3 and A = [8,3,6,10,9,14,13,20,4,5,12], the answer is “yes”, because

we can form three pairs, such as (10,4), (8,6), (9,5), of the same value 14. For k = 4 and

the same array A, the answer is still “yes”, since A contains 4 pairs of equal value, such as

(8,10), (6,12), (13,5), (14,4). However, For k = 5 the answer is “no”.

Question 1: Is this problem in NP? Write an algorithm that proves it, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it, or argue the opposite. (20’)

◮Exercise 273 (f22). Consider the following algorithm Algo-X(A, B) operating on two arrays of

numbers A and B of total length A. length+ B. length = n:

Algo-X(A, B)

1 C = [false]∗A. length // array of A. length Boolean values all initially false

2 for j = 1 to B. length

3 i = 1

4 while i ≤ A. length and (C[i] == true or A[i] 6= B[j])
5 i = i+ 1

6 if i ≤ A. length

7 C[i] = true

8 else return false

9 for i = 1 to A. length

10 if C[i] == false

11 return false

12 return true

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the best and worst-case complexity

of Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo- (20’)

X, but with a strictly better worst-case time complexity and equal or better best-case complexity.

Analyze the complexity of Better-Algo-X. Notice that if Algo-X modifies the content of the input

arrays A and B, then Better-Algo-X must do the same. Otherwise, if Algo-X does not modify A
and B, then Better-Algo-X must not modify A and B.

◮Exercise 274 (f22b). Write an algorithm BST-Count-Outside-Range(T ,a, b) that, given the root (30’)

T of a binary search tree and two values a and b, returns the number of keys in the tree that

are outside of the interval [a, b]. Your solution must have a best-case complexity of O(1). Also,

analyze the worst-case complexity of your solution.

◮Exercise 275 (f22b). A social networkN is defined by a set of usersU and by a constant-time func-

tion F(u1, u2) that tells whether users u1 and u2 are “friends”. We say that a social network can

be covered by a social circle of diameter D ≥ 1 when, for all pairs of users a and b, either F(a, b)
or there is a chain u1, u2, . . . , uk of k < D other users such that F(a,u1), F(u1, u2), . . . , F(uk, b).
Given a social network N = (U, F) and a number d, consider the problem of determining whether

the social network can be covered by a social circle of diameter d.

Question 1: Is this problem in NP? Write an algorithm that proves it, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it, or argue the opposite. (20’)

◮Exercise 276 (f22b). Consider the following algorithm Algo-X(A, B) operating on two arrays of

numbers A and B of total length A. length+ B. length = n:

Algo-X(A, B)

1 for ℓ = A. length downto 1

2 for j = 1 to B. length

3 for i = 1 to A. length− ℓ+ 1

4 s = 0

5 for k = i to i+ ℓ− 1

6 s = s +A[k]
7 if s == B[j]
8 return ℓ
9 return 0

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the best and worst-case complexity

of Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo- (20’)

X, but with a strictly better worst-case time complexity and equal or better best-case complexity.

Analyze the complexity of Better-Algo-X. Notice that if Algo-X modifies the content of the input

arrays A and B, then Better-Algo-X must do the same. Otherwise, if Algo-X does not modify A
and B, then Better-Algo-X must not modify A and B.

◮Exercise 277 (f22b). Consider the following algorithm that takes an array A of numbers:

Algo-Y(A)

1 B = [nil]∗A. length // empty array of size A. length

2 ℓ = 0

3 for i = 1 to A. length

4 k = 1

5 for j = i+ 1 to A. length

6 if A[i] == A[j]
7 k = k+ 1

8 if ℓ == 0 or B[ℓ] < k
9 ℓ = 1

10 B[ℓ] = A[i]
11 elseif B[ℓ] == k
12 ℓ = ℓ + 1

13 B[ℓ] = A[i]
14 sort the first ℓ elements of B
15 for i = 1 to ℓ
16 print B[i]

Question 1: Briefly explain what Algo-Y does and analyze the complexity of Algo-Y by describing

a worst-case input. Do not simply paraphrase the code. Instead, explain the high-level semantics,

independent of the code. (10’)

Question 2: Write an algorithm Better-Algo-Y that does the same as Algo-Y but with a strictly

better time complexity. Also analyze the complexity of Better-Algo-Y. Notice that if Algo-Y

modifies the content of the input array A, then Better-Algo-Y must do the same. Otherwise, if

Algo-Y does not modify A, then Better-Algo-Y must not modify A either. (20’)

◮Exercise 278 (f22c). Write an algorithm BST-Count-Outside-Range(T ,a, b) that, given the root (30’)

T of a binary search tree and two values a and b, returns the number of keys in the tree that

are outside of the interval [a, b]. Your solution must have a best-case complexity of O(1). Also,

analyze the worst-case complexity of your solution.

◮Exercise 279 (f22c). A social networkN is defined by a set of users U and by a constant-time func-

tion F(u1, u2) that tells whether users u1 and u2 are “friends”. We say that a social network can

be covered by a social circle of diameter D ≥ 1 when, for all pairs of users a and b, either F(a, b)
or there is a chain u1, u2, . . . , uk of k < D other users such that F(a,u1), F(u1, u2), . . . , F(uk, b).
Given a social network N = (U, F) and a number d, consider the problem of determining whether

the social network can be covered by a social circle of diameter d.

Question 1: Is this problem in NP? Write an algorithm that proves it, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it, or argue the opposite. (20’)

◮Exercise 280 (f22c). Consider the following algorithm Algo-X(A, B) operating on two arrays of

numbers A and B of total length A. length+ B. length = n:

Algo-X(A, B)

1 for ℓ = A. length downto 1

2 for j = 1 to B. length

3 for i = 1 to A. length− ℓ+ 1

4 s = 0

5 for k = i to i+ ℓ− 1

6 s = s +A[k]
7 if s == B[j]
8 return ℓ
9 return 0

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the best and worst-case complexity

of Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo- (20’)

X, but with a strictly better worst-case time complexity and equal or better best-case complexity.

Analyze the complexity of Better-Algo-X. Notice that if Algo-X modifies the content of the input

arrays A and B, then Better-Algo-X must do the same. Otherwise, if Algo-X does not modify A
and B, then Better-Algo-X must not modify A and B.

◮Exercise 281 (f22c). Consider the following algorithm that takes an array A of numbers:

Algo-Y(A)

1 B = [nil]∗A. length // empty array of size A. length

2 ℓ = 0

3 m = 0

4 for i = 1 to A. length

5 k = 1

6 for j = i+ 1 to A. length

7 if A[i] == A[j]
8 k = k+ 1

9 if m< k
10 ℓ = 1

11 m = k
12 B[ℓ] = A[i]
13 elseif m == k
14 ℓ = ℓ + 1

15 B[ℓ] = A[i]
16 sort the first ℓ elements of B
17 for i = 1 to ℓ
18 print B[i]

Question 1: Briefly explain what Algo-Y does and analyze the complexity of Algo-Y by describing

a worst-case input. Do not simply paraphrase the code. Instead, explain the high-level semantics,

independent of the code. (10’)

Question 2: Write an algorithm Better-Algo-Y that does the same as Algo-Y but with a strictly

better time complexity. Also analyze the complexity of Better-Algo-Y. Notice that if Algo-Y

modifies the content of the input array A, then Better-Algo-Y must do the same. Otherwise, if

Algo-Y does not modify A, then Better-Algo-Y must not modify A either. (20’)

◮Exercise 282 (r22). Let two numbers a,b define an interval, that is, the set of all numbers x such (30’)

that a ≤ x ≤ b or b ≤ x ≤ a. Write an algorithm Compare-Intervals(a1, b1, a2, b2) that compares

the two intervals, I1 defined by a1 and b1, and I2 defined by a2 and b2. The algorithm should return

“disjoint” if the two intervals are disjoint, meaning that there are no numbers that are in both I1
and I2; or “1 equals 2” if the two intervals are identical, meaning that all the numbers in I1 are also

in I2 and vice-versa; or “1 covers 2” if all the numbers in I2 are also in I1 but not vice-versa; or “2

covers 1” if all the numbers in I1 are also in I2 but not vice-versa; or “partial” if more than one

number is in both I1 and I2, but there are also numbers in I1 that are not in I2 and vice-versa; or

“touch” if there is exactly one number that is in both I1 and I2, and there are also other numbers in

I1 that are not in I2 and vice-versa. For example, Compare-Intervals(−2.3,2,0,−7) must return

“partial”, because the interval [−2.3,0] is in both intervals [−2.3,2] and [−7,0], but there are also

other elements in both; and Compare-Intervals(5.5,6.6,7,5.2)must return “2 covers 1”, because

the first interval, [5.5,6.6] is completely contained in the second interval [5.2,7], and the second

interval has other numbers that are not in the first.

◮Exercise 283 (r22). Given an array A of 2n numbers, a pairing over A is a set of n pairs formed

from the elements of A, such that each element A[i] appears in exactly one pair. For example,

given the array A = [1,0,3,7,3,2], a valid pairing could be (1,3), (3,7), (2,0).

Consider the following decision problem. Given an array A of 2n numbers, output “yes” if there

exists a uniform pairing over A, meaning a pairing in which all the pairs have the same total value.

The total value of a pair is simply the sum of its two elements. For example, the pairing given

above is not uniform, since the total values of its three pairs are 4, 10, and 2, respectively.

Question 1: Is the problem in NP? Write an algorithm that proves it, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it, or argue the opposite. (20’)

◮Exercise 284 (r22). A leaf in a binary search tree T is a node that has no children.

Question 1: Write an algorithm At-Most-K-Leaves(T , k) that, given the root of a binary search tree (10’)

T and a non-negative integer k, returns true if T has at most k leaves, or otherwise false. Also,

analyze the complexity of At-Most-K-Leaves(T , k).

Question 2: Write an algorithm At-Most-K-Leaves-Itr(T , k) that is functionally identical to algo- (20’)

rithm At-Most-K-Leaves(T , k) but does not use recursion either directly or indirectly. If your

implementation of At-Most-K-Leaves(T , k) does not use recursion, just say so.

◮Exercise 285 (r22). Consider the following algorithm Algo-X(A, B) operating on two arrays of

numbers A and B of equal length A. length = B. length = n:

Algo-X(A, B)

1 x = 0

2 for i = 1 to A. length

3 k = Algo-Y(A, B, i)
4 if k > x
5 x = k
6 return x

Algo-Y(A, B, i)

1 k = i
2 while A[k] > B[k]
3 k = k+ 1

4 return k− i

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics independent of the code. Also, analyze the best and worst-case complexity of

Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (20’)

but with a strictly better time complexity. Analyze the complexity of Better-Algo-X. Notice that if

Algo-X modifies the content of the input arrays A and B, then Better-Algo-X must do the same.

Otherwise, if Algo-X does not modify A and B, then Better-Algo-X must not modify A and B.

◮Exercise 286 (m23). Write an algorithm Mountain-Sort(A) that, given an array A of n num- (30’)

bers, sorts A in-place such that the left half of A is increasing and the right half is decreas-

ing. More specifically, the values from A[1] to A[⌊n/2⌋] are increasing and the values from

A[⌊n/2⌋] to A[n] are decreasing. Notice that the left and right subsequences share the ele-

ment in the middle position A[⌊n/2⌋]. Notice also that the resulting order is not unique. For

example, for A = [8,2,5,−12,2,11,−15,−8,−1,12], Mountain-Sort(A) might result in A =
[−12,−8,−1,1,12,11,8,5,2,−15].
You must detail every algorithm you use in your solution. So, if you want to, say, sort the input

array or any part of it, you must explicitly write the sorting algorithm. Also, analyze the complexity

of your solution.

◮Exercise 287 (m23). Consider the following algorithm that takes an array A of n numbers.

Algo-X(A)

1 n = A. length

2 x = 0

3 for i = 1 to n
4 j = 1

5 while j ≤ n and (i == j or A[i] 6= A[j])
6 j = j + 1

7 if j > n
8 x = x + 1

9 return x

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics of the algorithm independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best and worst- (5’)

case complexity? If so, describe a best and a worst-case input of size n, as well as the behavior of

the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X (10’)

with a strictly better time complexity.

◮Exercise 288 (m23). An accounting system models a revenue transaction t as an object with two

attributes, t.date and t.amount representing the date and amount of the transaction, respectively.

Dates are represented as numbers of days since a reference initial date, such that t2.date− t1.date

is the number of days between transactions t1 and t2. Amounts are positive numbers. With that,

consider the following Algo-Y(T) that takes an array T of transactions:

Algo-Y(T)

1 x = 0

2 for i = 1 to T . length

3 l = T[i].amount

4 r = T[i].amount

5 for j = 1 to T . length

6 if i 6= j
7 if T[j].date ≤ T[i].date and T[i].date− T[j].date ≤ 10

8 l = l+ T[j].amount

9 if T[j].date ≥ T[i].date and T[j].date − T[i].date ≤ 10

10 r = r + T[j].amount

11 if x < r
12 x = r
13 if x < l
14 x = l
15 return x

Question 1: Explain what Algo-Y does. Do not simply paraphrase the code. Instead, explain the (5’)

high-level semantics of the algorithm independent of the code.

Question 2: Analyze the complexity of Algo-Y. Is there a difference between the best and worst- (5’)

case complexity? If so, describe a best and a worst-case input of size n, as well as the behavior of

the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-Y that does exactly the same thing as Algo-Y, (20’)

but with a strictly better complexity in the worst case. Analyze the complexity of Better-Algo-Y.

◮Exercise 289 (m23). Consider the following array

H = [3,5,8,6,10,9,5,6,7,20,11,17,6,9,10]

Question 1: Does H contain a valid min heap? If so, extract the minimum value, rearranging H (5’)

again as a minheap, and then write the resulting content of the array. If not, turn H into a min

heap by applying a minimal number of swap operations, and write the resulting content of the

array. Justify your answer.

Question 2: Write an algorithm Min-Heap-Add(H,x) that adds a new value x into a min heap H . (10’)

Question 3: Execute Min-Heap-Add(H,4) using the algorithm you wrote as a solution to Ques- (5’)

tion 2. In this case, the input H contains the min-heap resulting from your solution to Question 1.

Illustrate the execution of Min-Heap-Add(H,4) by writing the full content of the array H at the

beginning of each iteration of the algorithm, as well as at the end of the algorithm.

◮Exercise 290 (m23). Write an algorithm Square-Root(n) that, given a non-negative integer n, (20’)

returns ⌊√n⌋. Square-Root(n) may only use the basic arithmetic operations of addition, subtrac-

tion, multiplication and division (integer), and must run in O(logn) time.

◮Exercise 291 (f23). An array A of n numbers is sorted. Some elements are then set to 0. Write an (30’)

algorithm Re-Sort(A) that takes such an array A and sorts it in-place and in time O(n).

◮Exercise 292 (f23). Consider the following game: you start with two decks of n playing cards

each (shuffled). At each round, you remove one or two cards as follows. If the two cards at the top

of the two decks have the same suit or the same numeric value, you may remove both of them at

no cost. If the two cards have different suits and numbers, or if you do not choose to remove both

of them, you must choose to remove one of the two cards at a cost corresponding to its numeric

value. If one of the decks is empty, you have no choice: you must remove the card on the remaining

deck at the cost of its numeric value. The game ends when both decks are empty.

Now consider the following decision problem: given the two initial shuffled decks A and B and a

maximal cost c, decide whether it is possible to play a game with a total cost less than c. A and B
are arrays of cards; the functions suit(x) and value(x) return, in O(1) time, the suit and numeric

value of a card x, respectively. For example, suit(A[i]) returns the suit of the the i-th card on the

A deck.

Question 1: Is this problem in NP? Show a proof of your answer. (10’)

Hint: a decision problem is in NP when an example that shows that the answer is “yes” can be

verified in polynomial time. Here, a sequence of game choices can be such an example.

Question 2: Is this problem in P? Show a proof of your answer. (20’)

Hint: consider a dynamic-programming approach to find the minimal cost of a game.

◮Exercise 293 (f23). Consider the following algorithm that takes two strings A and B. You may

assume that characters have numeric codes between 0 and m for some relatively small constant

m. For example, ASCII characters are encoded by numbers between 0 and 127.

Algo-X(A, B)

1 V = [] // empty array

2 for i = 1 to B. length

3 append 0 to V
4 for i = 1 to A. length

5 x = false

6 j = 1

7 while j ≤ B. length and x == false

8 if A[i] == B[j] and V[j] == 0

9 x = true

10 V[j] = 1

11 else j = j + 1

12 for j = 1 to B. length

13 if V[j] == 0

14 return false

15 return true

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the complexity of Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo- (20’)

X, but with a strictly better complexity. Analyze the complexity of Better-Algo-X. Notice that if

Algo-X modifies the content of the input strings, then Better-Algo-X must do the same. Other-

wise, Better-Algo-X must not modify A and B.

Bonus: extra points if your Better-Algo-X runs in linear time. (5’)

◮Exercise 294 (f23). Write an algorithm Minimal-Additional-Edges(G) that takes an undirected (30’)

graph G and returns the minimal number of edges that must be added to G to make it connected.

◮Exercise 295 (r23). Write an algorithm BST-Root-Change(t, x) that takes a non-empty binary (30’)

search tree t and changes the key of the root node (meaning t) to x without creating any new

nodes. In other words , BST-Root-Change(t, x) must somehow rearrange the nodes of the BST.

BST-Root-Change(t, x) must then return the new root, which can be the same as the old one. You

must detail every algorithm you use. Also, analyze the complexity of your solution as a function

of the size n and the height h of the tree.

◮Exercise 296 (r23). We want to cover a set of n numbers with a set of k intervals such that the

total length of the intervals is minimal. An interval [a, b], defined by two numbers a ≤ b, covers

all the numbers between a and b, including a and b. For example, [3,7] and [6,10.5] cover all the

numbers in A = [3,5,7,9]. However, their total length (7−3)+(10.5−6) = 8.5 is not minimal. The

minimal length is instead 4. In general, we want to have k intervals [a1, b1], [a2, b2], . . . , [ak, bk]
such that, for each number x in A, there is at least one interval [ai, bi] such that ai ≤ x ≤ bi, and

the total length
∑
(bi − ai) is minimal.

Question 1: Write an algorithm Minimal-K-Interval-Cover-Length(A, k) that, given an array A (10’)

of numbers and a positive integer k, returns the minimal total length of k intervals that cover every

number in A. Also, analyze the complexity of your solution.

Question 2: Write an algorithm Minimal-K-Interval-Cover-Length(A, k) that runs in O(n logn) (20’)

time. If this is already the case for your solution to Question 1, then just say so.

◮Exercise 297 (r23). Consider the following algorithm Algo-X(A, k) that takes an array A of num-

bers, and a positive integer k.

Algo-X(A, k)

1 n = A. length

2 for i = 1 to n
3 x = 0

4 y = 0

5 r = 0

6 for j = 1 to n
7 if A[j] < A[i]
8 x = x + 1

9 r = r +A[j]
10 elseif A[j] == A[i]
11 y = y + 1

12 if x ≤ k and x +y ≥ k
13 return r +A[i](k− x)
14 return nil

Question 1: Explain what Algo-X does. Do not just paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the complexity of Algo-X.

Question 2: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (20’)

but with a strictly better time complexity. Analyze the complexity of Better-Algo-X. Notice that if

Algo-X modifies the content of the input array, then Better-Algo-X must do the same. Otherwise,

Better-Algo-X must not modify A.

◮Exercise 298 (r23). Consider the following algorithm Algo-Y(A) that takes an array A of num-

bers.

Algo-Y(A)

1 B = merge-sort(A)
2 n = A. length

3 x = 1

4 for i = 2 to n
5 if B[i] 6= B[i− 1]
6 x = x + 1

7 if x > 3

8 return true

9 else return false

Question 1: Explain what Algo-Y does. Do not simply paraphrase the code. Instead, explain the (10’)

high-level semantics, independent of the code. Also, analyze the complexity of Algo-Y.

Question 2: Write an algorithm called Better-Algo-Y that does exactly the same thing as Algo-Y, (20’)

but with a strictly better time complexity. Analyze the complexity of Better-Algo-Y. Notice that if

Algo-Y modifies the content of the input array, then Better-Algo-Y must do the same. Otherwise,

Better-Algo-Y must not modify A.

Solutions

WARNING: solutions are sparse, meaning that many are missing, and many are only sketched at

a high level—and many may be incorrect! Please, consider contributing your solutions, including

alternative solutions, and please report any error you might find to the author (Antonio Carzaniga

<antonio.carzaniga@usi.ch>).

⊲Solution 10.6

Yes, the exact-change problem is in NP. There is in fact a verification algorithm that, given an

instance of the problem (V,x) and a “witness” set S that shows that the solution is 1, can check in

polynomial time that S indeed proves that the solution is 1. Below is such an algorithm:

Exact-Change-Verify(V,x, S)

1 t = 0

2 for v ∈ S
3 if v 6∈ V
4 return false

5 t = t + v
6 if t == x
7 return true

8 else return false

⊲Solution 52

Quick-sort. Best-case is O(n logn), worst-case is O(n2).

⊲Solution 53

Algorithm-I sorts the input array in-place. In the best case, the algorithm terminates in the first

execution of the outer loop, with the condition s == true. This is the case when the inner loop does

not swap a single element of the array, meaning that the array is already sorted. So, the best-case

complexity is O(n). Conversely, the worst case is when each iteration of the outer loop swaps

at least one element. This happens when the array is sorted in reverse order. So, the worst-case

complexity is O(n2).
Algorithm-II sorts the input array in-place so that the value v = A[0], that is the element origi-

nally at position 0, ends up in position q, and every other element less than v ends up somewhere

in A[1 . . . q − 1], that is to the left of q, and every other element less than or equal to v ends up

somewhere in A[q + 1 . . . |A|]. In other words, Algorithm-II partitions the input array in-place

using the first element as the “pivot”. The loop closes the gap between i and j, which are initially

the first and last position in the array, respectively. Each iteration either moves i to the right or

j to the left, so each iteration reduces the gap by one. Therefore, in any case—worst case is the

same as the best case—the complexity is O(n).

⊲Solution 61

62

11

12

20

15

13

29 50

32

27

8

11

12

14

18

20

15

13

31

30

29 50

32

27

8

11

12

14

18

20

15

13

31 50

32

30

8

⊲Solution 62

a) 50 32 20 29 15 13 12 8 27 11

b) 51 43 50 29 32 20 12 8 27 11 15 13

c) 32 29 20 27 15 13 12 8 11

⊲Solution 63

Proof: Let H = [1,2,3], then T would look like this:

3

2

1

⊲Solution 67.1

True. O(n!) is at most Kn! so log (Kn!) = logK + log 1+ log 2+ · · · + logn ≤ n logn

⊲Solution 67.2

False. as a counter example, let f (n) = √n

⊲Solution 67.3

False. Counter-example: f (n) = 1 and g(n) = n.

⊲Solution 67.4

False. Counter example: f (n) = n and g(n) = n
⊲Solution 67.5

False. Counter example: f (n) = √n and g(n) =
√
(n)

⊲Solution 68

Shuffle-A-Bit has the same common structure as a best-case run of Quick-Sort. There is an

initial linear phase, and then there are two recursions on arrays of size n/2. This results in logn
levels of recursion, each having a total cost of O(n). Therefore the complexity is n logn.

⊲Solution 69.1

yes.

⊲Solution 69.2

yes.

⊲Solution 69.3

undefined.

⊲Solution 69.4

yes.

⊲Solution 69.5

undefined.

⊲Solution 69.6

undefined.

⊲Solution 69.7

yes.

⊲Solution 69.8

undefined.

⊲Solution 69.9

undefined.

⊲Solution 70

First figure out the frequencies and sort the characters by frequency. Then we proceed with the

derivation:

‘;’1

‘.’1

‘b’1

‘f’2

‘d’2

‘s’2

‘,’2

‘y’2

‘p’2

‘a’3

‘o’3

‘h’4

‘c’5

‘n’6

‘r’7

‘t’7

‘i’7

‘ ’13

‘e’14

2
0
1

3
0

1

4
0
1

4
0
1

4
0
1

6
0
1

7

0

1

8
0

1

9
0
1

12

0

1

14

0

1

14
0

1

17

0

1

25

0

1

28

0

1

31
0

1

53

0

1

84

0

1

010000

010001

00001

00010

00011

00000

00001

00010

00011

10000

10001

0010

0011

1001

011

1100

1101

101

111

⊲Solution 72

IsColorValid(G = (V, E), v)
1 for each u adjacent to v
2 if color[u] = color[v]
3 return false

4 return true

Color(G = (V, E))
1 for each v ∈ V
2 color[v] = 0

3 for each v ∈ V
4 color[v] = 1

5 while IsColorValid(G = (V, E), v) = false

6 color[v] = color[v]+ 1

7 return color

⊲Solution 78

Given an array A of number, Algo-X(A) returns true if and only if there are three numbers x ≤
y ≤ z ∈ A such that y −x = z−y . Algo-X does that by testing each triple of distinct elements of

A. There are
(
n
3

)
= n(n− 1)(n− 2)/3! such triples, so the complexity is Θ(n3).

A better way to do the same thing is as follows:

Better-Algo-X(A)

1 sort A
2 for i = 1 to A. length− 2

3 for j = i+ 2 to A. length

4 m = (A[i]+A[j])/2
5 if Binary-Search(A[i+ 1 . . . j − 1],m)
6 return true

7 return false

In essence, after sorting the numbers, this algorithm tests each pair of non-adjacent numbers and

then looks for the median using a binary search. There are O(n2) pairs of non-adjacent numbers

in A, and binary-search costs O(logn), so the complexity is O(n2 logn).

⊲Solution 89

Tree-To-Vine(t)

1 if t == nil

2 return (nil

3 while t. left 6= nil

4 t = BST-Right-Rotate(t)
5 root = t
6 while t.right 6= nil

7 while t.right. left 6= nil

8 t.right = BST-Right-Rotate(t.right)
9 t = t.right

10 return root

The best-case complexity is Θ(n), which corresponds to the case of BST that is already a vine. The

general worst-case complexity is certainly O(n2), since the outer loop (line 6) can run for at most

n iterations, and similarly the inner loop (line 7) can also run for at most n iterations. However,

it is not immediately obvious that the quadratic complexity is “tight”. In fact, the complexity is

Θ(n) also in the worst case. To see why, consider what happens to an edge e in the tree. If e is a

left edge—that is, an edge connecting a parent node to a left child node—then at some point the

algorithm will rotate e with a right rotation of the parent node, transforming e into a right edge

that the algorithm will then simply traverse once. In other words, a left edge will involve two steps:

a right rotation plus a traversal. If e is a right edge, then e might be immediately traversed, or

it might be transformed into a left edge due to a rotation of another edge right above and to the

right of e, which means that at some point e will be treated like any other left edge, so rotated

and then traversed. In any case, every edge induces a constant-time process, which means that the

algorithm linear, since there are n− 1 edges in the tree.

⊲Solution 90

Is-Perfectly-Balanced(t)

1 if t == nil

2 return (true,0)
3 (balancedl,weightl) = Is-Perfectly-Balanced(t. left)
4 (balancedr ,weightr) = Is-Perfectly-Balanced(t.right)
5 if balancedl and balancedl and |weightr −weightl| ≤ 1

6 return (true,weightl +weightr + 1)
7 else return (false,weightl +weightr + 1)

⊲Solution 92

We are not allowed to modify H , and we are not allowed to create a copy of H that we can then

sort. So, we must print the elements in order, by simply reading H . We know that each number is

unique in H , so the idea is this: we start from the minimum value in H , which happens to be in the

first position of H , print that value, and then look for the second-smallest number, which we can

simply find with a linear scan. We then proceed with the third-smallest, and so on, which again we

can find with a linear scan. Notice that we can use a linear scan to find the i-th smallest element by

simply considering only those elements in H that are greater than the smallest element we found

in the previous (i− 1) scan.

In pseudo-code:

Heap-Print-In-Order(H)

1 m = H[0]
2 print m
3 for i = 2 to H. length

4 x = ∞
5 for j = 2 to H. length

6 if H[j] > m and H[j] < x
7 x = H[j]
8 m = x
9 print m

It is easy to see that the complexity of Heap-Print-In-Order is Θ(n2).

⊲Solution 94

One way to proceed is to try to progressively merge all pairs of intervals.

Simplify-Intervals(X)

1 i = 1

2 while i+ 3 ≤ X. length

3 j = i+ 2

4 if X[i+ 1] < X[j] o X[i] > X[j + 1]
5 j = j + 2

6 else if X[j] < X[i]
7 X[i] = X[j]
8 if X[j + 1] > X[i+ 1]
9 X[i+ 1] = X[j + 1]

10 X[j] = X[X. length]
11 X[j + 1] = X[X. length− 1]
12 X. length = X. length− 2

13 i = i+ 2

Algo-Y(A, i)

1 while i < A. length

2 A[i] = A[i+ 1]
3 i = i+ 1

4 A. length = A. length− 1 // discards last

⊲Solution 96

Algo-X removes every element equal to k from array A. with a complexity of Θ(n2).
Consider as a worst-case input an array A in which all n values are equal to k. In this case, Algo-

X would iterate over lines 3 and 4 (always with i equal to 1). In each iteration, Algo-X would

then invoke Algo-Y (again with i equal to 1), which would then iterate over the length of the array,

effectively removing the i-th element by shifting every subsequent element to the left by 1 position,

and then by cutting the length of the array by 1.

So, Algo-Y would run for n iterations the first time, then n−1 the second time, then n−2, and so

on, until the array is completely empty. The complexity is therefore n+(n−1)+ . . .+2+1 = Θ(n2).
A better way to remove every element equal to k from an array A is as follows.

Better-Algo-X(A, k)

1 j = 1

2 for i = 1 to A. length

3 if A[i] 6= k
4 A[j] = A[i]
5 j = j + 1

6 A. length = j − 1

⊲Solution 100.1

No.

⊲Solution 100.2

No. SAT is NP-complete, meaning that every problem in NP can be reduced to SAT (polynomially),

so if SAT can then be reduced to Q, then all problems in NP can be reduced to Q, which makes Q
an NP-hard problem. However, to say that Q is NP-complete, we also have to know that Q is itself

in NP.

⊲Solution 100.3

Yes. SAT is in NP, and therefore there is a polynomial-time verification algorithm for SAT. Since Q
(andQ′) can be transformed into SAT, that means that one can implement a polynomial verification

algorithm also for Q (and Q′), by first transforming the Q instance into an instance of SAT, and

then running the verification algorithm for SAT. Thus both Q and Q′ are polynomially verifiable.

⊲Solution 100.4

No. We can say that Q is not more complex than Q′, but we can not say much about Q′.

⊲Solution 100.5

Yes. Q is polynomially solvable, since it can be transformed into Q′ and then solved in polynomial

time through algorithm A. This means that Q is in P and therefore also in NP.

⊲Solution 100.6

Yes. Q is in P, since it can be easily solved through a breadth-first search.

⊲Solution 116

We must first of all understand what Algo-XR(A, t, i, r) does. It is useful to interpret t as a target

value, i as an index into A, and r as a count of remaining elements. If r is zero, Algo-XR(A, t, i, r)
simply checks that A[i] equals the target t. Otherwise, Algo-XR(A, t, i, r) tries the target t −
A[i]. Effectively, this means that Algo-XR(A, t, i, r) returns true of there are exactly r + 1 distinct

elements in A starting at position i whose sum is the target t. Therefore, Algo-X(A), which is

equivalent to Algo-XR(A,0,1,2), returns true if there are exactly three distinct elements in A
whose sum is 0.

The worst-case input, which determines the complexity of Algo-XR and therefore Algo-X, is such

that the execution of each call Algo-XR goes through the loop without ever returning true. This

is the case, for example, with any sequence A of n positive numbers. In this case, the algorithm

effectively checks every r -tuple, in A. So, the complexity of Algo-XR is T(n) =
(
n
r+1

)
= O(nk), and

for Algo-X that is T(n) =
(
n
3

)
= O(n3).

We can improve Algo-X by checking, for every pair of elements A[i],A[j] (1 ≤ i < j ≤ A. length),

whether A contains a third element A[k], with k > j, such that A[i] + A[j] + A[k] = 0. This

amounts to finding the value −(A[i] + A[j]) in the subsequence A[j + 1 . . . A. length]. And that

search operation can be sped-up by first sorting the array and using binary search.

Better-Algo-X(A)

1 sort A
2 for i = 1 to A. length− 2

3 for j = 1 to A. length− 1

4 run a binary search of −(A[i]+A[j]) within A[j + 1 . . . A. length]
5 if −(A[i]+A[j]) ∈ A[j + 1 . . . A. length]
6 return true

7 return false

Here the complexity is Θn2 logn.

⊲Solution 127.2

0

12

14

21

23

25

28

32

33

37

38

40

41

46

48

Optimal sequence: 32, 21, 25, 40, 37, 46, 41, 12, 23, 48, 14, 33, 38, 0, 28.

⊲Solution 129.1

Sort-Lines-By-Word-Count(T)

1 X = array of 40 empty lists

2 for i = 1 to T . length

3 c = Word-Count(T[i])
4 append T[i] to X[c]
5 i = 1

6 for c = 1 to 40

7 for l ∈ X[c]
8 T[i] = l
9 i = i+ 1

Word-Count(l)

1 count = 0

2 for i = 1 to l. length

3 if l[i] == ‘ ’ and (i == 1 or l[i− 1] 6= ‘ ’)
4 count = count + 1

5 return count

⊲Solution 129.2

Sort-Lines-By-Word-Count(T)

1 j = 1

2 c = 1

3 while j ≤ T . length and c ≤ 40

4 for i = j to T . length

5 if Word-Count(T[i]) == c
6 swap T[j]↔ T[i]
7 j = j + 1

8 c = c + 1

Word-Count(l)

1 count = 0

2 for i = 1 to l. length

3 if l[i] == ‘ ’ and (i == 1 or l[i− 1] 6= ‘ ’)
4 count = count + 1

5 return count

⊲Solution 131

We start by modeling Maximal-Non-Adjacent-Sum as a classic recursive dynamic-programming

algorithm. Given a sequence A = a1, a2, . . . , an, there are two cases:

(i) the maximal sequence includes a1, and therefore does not include a2 and instead includes

the maximal sequence for the remaining subsequence a3 . . . an;

(ii) the maximal sequence does not include a1 and therefore is the same as the maximal sequence

for the subsequence starting at a2.

Thus the maximal solution is the best of these two. Let OPT(a1, a2, . . . , an) denote the maximal

weight of non-adjacent elements from a sequence a1, a2, . . . , an. With this, the algorithm is as

follows:

OPT(a1, a2, a3, . . . , an) =max{a1 +OPT(a3, . . . , an),OPT(a2, . . . , an)}
Now we just have to write this simple, recursive dynamic-programming solution as a single itera-

tion. This can be done by remembering only two values in each iteration, namely the optimal value

for the previous two elements in the sequence. We can perform this iteration in either direction, so

here we do it in increasing order, left-to-right. Therefore, for each element ai, we must remember

the two previous optimal values OPT(a1, . . . , ai−1) and OPT(a1, . . . , ai−2). The full algorithm is as

follows:

Maximal-Non-Adjacent-Sum(A)

1 p = 0

2 q = 0

3 r = 0

4 for i = 1 to A. length

5 r = max{A[i]+ p,q}
6 p = q
7 q = r
8 return r

⊲Solution 146.1

Algo-X returns the maximal sum of any contiguous subsequence of A.

⊲Solution 146.2

Dynamic programming: with i going from left to right, let x(i) be the value of the maximal con-

tiguous sequence ending at position i. So, x(1) = A[1], x(i) = max{A[i]+ x(i− 1),A[i]}.
⊲Solution 154

Max-Heap-Insert(H, k)

1 H.heap-size = H.heap-size+ 1

2 H[H.heap-size] = k
3 i = H.heap-size

4 while i > 1 and H[i] > H[⌊i/2⌋]
5 swap H[i]↔ H[⌊i/2⌋]
6 i = ⌊i/2⌋
The complexity is Θ(logn).

⊲Solution 155.1

Find-Elements-At-Distance(A, k)

1 for i = 1 to A. length

2 if Binary-Search(A[i+ 1 . . . A. length], k+A[i])
3 return true

4 return false

The complexity is Θ(n logn), since for each of the n elements, we perform a binary search that

runs in Θ(logn).

⊲Solution 155.2

Find-Elements-At-Distance(A, k)

1 i = 1

2 j = 2

3 while j ≤ A. length

4 if A[j] −A[i] < k
5 j = j + 1

6 elseif A[j] −A[i] > k
7 i = i+ 1

8 else return true

9 return false

In each iteration of the loop we either increase j or i by one (or we return). Also, the loop is such

that j ≥ i, so in at most Θ(n) iterations we push j beyond A. length. Thus the complexity is Θ(n).

⊲Solution 156

Is-Prime(x)

1 i = 2

2 while i∗ i < x
3 if i divides x
4 return true

5 i = i+ 1

6 return false

Partition-Primes-Composites(A)

1 i = 1

2 j = A. length

3 while i < j
4 if Is-Prime(A[j])
5 swap A[j] ↔ A[i]
6 i = i+ 1

7 elseif not Is-Prime(A[i])
8 swap A[j] ↔ A[i]
9 j = j − 1

10 else i = i+ 1

11 j = j − 1

Is-Prime runs in Θ(
√
m), while Partition-Primes-Composites requires Θ(n) basic operations and

Θ(n) invocations of Is-Prime. The complexity is therefore Θ(n√m).
⊲Solution 157

In this exercise, randomization or rotations cannot be used to balance the height of the BST. So,

input sequence A must be pre-sorted so that, inserting elements in the tree in the new order, the

resulting BST has still minimal height, O(logn), even using the classic insertion algorithm (that

could potentially result in unbalanced trees). Intuitively, this is possible by inserting elements in

this order: median(1, n), median(1, n2), median(n2 , n), median(1, n4), median(n4 ,
n
2), median(n2 ,

3n
4),

median(3n
4
, n). Or, equivalently, median(1, n), median(1, n

2
), median(1, n

4
), median(n

4
, n

2
), median

(
n
2 , n), median(n2 ,

3n
4), median(3n

4 , n). The input array can be sorted in this order by using the

functions below:

Sort-For-Balanced-BST(A)

1 sort A in non-descending order

2 Print-R(A,1, A. length)

Print-R(A, i, j)

1 if i ≤ j
2 m = ⌊(i+ j)/2⌋
3 print A[m]
4 Print-R(A, i,m− 1)
5 Print-R(A,m+ 1, j)

Print-R runs in O(n), since it simply prints one element—the median element, since the input is

sorted—and then recurses on the left and side parts by excluding the element it just printed. In

the end, Print-R runs (recursively) exactly once for each element of the array. So, the complexity

of Print-R is O(n) and the dominating cost for Sort-For-Balanced-BST is the cost of sorting,

which can be done in O(n logn).

⊲Solution 158.1

Minimal-Simplified-Sequence(A)

1 X = ∅
2 sort A in non-decreasing order

3 for i = A. length downto 3

4 for j = A. length downto 3

5 if Binary-Search(A[1 . . . j − 1],A[i]−A[j]) 6= true

6 X = X ∪ {A[i]}
7 return X

Hey, is the solutions above incorrect? An alternative solution is below:

Minimal-Simplified-Sequence(A)

1 X = ∅
2 sort A in non-decreasing order

3 for i = 1 to A. length− 1

4 for j = i+ 1 to A. length

5 i = Binary-Search(A[j + 1 . . . A. length],A[i]+A[j])
6 if i > 0

7 X = X ∪ {A[i]}
8 return X

The complexity is Θ(n2 logn).

⊲Solution 158.2

Minimal-Simplified-Sequence(A)

1 B = array of A. length zeroes

2 sort A in non-decreasing order

3 for i = 1 to A. length− 2

4 j = i+ 1

5 k = i+ 2

6 while k ≤ A. length

7 if A[k]−A[j] < A[i]
8 k = k+ 1

9 elseif A[k]−A[j] > A[i]
10 j = j + 1

11 else B[k] = 1

12 k = k+ 1

13 X = ∅
14 for i = 1 to A. length

15 if B[i] == 0

16 X = X ∪ {A[i]}
17 return X

⊲Solution 159

The algorithm consists of two nested loops. The outer loop takes variable a from n to 1 by dividing

a in half at every iteration. Therefore, the values of a are n,n/2, n/4, n/8 That is, at iteration

i of the outer loop, a = n/2i. The outer loop terminates when n/2i ≤ 1, that is, it runs for ⌈logn⌉
iterations.

The inner loop takes variable b from 1 to a2 by doubling b at every iteration. Therefore the values

of b are 1,2,4, . . ., that is, b = 2j at the j-th iteration of the inner loop. Therefore the inner loop

runs for 2 loga iterations.

Altogether, the complexity is

T(n) =
⌈logn⌉∑

i=1

2 log (n/2i)

= Θ(log2n).

⊲Solution 160

Find-Cycle(G)

1 N = array of size |V(G)| // visited

2 P = array of size |V(G)| // previous

3 for v ∈ V(G)
4 N[v] = false

5 P[v] = null

6 for v ∈ V(G)
7 if not N[v]
8 N[v] = true

9 if Find-Cycle-R(N ,P , v)
10 return true

11 return false

Find-Cycle-R(N ,P , v)

1 for w ∈ v.Adj

2 if N[w]
3 u = P[v]
4 while u 6= null

5 if u == w
6 return true

7 u = P[u]
8 else N[w] = true

9 P[w] = v
10 if Find-Cycle-R(N ,P ,w)
11 return true

12 return false

⊲Solution 161.1

BFS-First-Common-Ancestor(π,u,v)

1 S = array of size |π|
2 for i = 1 to |π|
3 S[i] = 0

4 while u 6= null or v 6= null

5 if u 6= null

6 if S[u] == 1

7 return u
8 else S[u] = 1

9 u = π[u]
10 if v 6= null

11 if S[v] == 1

12 return v
13 else S[v] = 1

14 v = π[v]
15 return null

The time complexity is Θ(n). The space complexity is Θ(n).

⊲Solution 161.2

BFS-First-Common-Ancestor-2(π,D,u,v)

1 if D[u] == ∞ or D[v] == ∞
2 return null

3 while u 6= v
4 if D[u] > D[v]
5 u = π[u]
6 else v = π[v]
7 return u

The time complexity is Θ(n).

⊲Solution 163.1

BST-Find-Sum(T , v)

1 t1 = BST-Min(T)
2 while t1 6= null

3 t2 = BST-Search(T , v − t.key)
4 if t2 6= null

5 return t1, t2
6 else

7 else t1 = BST-Successor(t1)
8 return null

The time complexity is Θ(n2).

⊲Solution 163.2
BST-Lower-Bound(t, v)

// rightmost element whose key is ≤ v, or null

1 while t 6= null

2 if v < t.key

3 t = t. left

4 elseif t.right 6= null and t.right.key < v
5 t = t.right

6 else return t
7 return null

BST-Find-Sum(T , v)

1 t1 = BST-Lower-Bound(T , v/2)
2 t2 = BST-Successor(t1)
3 while t1 6= null and t2 6= null

4 if t1 + t2 = v
5 return t1, t2
6 elseif t1 + t2 < v
7 t2 = BST-Successor(t2)
8 else t1 = BST-Predecessor(t1)
9 return null

The time complexity is Θ(n).

⊲Solution 164.1

Verify-K-Pairwise-Relatively-Prime(X, k, S)

1 if S 6⊆ X or |S| < k
2 return false

3 for i = 1 to |S| − 1

4 for j = i+ 1 to |S|
5 if gcd(S[i], S[j]) > 1

6 return false

7 return true

gcd(a, b)

1 while a 6= b
2 if a > b
3 a = a % b
4 else b = b % a
5 return a

The time complexity is O(k logn+ k2 logm), where m is the maximum value in X.

⊲Solution 166.1

Algo-X computes the product of all the elements of the input array A. Algo-X effectively counts

all the combinations in {0, . . . , A[1]}×{0, . . . , A[2]}×{0, . . . , A[3]}×· · ·×{0, . . . , A[n]}. Therefore,

the complexity is Θ(A[1]A[2] · · ·A[n]) or O(mn) where m =maxA[i].

⊲Solution 166.2

Better-Algo-X(A)

1 x = 1

2 for i = 1 to A. length

3 x = x ·A[i]
4 return x

The complexity of Better-Algo-X is Θ(n).

⊲Solution 171

function rank

f0(n) = nnn 1

f1(n) = log2(n) 7

f2(n) = n! 2

f3(n) = log(n2) 8

f4(n) = n 6

f5(n) = log(n!) 5

f6(n) = log logn 9

f7(n) = n logn 5

f8(n) =
√
n3 4

f9(n) = 2n 3

⊲Solution 172

Minimal-Covering-Square(P)

1 if P. length == 0

2 return 0

3 left = P[1].x
4 right = P[1].x
5 top = P[1].y
6 bottom = P[1].y
7 for i = 2 to P. length

8 if P[i].x > right

9 right = P[i].x
10 elseif P[i].x < left

11 left = P[i].x
12 if P[i].y > top

13 top = P[i].y
14 elseif P[i].y < bottom

15 bottom = P[i].y
16 if right − left > top − bottom

17 return (right − left)2

18 else return (top − bottom)2

⊲Solution 173

Unimodal-Find-Maximum(A)

1 l = 1

2 h = A. length

3 while l < h− 1

4 m = ⌊(l+ h)/2⌋
5 if A[m− 1] > A[m]
6 h = m
7 elseif A[m + 1] > A[m]
8 l = m
9 else return A[m]

10 error “A is not a unimodal sequence”

⊲Solution 174.1

Better-Algo-X(A, k) returns the beginning and ending position of a minimal subsequence of A
that contains at least k equal elements. The complexity of Better-Algo-X is Θ(n4). In essence,

this is because there are four nested loops.

⊲Solution 174.2

Notice that any minimal sequence P[i], P[i + 1], . . . , P[j] that contains at least k equal elements

contains exactly k elements equal to the first and last element of the sequence. Otherwise, the

sequence P[i], . . . , P[j−1] would be a smaller sequence that still contains at least k equal elements.

So, we just have to find a sequence that starts and ends with the same element x, and contains

exactly k elements equal to x, including the first and last element:

Better-Algo-X(A, k)

1 l = −∞
2 r = +∞
3 for i = 1 to A. length

4 c = 1

5 j = i+ 1

6 while c < k and j ≤ min(A. length, i+ r − l)
7 if A[i] == A[j]
8 c = c + 1

9 j = j + 1

10 if c == k and r − l > j − i
11 l = i
12 r = j
13 return l, r

The complexity of Better-Algo-X is O(n2).

⊲Solution 175.1

Three-Way-Partition(A,begin, end)

1 q1 = begin

2 q2 = q1 + 1

3 for i = q1 + 1 to end − 1

4 if A[i] ≤ A[q1]
5 swap A[i]↔ A[q2]
6 if A[q2] < A[q1]
7 swap A[q2]↔ A[q1]
8 q1 = q1 + 1

9 q2 = q2 + 1

10 return q1, q2

⊲Solution 175.2

Quick-Sort(A)

1 Quick-Sort-R(A,1, A. length+ 1)

Quick-Sort-R(A,begin, end)

1 if begin < end

2 q1, q2 = Three-Way-Partition(A,begin, end)
3 Quick-Sort-R(A,begin, q1)
4 Quick-Sort-R(A, q2, end)

This variant would be much more efficient with sequences often-repeated elements. In the extreme

case of a sequence with n identical numbers, this variant would terminate in time O(n), while the

classic algorithm would run in time O(n2).

⊲Solution 176

S(A, s) returns true if there is a subset of the elements in A that add up to s. This is also known

as the subset-sum problem.

The best-case complexity is O(n). An example of a best-case input (of size n) is with any array A
and with s = 0. In this case, the algorithm recurses n times in line 3, only then to return true

from line 2 of the last recursion, and then unrolling all the recursions out of line 3 to ultimately

return true out of line 4.

The worst-case complexity is O(2n). A worst-case input (of size n) is one that leads to a false

result. An example would be an array A of positive numbers with s < 0. In this case, every

invocation recurses twice, except for the base case. Each recursion reduces the size of the input

range by 1, so the recursion tree amounts to a full binary tree with n levels, which leads to a

complexity of O(2n).

⊲Solution 177

Group-Of-K(S1, S2, . . . , Sm, k)

1 H = empty min-heap (sorted by time)

2 for i = 1 to m
3 t, a = Si[1]
4 Min-Heap-Insert(H, (t, a, i,1)) (sorted by t)
5 C = dictionary mapping antennas to integers (hash map)

6 while H is not empty

7 t, a, i, j = Min-Heap-Extract-Min(H)
8 if j > 1

9 t′, a′ = Si[j − 1]
10 C[a′] = C[a′]− 1

11 if a ∈ C
12 C[a] = C[a]+ 1

13 else C[a] = 1

14 if C[a] ≥ k
15 return t, a
16 if j ≤ Si. length

17 t, a = Si[j + 1]
18 Min-Heap-Insert(H, (t, a, i, j + 1)) (sorted by t)
19 return null

⊲Solution 178.1

Algo-X(A) sorts the elements of A in-place so that all odd numbers precede all even numbers.

I other words, Algo-X(A) partitions A in two parts, A[1 . . . j − 1] and A[j . . .A. length] so that

A[1 . . . j − 1] contains only odd numbers and A[j . . . A. length] contains only even numbers. One

of the two parts might be empty. The complexity of Algo-X is Θ(n2).

⊲Solution 178.2

Better-Algo-X(A)

1 i = 1

2 j = A. length+ 1

3 while i < j
4 if A[i] ≡ 0 mod 2 // A[i] is even

5 j = j − 1

6 swap A[i]↔ A[j]
7 else i = i+ 1

8 return j

⊲Solution 179

BTree-Print-Range(T ,a, b)

1 if not T . leaf and T .key[1] > a
2 BTree-Print-Range(T .c[1], a, b)
3 for i = 1 to T .n
4 if T .key[i] ≥ b
5 return

6 if T .key[i] > a
7 print T .key[i]
8 if not T . leaf

9 if i == T .n or T .key[i+ 1] > a
10 BTree-Print-Range(T .c[i+ 1], a, b)

⊲Solution 180

The problem is in P, and therefore it is also in NP. This is a polynomial-time solution algorithm that

proves it:

Algo(G, k)

1 for v ∈ V(G)
2 Dv = Dijkstra(G,v)
3 // Dv is the distance vector resulting from Dijkstra

4 for u ∈ V(G)
5 if Dv[u] == k
6 return true

7 return false

⊲Solution 181

Most-Congested-Segment(A, ℓ)

1 sort A
2 i = 1

3 j = 1

4 x = null

5 m = 0

6 while j < A. length

7 if A[j] −A[i] ≤ ℓ
8 if m < j − i+ 1

9 x = A[i]
10 m = j − i+ 1

11 j = j + 1

12 else i = i+ 1

13 return x

⊲Solution 182

The problem is in NP because a true answer can be verified in polynomial time with a “certificate”

consisting of a set of nodes C = {v1, v2, . . . , vℓ}

Verify(G, k, C = {v1, v2, . . . , vℓ})
1 if |C| < k
2 return false

3 for all pairs u,v ∈ C
4 if G[u][v] 6= 1

5 return false

6 return true

⊲Solution 183

Max-Heap-Top-Three(H)

1 if H. length < 4

2 for i = 1 to H. length

3 print H[i]
4 else print H[1]
5 if H[2] > H[3]
6 i = 2

7 j = 3

8 else i = 3

9 j = 2

10 if H. length ≥ 2i+ 1 and H[j] < H[2i+ 1]
11 j = 2i+ 1

12 if H. length ≥ 2i and H[j] < H[2i]
13 j = 2i
14 print H[i]
15 print H[j]

⊲Solution 184

Longest-Stretch(P,h)

1 ℓ = 0

2 i = 1

3 while i < P. length

4 a = P[i].y
5 b = P[i].y
6 j = i+ 1

7 while b − a < h
8 if P[j].y > b
9 b = P[j].y

10 elseif P[j].y < a
11 a = P[j].y
12 if b − a < h
13 if P[j].x − P[i].x > ℓ
14 ℓ = P[j].x − P[i].x
15 else j = j + 1

16 i = i+ 1

17 return ℓ

Longest-Stretch(P,h) runs inO(n2) in the worst case. For example, a completely flat road would

be a worst-case input.

⊲Solution 185

Is-Bipartite(G)

1 for v ∈ V(G)
2 C[v] = green// can be in either VA or VB
3 for v ∈ V(G)
4 if C[v] == green

5 C[v] = red

6 Q = {v}// queue containing v
7 while Q is not empty

8 u = Dequeue(Q)
9 for all w adjacent to u:

10 if C[w] == green

11 if C[u] == red

12 C[w] = blue

13 else C[w] = red

14 Enqueue(Q,w)
15 elseif C[u] == C[w]
16 return false

17 return true

⊲Solution 186.1

Good-Are-Adjacent(A)

1 i = 1

2 while i < j and not Is-Good(A[i])
3 i = i+ 1

4 while i < j and not Is-Good(A[j])
5 j = j − 1

6 while i < j
7 if not Is-Good(A[i])
8 else i = i+ 1

9 return true

⊲Solution 186.2

Make-Good-Adjacent(A)

1 i = 1

2 while i < j and not Is-Good(A[i])
3 i = i+ 1

4 while i < j and not Is-Good(A[j])
5 j = j − 1

6 while i < j
7 if not Is-Good(A[i])
8 swap A[i]↔ A[j]
9 j = j − 1

10 i = i+ 1

11 return true

⊲Solution 187

The problem is in P, and therefore also in NP. This is an algorithm that solves the problem in

O(n logn) time.

Group-Of-Equals(A, k)

1 B = Sort(A)
2 i = 1

3 j = 1

4 while j < A. length

5 if A[i] == A[j]
6 j = j + 1

7 if j − i == k
8 return true

9 else i = j
10 return false

⊲Solution 188

A simple, brute-force solution is to check each combination of positions in the two strings

Maximal-Common-Substring(X, Y)

1 m = 0

2 for i = 1 to A. length

3 for j = 1 to B. length

4 ℓ = 0

5 while i+ ℓ ≤ A. length and j + ℓ ≤ B. length and A[i+ ℓ] == B[j + ℓ]
6 ℓ = ℓ+ 1

7 if ℓ > m
8 m = ℓ
9 return m

The complexity of Maximal-Common-Substring is O(n3).

⊲Solution 189

BST-Count-Unbalanced-Nodes(t)

1 if t == null

2 return 0,0
3 UL,TotL = BST-Count-Unbalanced-Nodes(t.lef t)
4 UR,TotR = BST-Count-Unbalanced-Nodes(t.r ight)
5 U = UL +UR
6 if TotL > 2TotR + 1 or TotR > 2TotL + 1

7 U = U + 1

8 return U, (TotL + TotR + 1)

The complexity is Θ(n).
⊲Solution 190.1

Algo-X returns the maximal difference between two values in an increasing sequence of elements

in A. The complexity is Θ(n3).

⊲Solution 190.2

Linear-Algo-X(A)

1 x = 0

2 i = 0

3 j = 1

4 while j ≤ A. length

5 if A[j] > A[j − 1]
6 if A[j] −A[i] > x
7 x = A[j]−A[i]
8 else i = j
9 j = j + 1

10 return x

⊲Solution 191.1

A naïve solution for Find-Square is to test all quadruples of points pi, pj , pk, pℓ, and determine

whether pi, pj , pk, pℓ form a square.

Find-Square(P)

1 for i = 1 to P. length

2 for j = 1 to P. length

3 for k = 1 to P. length

4 for ℓ = 1 to P. length

5 dx = P[j].x − P[i].x
6 dy = P[j].y − P[i].y
7 if P[k].x == P[j].x + dy and P[k].y == P[j].y − dx

and P[ℓ].x == P[i].x + dy and P[ℓ].y == P[i].y − dx
8 return true

9 return false

⊲Solution 191.2

Here the idea is to test all segments defined by two distinct points, and then to try to find the other

corners of a square, which we can do with a binary search.

Order-2D(p1, p2)

1 if p1.x < p2.x
2 return true

3 elseif p1.x > p2.x
4 return false

5 elseif p1.y < p2.y
6 return true

7 else return false

Binary-Search-2D(P,x,y)

1 i = 1

2 j = P. length

3 while i ≤ j
4 m = ⌊(i+ j)/2⌋
5 if Order-2D(v, P[m])
6 j = m− 1

7 elseif P[m].x == x and P[m].y == y
8 return true

9 else i = m+ 1

10 return false

Find-Square(P)

1 sort P using Order-2D as a comparison between pairs of points

2 for i = 1 to P. length

3 for j = 1 to P. length

4 dx = P[j].x − P[i].x
5 dy = P[j].y − P[i].y
6 if Binary-Search-2D(P, P[i].x + dy , P[i].y − dx)

and Binary-Search-2D(P, P[j].x + dy , P[j].y − dx)
7 return true

8 return false

⊲Solution 192

Initialize(Q)

1 Q.A = new empty array

2 Q.P = new empty array

Enqueue(Q,obj, p)

1 append obj to array Q.A
2 append p to array Q.P
3 i = Q.P . length

4 j = ⌊i/2⌋
5 while i > 1 and Q.P[i] < Q.P[j]
6 swap Q.P[i]↔ Q.P[j]
7 swap Q.A[i]↔ Q.A[j]
8 i = j
9 j = ⌊i/2⌋

Dequeue(Q)

1 ℓ = A.P . length

2 if ℓ < 1

3 error “empty queue”

4 x = Q.A[1]
5 swap Q.P[1] = Q.P[ℓ]
6 swap Q.A[1] = Q.A[ℓ]
7 remove last element from Q.P
8 remove last element from Q.A
9 ℓ = ℓ− 1

10 i = 1

11 while 2i ≤ ℓ and Q.P[i] > Q.P[2i]
or 2i+ 1 ≤ ℓ and Q.P[i] > Q.P[2i+ 1]

12 if 2i+ 1 ≤ ℓ and Q.P[2i+ 1] > Q.P[2i]
13 j = 2i+ 1

14 else j = 2i
15 swap Q.P[i] = Q.P[j]
16 swap Q.A[i] = Q.A[j]
17 i = j
18 return x

⊲Solution 193

Maximal-Distance(A)

1 if A. length < 2

2 return 0

3 min = A[1]
4 max = A[1]
5 for i = 2 to A. length

6 if A[i] > max

7 max = A[i]
8 elseif A[i] <min

9 min = A[i]
10 return max −min

⊲Solution 194

BST-Height(t)

1 if t == null

2 return 0

3 return 1+max(BST-Height(t. left),BST-Height(t.right))

⊲Solution 195

The problem, which is the well-known matching problem in graph theory, is definitely in NP. This

is a possible verification algorithm:

Verify-Matching(G = (V, E,w), t, S)
1 X = ∅
2 for e = (u,v) ∈ S
3 if u ∈ X or v ∈ X
4 return false

5 X = X ∪ {u,v}
6 weight = weight +w(e)
7 if weight ≥ t
8 return true

9 else return false

⊲Solution 196

We can use a dynamic programming approach. Let Pi be the maximal value of the objects you

can collect by reaching object i. Now, since you can reach Pi only by increasing your x and y
coordinates, then that means that the maximal total value Pi is the value of object i plus the

maximal total value when you reach any one of the objects from which you can then reach object

i. This means all the objects with coordinates less than those of i. So:

Pi = V[i]+ max
j|X[j]≤X[i]∧Y[j]≤Y[i]

P[j]

The global maximal game value is then maxPi.
Now, the formula for Pi gives us a very simple recursive algorithm. This is inefficient, but it can be

made very efficient with memoization.

Maximal-Game-Value(X, Y , V)

1 P = array of n = |V | elements initialized to P[i] = null

2 m = −∞
3 for i = 1 to V. length

4 if m< Maximal-Value-P(P,X, Y , V, i)
5 m = Maximal-Value-P(P,X, Y , V, i)
6 return m

Maximal-Value-P(P,X, Y , V, i)

1 if P[i] == null

2 P[i] = V[i]
3 for j = 1 to V. length

4 if j 6= i and X[j] ≤ X[i] and Y[j] ≤ Y[i]
5 if P[i] < V[i]+Maximal-Value-P(P,X, Y , V, j)
6 P[i] = V[i]+Maximal-Value-P(P,X, Y , V, j)
7 return P[i]

⊲Solution 197

We are not required to be particularly efficient, so we can write a simple algorithm.

Maximal-Substring(S)

1 A = null

2 for i = 1 to |S|
3 X = ∅
4 for j = 1 to |S[i]| − 1

5 for k = j + 1 to |S[i]|
6 X = X ∪ {S[i][j . . . k]}
7 if A == null

8 A = X
9 else A = A∩X

10 if A == ∅
11 return “”

12 return longest string in A or “” if A == null

⊲Solution 198.1

Algo-X returns the mode of A, meaning an element that occurs in A with maximal frequency

(count). The complexity is Θ(n2). Any input is the worst-case input.

⊲Solution 198.2

Better-Algo-X(A)

1 B =copy of A
2 sort B
3 if |S| == 0

4 return 0

5 x = B[1]
6 m = 1

7 c = 1

8 for i = 2 to |S|
9 if B[i] == B[i− 1]

10 c = c + 1

11 if c > m
12 m = c
13 x = B[i]
14 else c = 1

15 return x

⊲Solution 199

Graph-Degree(G)

1 n = |V(G)|
2 for i = 1 to n
3 d = 0

4 for j = 1 to n
5 if G[i, j] == 1

6 d = d+ 1

7 if d > m
8 m = d
9 return m

⊲Solution 200

We don’t have complexity constraints, so the algorithm can be simple:

Find-3-Cycle(G)

1 for u ∈ V(G)
2 for v ∈ Adj[u]
3 for w ∈ Adj[v]
4 for x ∈ Adj[w]
5 if x == u
6 return true

7 return false

The complexity is Θ(n∆3), where ∆ is the degree. Now, consider the full bipartite graph of n/2
plus n/2 nodes. In this case, the complexity is Θ(n4).

⊲Solution 201

Here’s an obvious O(mn2) solution:

Longest-Common-Prefix(S)

1 m = 0

2 for i = 2 to S. length

3 for j = 1 to i− 1

4 ℓ = Common-Prefix-Length(S[i], S[j])
5 if ℓ > m
6 ℓ = m
7 return m

Common-Prefix-Length(a, b)

1 for i = 1 to min (a. length, b. length)
2 if a[i] 6= b[i]
3 return i− 1

4 return min (a. length, b. length)

⊲Solution 202

Notice that if we sort the array S in lexicographical order, then any k strings with a common prefix

will be contiguous in the sorted array.

Longest-K-Common-Prefix(S, k)

1 sort S in lexicographical order

2 m = 0

3 for i = k to S. length

4 ℓ = Common-Prefix-Length(S[i], S[i− k])
5 if ℓ > m
6 ℓ = m
7 return m

Common-Prefix-Length(a, b)

1 for i = 1 to min (a. length, b. length)
2 if a[i] 6= b[i]
3 return i− 1

4 return min (a. length, b. length)

This complexity is O(m logn).

⊲Solution 203

The problem is in P and therefore it is also in NP . This is an algorithm that solves the problem in

polynomial time:

Negative-Three-Cycle(G = (V, E))
1 for u ∈ V
2 for v ∈ Adj[u]
3 for w ∈ Adj[v]
4 if w == u and weight(u,v)+weight(v,w)+weight(w,u) < 0

5 return true

6 return false

⊲Solution 204.1

Upper-Bound(A,x)

1 u = undefined

2 d = undefined

3 for a ∈ A
4 if x ≤ a
5 if u == undefined or d > a− x
6 d = a− x
7 u = a
8 return u

The complexity is Θ(n).
⊲Solution 204.2

Upper-Bound-Sorted(A,x)

1 i = 1

2 j = A. length

3 if A[j] < x
4 return undefined

5 elseif A[i] ≥ x
6 return A[i]
7 while i < j
8 m = ⌊i+ j/2⌋
9 if A[m] == x

10 return A[m]
11 elseif A[m] < x
12 i = m
13 else j = m
14 return A[j]

The complexity is Θ(logn).

⊲Solution 204.3

Upper-Bound-BST(T ,x)

1 while T 6= null

2 if T .key < x
3 T = T .right

4 else while T . left 6= null and T . left.key ≥ x
5 T = T . left

6 return T .key

7 return undefined

The complexity is Θ(h) where h is the height of the input tree.

⊲Solution 205

Sum-Of-Three(A, s)

1 B = Merge-Sort(A)
2 for i = 1 to A. length

3 j = 1

4 k = A. length

5 while j < k
6 if j == i
7 j = j + 1

8 elseif k == i
9 k = k− 1

10 elseif B[i]+ B[j]+ B[k] == s
11 return true

12 elseif B[i]+ B[j]+ B[k] > s
13 k = k− 1

14 else j = j + 1

15 return false

⊲Solution 206.1

Algo-X returns true if and only if A contains two distinct numbers whose absolute difference is

greater than x.

The complexity of Algo-X is Θ(n2). The worst case is when the algorithm reaches the last return

statement in line 10. In this case, the loop amounts to an iteration over all pairs of distinct posi-

tions j < i. In fact, the loop starts with j and i at beginning and end of the array, respectively.

Then the loop moves j forward by one step at a time until j reaches i, at which point j restarts

from the beginning and i moves by one position to the left.

⊲Solution 206.2

Better-Algo-X(A,x)

1 if A. length < 1

2 return false

3 low = A[1]
4 high = A[1]
5 for i = 2 to A. length

6 if A[i] < low

7 low = A[i]
8 elseif A[i] > high

9 high = A[i]
10 if high− low > x
11 return true

12 return false

Better-Algo-X scans the array once looking for the maximum and minimum values, and exits as

soon as it finds that the difference between the current (partial) maximum and minimum is greater

than x.

⊲Solution 207.1

Algo-S returns the value x in A such that there are exactly k elements less than x in A, or null if

no such element exists.

The complexity of Algo-S is Θ(n2). The worst case is when the algorithm returns null. In this

case, Algo-S loops for exactly n times, each one costing the complexity of Algo-R running on A,

which is also n iterations.

⊲Solution 207.2

Better-Algo-S(A, k)

1 B = Merge-Sort(A)
2 if k ≥ 0 and k < B. length and B[k+ 1] > B[k]
3 return B[k+ 1]
4 else return null

⊲Solution 208

Sort-Special(A)

1 q = A. length

2 while q > 1

3 for i = 1 to q − 1

4 if A[i] > A[q]
5 swap A[i] ↔ A[q]
6 i = 1

7 while i < q
8 if A[i] == A[q]
9 swap A[i] ↔ A[q − 1]

10 q = q − 1

11 else i = i+ 1

12 q = q − 1

The idea here is to use a partitioning scan for each of the values in A, starting from the highest one

and then down to the lowest one. More specifically, we first look for the maximum value v over

the whole array. Then we partition A using v as the pivot. As a result, all the values equal to v are

packed at the end of the array, and all the lower values are packed before that, up to position q.

Now we repeat the process, only considering the sub-array from position 1 to q.

Each iteration consists of a linear scan to look for the maximum, plus another linear scan to

perform the partitioning. And since there are at most 4 distinct values, we have at most 4 iterations.

The complexity is therefore O(n).

⊲Solution 209

Heap-Properties(A)

1 max = 1

2 min = 1

3 for i = A. length downto 2

4 p = ⌊i/2⌋
5 if A[i] < A[p]
6 min = 0

7 elseif A[i] > A[p]
8 max = 0

9 if min == 1

10 if max == 1

11 return 2

12 else return −1

13 else if max == 1

14 return 1

15 else return 0

⊲Solution 210

We can find and then group, and thereby count, pairs of compatible objects as follows:

Max-Compatible-Pairing(A)

1 c = 0

2 i = 1

3 while i < A. length

4 j = i+ 1

5 while j ≤ A. length and compatible(A[i],A[j]) == false

6 j = j + 1

7 if j ≤ A. length // we found a compatible pair (i, j)
8 swap A[i+ 1]↔ A[j]
9 i = i+ 2

10 c = c + 1

11 else i = i+ 1

12 return c

Another option is not to group but rather to simply count the pairs of equivalent elements. How-

ever, to avoid counting elements multiple times, we must somehow mark elements as being part

of pair.

Max-Compatible-Pairing(A)

1 c = 0

2 B = [0,0, . . . ,0] // array of n Boolean values

3 i = 1

4 while i < A. length

5 j = i+ 1

6 while j ≤ A. length and (B[j] == 1 or compatible(A[i],A[j]) == false)
7 j = i+ 1

8 if j ≤ A. length // we found a compatible pair (i, j)
9 B[j] = 1

10 i = i+ 1

11 c = c + 1

12 else i = i+ 1

13 return c

⊲Solution 211

A queen in row i and column j attacks all the squares in row x and column y such that x = i,
y = j, x + y = i+ j, or x − y = i − j. Therefore, we can simply create an index for each of these

four conditions for all the white queens, and then check whether a black queen is in any one of

these indexes. The following solution creates indexes using sorted arrays. Another solution would

be to use hash tables.

White-Attacks-Black(W,B)

1 R = array of W. length integers

2 C = array of W. length integers

3 D1 = array of W. length integers

4 D2 = array of W. length integers

5 for i = 1 to W. length

6 R[i] = W[i].row

7 C[i] = W[i].col

8 D1[i] = W[i].row −W[i].col

9 D2[i] = W[i].row +W[i].col

10 sort R
11 sort C
12 sort D1

13 sort D2

14 for i = 1 to B. length

15 if Binary-Search(R, B[i].row)
16 return true

17 if Binary-Search(C, B[i].col)
18 return true

19 if Binary-Search(D1, B[i].row − B[i].col)
20 return true

21 if Binary-Search(D2, B[i].row + B[i].col)
22 return true

23 return false

The complexity is O(n logn), since the sorting phase for the white queens takes O(n logn), and

the lookup phase for the black queens also takes O(n logn).

⊲Solution 212.1

A very simple solution is the following recursive algorithm:

Count-Full-Nodes(t)

1 if t == null

2 return 0

3 if t. left 6= null and t.right 6= null

4 return 1+ Count-Full-Nodes(t. left)+ Count-Full-Nodes(t.right)
5 else return Count-Full-Nodes(t. left)+ Count-Full-Nodes(t.right)

The algorithm is equivalent to a walk of the tree, so it visits each node exactly once. The complexity

is therefore Θ(n).
⊲Solution 212.2

The idea here is to walk through the nodes that are not full, and to rotate those that are full until

they have a single child. For example, right rotate until they have only a right child. This leads to

the following recursive solution.

No-Full-Nodes(t)

1 if t == null

2 return t
3 if t. left == null

4 t.right = No-Full-Nodes(t.right)
5 return t
6 elseif t.right == null

7 t. left = No-Full-Nodes(t. left)
8 return t
9 while t. left 6= null

10 t = Right-Rotate(t)
11 t.right = No-Full-Nodes(t.right)
12 return t

The algorithm is also a tree walk for all non-full nodes. For each node t that is full, the algorithm

performs some right rotations so as to move all the nodes in the subtree rooted at t from the left

to the right side of t. This process iterates through those nodes at most once. So, in total, each

node is touched either once or twice by the algorithm. The complexity is therefore Θ(n).

⊲Solution 213.1

The problem is in NP, since given a permutation Π of the indexes, it is easy to show (in polynomial

time) that the answer is indeed true with the following algorithm:

Verify-Perm-Sum-K(A, B,Π)
1 if A. length 6= B. length

2 return false

3 n = A. length

4 A′ = array of n null values

5 for i = 1 to n
6 A′[Π(i)] = A[i]
7 for i = 1 to n
8 if A′[i] == null

9 return false

10 k = A′[1]+ B[1]
11 for i = 2 to n
12 if A′[i]+ B[i] 6= k
13 return false

14 return true

This algorithm first checks that Π indeed defines a permutation on A, then it checks that the

permutation satisfies the condition of the problem.

This question can also be immediately answered by solving the following exercise question, that

is, showing that the problem is in P.

⊲Solution 213.2

The problem is in P, since it is easy to show that if A′ exists, then it is also possible to sort A in

increasing order, and correspondingly B in decreasing order so that the condition is satisfied. So,

the following algorithm solves the problem, in polynomial time.

Perm-Sum-K(A, B)

1 if A. length 6= B. length

2 return false

3 A′ = sort A
4 B′ = sort B in reverse order

5 k = A′[1]+ B′[1]
6 for i = 2 to n
7 if A′[i]+ B′[i] 6= k
8 return false

9 return true

⊲Solution 214

There is a simple dynamic-programming solution. Letmi be the minimal contiguous sub-sequence

sum ending at position i. Then, we can obtain the minimal contiguous subsequence ending at i+1

by either connecting to the minimal contiguous subsequence ending at i, or by starting and ending

a singleton subsequence at i+ 1. So, mi+1 =min{mi +A[i],A[i]}. In the case of the first element

A[1], the value of m1 is simply A[1]. Then, from there we can compute all the other values, and

remember the minimal value.

Minimal-Contiguous-Sum(A)

1 m = A[1]
2 p = A[1]
3 for i = 2 to A. length

4 if p > 0

5 p = A[i]
6 else p = p +A[i]
7 if p < m
8 m = p
9 return m

⊲Solution 215

The idea is to find whether there is any path that can turn onto itself. We can do that using a simple

depth-first search. We mark a node v as visited when we find v for the first time, and then we mark

v as finished when we have explored all the nodes reachable from v. We have a cycle when, from

the current node v we hit a neighbor u that is visited but not yet finished. This is because this

means that v is reachable from u, and v is reachable from u (it is one of its neighbors), so we have

a cycle.

Has-Cycle(G)

1 visited = ∅
2 finished = ∅
3 for all v ∈ V(G)
4 if DFS-Find-Cycle(G,v)
5 return true

6 return false

DFS-Find-Cycle(G,v)

1 global variable visited

2 global variable finished

3 if v ∈ visited

4 if v 6∈ finished

5 return true

6 else return false

7 visited = visited ∪ {v}
8 for all u ∈ G.Adj[v]
9 if DFS-Find-Cycle(G,u)

10 return true

11 finished = finished ∪ {v}
12 return false

⊲Solution 216

A DNA sequence S1 is a permutation of another DNA sequence S2 when S1 contains exactly the

same number of A’s, the same number of C’s, the same number of G’s, and the same number of T’s

as S2. So, it is easy to check that S1 is a permutation of S2 by counting and comparing the numbers

of A’s, C’s, G’s, and T’s, respectively, in both sequences.

So, letm = |X| be the length of the X sequence, then a basic idea would be to look at each substring

S[i, . . . , i+m− 1] in S, and check whether S[i, . . . , i+m− 1] is a permutation of X.

DNA-Permutation-Substring(S,X)

1 xA = number of A’s in X
2 xC = number of C’s in X
3 xG = number of G’s in X
4 xT = number of T’s in X
5 for i = 1 to S. length−X. length+ 1

6 sA = number of A’s in S[i, . . . , i+ X. length− 1]
7 sC = number of C’s in S[i, . . . , i+X. length− 1]
8 sG = number of G’s in S[i, . . . , i+X. length− 1]
9 sT = number of T’s in S[i, . . . , i+X. length− 1]

10 if xA == sA and xC == sC and xG == sG and xT == sT
11 return true

12 return false

However, the complexity of this algorithm is Θ(ℓm), where ℓ = |S| and m = |X|. Instead, we want

O(n) where n = ℓ +m.

We can do this with the following algorithm:

DNA-Permutation-Substring(S,X)

1 // the following can be computed in time linear in |X|
2 xA = number of A’s in X
3 xC = number of C’s in X
4 xG = number of G’s in X
5 xT = number of T’s in X
6 // the following can be computed in time linear in |S|
7 let A, C, G, T be arrays of length n+ 1

such that A[i] is the number of A’s in the first i− 1 symbols of S
and correspondingly for C, G, and T arrays

8 for i = m+ 1 to n+ 1

9 if xA == A[i]−A[i−m] and xC == C[i]− C[i−m]
and xG == G[i]−G[i−m] and xT == T[i]− T[i−m]

10 return true

11 return false

More in detail:

DNA-Permutation-Substring(S,X)

1 n = S. length

2 m = X. length

3 xA = 0

4 xC = 0

5 xG = 0

6 xT = 0

7 for i = 1 to m
8 if X[i] == ‘A’

9 xa = xa + 1

10 elseif X[i] == ‘C’

11 xC = xC + 1

12 elseif X[i] == ‘G’

13 xG = xG + 1

14 elseif X[i] == ‘T’

15 xT = xT + 1

16 let A, C, G, T be arrays of length S. length+ 1

17 A[1] = 0

18 C[1] = 0

19 G[1] = 0

20 T[1] = 0

21 for i = 2 to S. length+ 1

22 A[i] = A[i− 1]
23 C[i] = C[i− 1]
24 G[i] = G[i− 1]
25 T[i] = T[i− 1]
26 if S[i− 1] == ‘A’

27 A[i] = A[i]+ 1

28 elseif S[i− 1] == ‘C’

29 C[i] = C[i]+ 1

30 elseif S[i− 1] == ‘G’

31 G[i] = G[i]+ 1

32 elseif S[i− 1] == ‘T’

33 T[i] = T[i]+ 1

34 for i = m+ 1 to S. length+ 1

35 if xA == A[i]−A[i−m] and xC == C[i]− C[i−m]
and xG == G[i]−G[i−m] and xT == T[i]− T[i−m]

36 return true

37 return false

⊲Solution 217.1

Algo-X returns the lowest, most common number in A. That is, the number x such that no other

number appears more often than x in A, and if there is other number y that appear exactly the

same number of times as x, then x < y . The complexity of Algo-X is Θ(n2).

⊲Solution 217.2

Better-Algo-X(A)

1 B = copy of A sorted in ascending order

2 x = B[1]
3 m = 1

4 i = 2

5 while i < A. length

6 j = i+ 1

7 while B[i] == B[j]
8 j = j + 1

9 if j − i > m
10 m = j − 1

11 x = B[i]
12 i = j
13 return x

The complexity of Better-Algo-X is Θ(n logn), since the loop amounts to a linear scan of the

sorted array B, so the dominating complexity is the time needed to sort the array at the beginning,

which can be done in Θ(n logn).

⊲Solution 218.1

BST-Equals(t1, t2)

1 if t1 == nil and t2 == nil

2 return true

3 elseif t1 == nil or t2 == nil

4 return false

5 if t1.key == t2.key and BST-Equals(t1. left, t2. left) and BST-Equals(t1.right, t2.right)
6 return true

7 else return false

The algorithm amounts to a parallel walk of both trees. The complexity is therefore O(n).

⊲Solution 218.2

We iterate through all the keys in order in both trees, and check them one by one.

BST-Min-Node(t)

1 if t == nil

2 return nil

3 while t. left 6= nil

4 t = t. left

5 return t

BST-Successor(t)

1 if t == nil

2 return nil

3 elseif t.right 6= nil

4 return BST-Min-Node(t.right

5 else while t.parent 6= nil

6 if t == t.parentlef t
7 return t.parent

8 else t = t.parent

9 return nil

BST-Equal-Keys(t1, t2)

1 t1 = BST-Min-Node(t1)
2 t2 = BST-Min-Node(t2)
3 while t1 6= nil and t2 6= nil

4 if t1.key 6= t2.key

5 return false

6 t1 = BST-Successor(t1)
7 t2 = BST-Successor(t2)
8 if t1 == nil and t2 == nil

9 return true

10 else return false

The algorithm amounts to a parallel walk of both trees. The complexity is therefore O(n).

⊲Solution 219

Knight-Distance(r1, c1, r2, c2)

1 return Knight-Distance-Origin(r1 − r2, c1 − c2)

Knight-Distance-Origin(x,y)

1 M = global “memoization” matrix/dictionary initialized as follows:

M[0,0] = 0

M[0,1] = 3

M[0,2] = 2

M[1,1] = 2

M[1,2] = 1

M[2,2] = 4

any other value in M is initially null

2 if x < 0

3 x = −x
4 if y < 0

5 y = −y
6 if x > y
7 swap x and y
8 if M[x,y] 6= null

9 return M[x,y]
10 d1 = Knight-Distance-Origin(x − 2, y − 1)+ 1

11 d2 = Knight-Distance-Origin(x − 1, y − 2)+ 1

12 M[x,y] = min(d1, d2)
13 return min(d1, d2)

⊲Solution 220.1

1

2

8

9

3

4

5

6

10 11

12

13

14

15

7

18

19

17

20

16

⊲Solution 223.1

Algo-X sorts the input array in-place. In the best case, the algorithm terminates in the first exe-

cution of the outer loop, with the condition s == true. This is the case when the inner loop does

not swap a single element of the array, meaning that the array is already sorted. So, the best-case

complexity is O(n). Conversely, the worst case is when each iteration of the outer loop swaps

at least one element. This happens when the array is sorted in reverse order. So, the worst-case

complexity is O(n2).

⊲Solution 223.2

Algo-Y sorts the input array in-place so that the value v = A[0], that is the element originally

at position 0, ends up in position q, and every other element less than v ends up somewhere in

A[1 . . . q − 1], that is to the left of q, and every other element less than or equal to v ends up

somewhere in A[q+1 . . . |A|]. In other words, Algo-Y partitions the input array in-place using the

first element as the “pivot”. The loop closes the gap between i and j, which are initially the first

and last position in the array, respectively. Each iteration either moves i to the right or j to the

left, so each iteration reduces the gap by one. Therefore, in any case—worst case is the same as

the best case—the complexity is O(n).

⊲Solution 224

Partition-Zero(A)

1 j = 1

2 for i = 1 to A. length

3 if A[i] < 0

4 swap A[i]↔ A[j]
5 j = j + 1

6 for i = j to A. length

7 if A[i] == 0

8 swap A[i]↔ A[j]
9 j = j + 1

⊲Solution 225

We can use a binary heap to implement a priority queue. In particular, we can use a max-heap

where the heap property is based on the comparison between object priorities. Therefore we use

an array Q as the base data structure, and we also keep track of the queue size Q.size, meaning

the number of elements in the queue. Note that this is not the allocated size of the array Q.size.

PQ-Init(n)

1 Q = new array of size n
2 Q.size = 0

3 Q.maxsize = n
4 return Q

PQ-Enqueue(Q,x)

1 if Q.size == Q.maxsize

2 return “error: queue overflow”

3 Q[Q.size] = x
4 i = Q.size

5 Q.size = Q.size+ 1

6 while i > 1 and Q[i] > Q[⌊i/2⌋]
7 swap Q[i]↔ Q[⌊i/2⌋]n
8 i = ⌊i/2⌋

PQ-Dequeue(Q)

1 if Q.size == 0

2 return “error: empty queue”

3 x = Q[1]
4 Q[1] = Q[Q.size]
5 Q.size = Q.size− 1

6 i = 1

7 while 2i ≤ Q.size

8 j = i
9 m = Q[i]

10 if Q[2i] > m
11 j = 2i
12 m = Q[2i]
13 if 2i+ 1 ≤ Q.size and Q[2i+ 1] > m
14 j = 2i+ 1

15 m = Q[2i+ 1]
16 if j > i
17 swap Q[i]↔ Q[j]
18 i = j
19 else return x
20 return x

⊲Solution 226.1

Algo-X returns true if and only if B contains a subset of the elements in A. The complexity is

Θ(n2). A worst case input is one in which A. length = B. length = n/2 and none of the elements of

A are contained in B. In this case, the outer loop (line 3) runs for n/2 iterations, and the inner loop

also runs for n/2 times for each of the iterations of the outer loop.

⊲Solution 226.2

A different strategy is to first sort both vectors, and then to use an algorithm similar to a merge as

below.

Better-Algo-X(A, B)

1 C = sorted copy of array A
2 D = sorted copy of array B
3 n = D. length

4 j = 1

5 i = 1

6 while i ≤ C. length and j ≤ D. length

7 if C[i] < D[j]
8 i = i+ 1

9 elseif D[i] > D[j]
10 j = j + 1

11 else n = n− 1

12 j = j + 1

13 i = i+ 1

14 if n == 0

15 return true

16 else return false

⊲Solution 227.1

Questionable-Sort is correct. It is also known as selection-sort. Effectively, the inner loop (j-loop)

finds and leaves in position i a minimal element in A[i . . . n].

⊲Solution 227.2

Quick-sort or heap-sort would work. Here’s quick-sort:

Better-Sort(A)

1 Quick-Sort(A,1, A. length)

Quick-Sort(A, b, e)

1 if e− b > 0

2 q = Partition(A, b, e)
3 Quick-Sort(A, b, q − 1)
4 Quick-Sort(A, q + 1, e)

Partition(A, b, e)

1 q = random position in [b, . . . , e]
2 swap A[q]↔ A[e]
3 q = b
4 i = b
5 for i = b to e
6 if A[i] ≤ A[e]
7 swap A[q]↔ A[i]
8 q = q + 1

9 return q − 1

⊲Solution 228

We can use a binary search.

Lower-Bound(A,x)

1 if x > A[A. length]
2 return error: “not-found”

3 l = 1

4 r = A. length

5 while l < r
6 m = ⌊(l+ r)/2⌋
7 if A[m] ≥ x
8 r = m
9 else l = m+ 1

10 return A[r]

⊲Solution 229

Contains-Square(A)

1 ℓ = A.size

2 for i = 1 to ℓ− 1

3 for j = 1 to ℓ − 1

4 d = 1

5 while i+ d ≤ ℓ and j + d ≤ ℓ
6 if Is-Square(A, i, j, d)
7 return true

8 d = d+ 1

9 return false

Is-Square(A, i, j, d)

1 for k = 1 to d
2 if A[i+ k][j] 6= A[i][j]
3 return false

4 if A[i+ k][j + d] 6= A[i][j]
5 return false

6 if A[i][j + k] 6= A[i][j]
7 return false

8 if A[i+ d][j + k] 6= A[i][j]
9 return false

10 return true

The complexity of Is-Square(A, i, j, d) is Θ(d). The complexity of Contains-Square(A) is there-

fore O(n4).

⊲Solution 230

Min-Heap-Change(H, i, x)

1 if x < H[i]
2 H[i] = x
3 while i > 1 and H[⌊i/2⌋] > x
4 swap H[⌊i/2⌋]↔ H[i]
5 i = ⌊i/2⌋
6 elseif x > H[i]
7 H[i] = x
8 j = Min-Of-Three(H, i)
9 while i 6= j

10 swap H[i]↔ H[j]
11 j = Min-Of-Three(H, i)

Min-Of-Three(H, i)

1 m = H[i]
2 j = i
3 if 2i ≤ H.heap-size and H[2i] < m
4 j = 2i
5 m = H[2i]
6 if 2i+ 1 ≤ H.heap-size and H[2i+ 1] < m
7 j = 2i+ 1

8 return j

The complexity is Θ(logn), since in the worst case we would start from a leaf and go all the way

up to the root, or we would start from the root and go all the way down to a leaf.

⊲Solution 231

BST-Subset(T1, T2)

1 a = Min(T1)
2 b = Min(T2)
3 while b 6= nil and a 6= nil

4 if a.key < b.key

5 return false

6 elseif a.key > b.key

7 b = Next(b)
8 else a = Next(a)
9 if a == nil

10 return true

11 else return false

Min(t)

1 if t == nil

2 return nil

3 while t. left 6= nil

4 t = t. left

5 return t

Next(t)

1 if t == nil

2 return nil

3 if t.right 6= nil

4 return Min(t.right)
5 while t.parent 6= nil

and t == t.parent.right

6 t = t.parent

7 return t.parent

The complexity is Θ(n), since we use Min and Next to effectively iterate over each tree as in a tree

walk.

⊲Solution 232

This is a classic NP problem. We prove that by showing a polynomial-time verification algorithm.

In particular, we show an algorithm Verify-Cycle(G, k, C) that takes an instance of the problem,

that is, a graph G and a cycle length k, and a witness cycle C, and verifies that C is indeed a cycle

in G of length k.

Verify-Cycle(G, k, C)

1 if C. length 6= k
2 return false

3 for i = 1 to C. length− 1

4 for j = i+ 1 to C. length

5 if C[i] == C[j]
6 return false

7 if not Find-Neighbor(G,C[i], C[i+ 1])
8 return false

9 if not Find-Neighbor(G,C[C. length], C[1])
10 return false

11 return true

Find-Neighbor(G,u,v)

1 Adj = adjacency list of G
2 for w ∈ Adj[u]
3 if w == v
4 return true

5 return false

The complexity of Verify-Cycle is O(n2).

⊲Solution 233

This problem is in P. We prove that by showing an algorithm Find-Four-Cycle(G) that solves the

problem in polynomial-time. In particular, the complexity of Find-Four-Cycle(G) is O(n4).

Find-Four-Cycle(G)

1 for a ∈ V(G)
2 for b ∈ V(G)
3 if b 6= a and Find-Neighbor(G,a, b)
4 for c ∈ V(G)
5 if c 6= b and c 6= a and Find-Neighbor(G, b, c)
6 for d ∈ V(G)
7 if d 6= c and d 6= b and d 6= a

and Find-Neighbor(G, c, d) and Find-Neighbor(G,d,a)
8 return true

9 return false

Find-Neighbor(G,u,v)

1 Adj = adjacency list of G
2 for w ∈ Adj[u]
3 if w == v
4 return true

5 return false

⊲Solution 234

Let DP(n) be the number of ways one can express n as a sum of ones, twos, and threes. Then we

can immediately write a dynamic-programming recurrence as follows:

DP(n) = DP(n− 1)+ DP(n− 2)+DP(n− 3)

This is because n can be obtained by adding 1 to all the DP(n−1) ways one can obtain n−1, or by

adding 2 to all the DP(n− 2) ways one can obtain n− 2, or by adding 3 to all the DP(n− 3) ways

one can obtain n− 3. We could then write Sums-One-Two-Three(n) recursively as follows:

Sums-One-Two-Three(n)

1 if n ≤ 0

2 return 0

3 elseif n == 1

4 return 1

5 elseif n == 2

6 return 2 // 1+ 1, 2

7 elseif n == 3

8 return 4 // 1+ 1+ 1, 2+ 1, 1+ 2, 3

9 else return Sums-One-Two-Three(n− 1)
+Sums-One-Two-Three(n− 2)
+Sums-One-Two-Three(n− 3)

However, the complexity of this solution is most definitely not O(n), since it looks a lot like the

recursive version of Fibonacci, and in fact we can use the same idea to make it efficient. The idea

is to compute DP(i) from left to right, starting from the base cases:

Sums-One-Two-Three(n)

1 if n ≤ 0

2 return 0

3 elseif n == 1

4 return 1

5 elseif n == 2

6 return 2 // 1+ 1, 2

7 elseif n == 3

8 return 4 // 1+ 1+ 1, 2+ 1, 1+ 2, 3

9 else a = 1

10 b = 2

11 c = 4

12 r = a+ b + c
13 for i = 5 to n
14 a = b
15 b = c
16 c = r
17 r = a+ b + c
18 return r

⊲Solution 235

The most straightforward solution is one that simply tries all the partitions of n = a+ b into two

integers a and b greater than 1 Since n = a+ b = b + a, we can limit the search to a ≤ b.

Two-Primes(n)

1 a = 2

2 while a ≤ n− a
3 if Is-Prime(a) and Is-Prime(n− a)
4 return true

5 a = a+ 1

6 return false

Is-Prime(n)

1 i = 2

2 while i2 ≤ n
3 if n is divisible by i
4 return true

5 i = i+ 1

6 return false

The main loop of Two-Prime runs for at most n/2 iterations, each costing O(
√
n), since the com-

plexity of Is-Prime(n) is O(
√
n). So, the overall complexity of Two-Prime is O(n

√
n).

⊲Solution 236.1

Algo-X(A) returns the lowest category corresponding to the objects in A with a maximal total

weight. This is the category c such that there is no other category k < c such that the sum of all

the objects in A with category k is higher than the sum of all the objects in A with category c. The

complexity of Algo-X(A) is Θ(n2), since the algorithm consists of two nested loops over exactly

n.

⊲Solution 236.2

We can create a copy of A that is sorted by category, which would allow us to compute the total

weight for each category in a single linear pass.

Better-Algo-X(A)

1 B = copy of A
2 sort B by category

3 w = −∞
4 t = B[1].weight

5 for i = 2 to B. length

6 if B[i].category == B[i− 1].category

7 t = t + B[i].weight

8 else if t > w
9 c = B[i− 1].category

10 w = t
11 t = B[i].weight

12 if t > w
13 c = B[B. length].category

14 return c

⊲Solution 237.1

Min-Heap-Insert(H,x)

1 H.heap-size = H.heap-size+ 1

2 i = H.heap-size

3 H[i] = x
4 while i > 1 and H[i] < H[⌊i/2⌋]
5 swap H[i]↔ H[⌊i/2⌋]
6 i = ⌊i/2⌋

⊲Solution 237.2

Min-Heap-Depth(H)

1 i = 1

2 d = 0

3 while 2i ≤ H.heap-size

4 i = 2i
5 d = d+ 1

6 return d

⊲Solution 238.1

Algo-Y(A) returns the maximal sum of any pair of distinct elements in the input array. If there

are less than 2 elements in the array, then the result is −∞. The complexity of Algo-Y(A) is Θ(n2),
since the algorithm iterates over all the n(n− 1)/2 pairs of elements.

⊲Solution 238.2

The maximal sum of any two pairs of elements is simply the sum of the two highest values in A.

So, we can simply find those two elements and then return their sum:

Better-Algo-Y(A)

1 if A. length < 2

2 return −∞
3 i = 1

4 for k = 2 to A. length

5 if A[k] > A[i]
6 i = k
7 if i == 1

8 j = 2

9 else j = 1

10 for k = 1 to A. length

11 if k 6= i and A[k] > A[j]
12 j = k
13 return A[i]+A[k]

⊲Solution 239

The problem is in P. As a proof, we show an algorithm Min-K-Sum(A,m,k) that solves the problem

in polynomial time. In fact, this is a greedy problem. In particular, we can answer the question by

adding up the highest k values in A. If their total sum is greater or equal than m, then the result

is clearly true. Otherwise, the result is clearly false, since there can not be another element that

yields a larger sum.

Min-K-Sum(A,m,k)

1 if k > A. length

2 return false

3 B = copy of A
4 sort B in descending order

5 s = 0

6 for i = 1 to k
7 s = s + B[i]
8 if s ≥m
9 return true

10 else return false

The complexity of Min-K-Sum is O(n logn).

⊲Solution 240

def maximal_step_k_length(A,k):

m = 0

j = 0

for i in range(1,len(A)):

if A[i] == A[i − 1] + k:

if i − j + 1 > m:

m = i − j + 1

else:

j = i

i = 1

j = 0

for i in range(1,len(A)):

if A[i] + k == A[i − 1]:

if i − j + 1 > m:

m = i − j + 1

else:

j = i

return m

⊲Solution 241

def high_power_run(A,h,t):

j = 0

h_cur = 0 # value of sliding window

for i in range(1, len(A)):

if A[i] > A[i−1]:

h_cur += A[i] − A[i−1]

if i > j + t:

j += 1

if A[j] > A[j−1]:

h_cur −= A[j] − A[j−1]

if h_cur >= h:

print(i, j)

return True

return False

⊲Solution 242

def peak_order(A):

A.sort()

i = len(A)//2

j = len(A)−1

while i < j:

A[i], A[j] = A[j], A[i]

i += 1

j −= 1

⊲Solution 243.1

def rotate(A,k):

n = len(A)

k = k % n

if k == 0:

return;

i = 0

start = 0

start_value = A[start]

prev = 0

curr = k

while i < n:

A[prev] = A[curr]

i = i + 1

prev = curr

curr = (curr + k) % n

if curr == start:

A[prev] = start_value

i = i + 1

start = start + 1

start_value = A[start]

prev = start

curr = (start + k) % n

def rotate_inplace(A,k):

return rotate(A,k)

⊲Solution 244

def is_sorted(A):

d = 0

for i in range(1,len(A)):

if A[i] > A[i−1]:

if d < 0:

return False

d = 1

elif A[i] < A[i−1]:

if d > 0:

return False

d = −1

return True

⊲Solution 245.1

def count_C(A):

D = [1]*10

for a in A:

D[a % 10] += 1

c = 1

for d in D:

c *= d

return c − 1

⊲Solution 245.2

def print_C_r(D, S, i):

if i == 10:

if len(S) > 0:

for s in S:

print(s, end=’ ’)

print()

else:

print_C_r(D, S, i+1)

for d in D[i]:

S.append(d)

print_C_r(D, S, i+1)

del S[−1]

def print_C(A):

D = []

for i in range(10):

D.append([])

for a in A:

D[a % 10].append(a)

print_C_r(D, [], 0)

⊲Solution 246.1

We first define a score function to implement the rules for two numbers.

score(a, b)

1 if a == b
2 return 3

3 elseif a == b2 or b == a2

4 return 9

5 elseif a divides b or b divides a
6 return 5

7 else return 1

Then we compute the maximal score of two sequences with classic dynamic programming.

Maximal-Score(A, B)

1 if A. length == 0 or B. length == 0

2 return 0

3 return max{Maximal-Score(A[2 . . .], B[2 . . .])+ score(A[1], B[1]),
Maximal-Score(A[2 . . .], B),
Maximal-Score(A, B[2 . . .])}

This pure recursive solution is inefficient, but can be made efficient with memoization. In fact, in

essence, this solution amounts to exploring a two-dimensional space of sub-problems, each defined

by the length of the suffixes of A and B that are considered in the sub-problem. And again, this can

be done implicitly through memoization, or explicitly by creating the matrix of sub-problems and

by filling that matrix iteratively. As a further exercise, you might consider writing that solution. In

any case, with memoization, the complexity is O(n2), where n is the total length of A and B.

⊲Solution 246.2

Here we simply implement the algorithm described in Question 1, with memoization.

def score(a,b):

if a == b:

return 3

elif a == b*b or b == a*a:

return 9

elif a % b == 0 or b % a == 0:

return 5

else:

return 1

def max3(x,y,z):

if x < y:

x = y

if x < z:

x = z

return x

def DP(A,B,i,j,M):

if i >= len(A) or j >= len(B):

return 0

if ((i , j) in M): # if we already solved this problem, return the "memoized" solution

return M[(i,j)]

res = max3(DP(A,B,i+1,j+1,M) + score(A[i],B[j]),

DP(A,B,i+1,j,M),

DP(A,B,i,j+1,M))

M[(i, j)] = res # "memoize" the solution

return res;

def maximal_score(A,B):

return DP(A,B,0,0,{})

⊲Solution 247

The problem is in NP. We can prove that by showing a verification algorithm that, given G = (V, E)
and a number k, and a subset VH , checks first of all that |VH | = k and then checks that the subgraph

H = (VH , EH) defined by VH is indeed a tree.

Verification(G = (V, E), k, VH)
1 if |VH | 6= k
2 return 0

3 H = empty graph // We now build the subgraph H
4 for v ∈ V
5 if v ∈ VH
6 V(H) = V(H)∪ {v}
7 for e = (u,v) ∈ E
8 if v ∈ VH and u ∈ VH
9 E(H) = E(H)∪ {(u,v)}

10 s = any vertex from VH
11 D,P = BFS(H, s) // We check that H is connected using BFS

12 for v ∈ VH
13 if D[v] == ∞
14 return 0

15 if |E(H)| == k− 1 // Lastly, we check that H has k− 1 edges

16 return 1

17 else return 0

⊲Solution 248.1

Algo-X considers all triples of distinct points pi, pj , pk ∈ P , and returns true when vector a = pipj
and vector b = pipk are orthogonal. This means that pi, pj , pk form a right triangle. Thus Algo-X

returns true if and only if P contains a right triangle. The complexity is O(n3), since there are

O(n3) triples of points in P .

⊲Solution 248.2

Better-Algo-X(P = [(x1, y1), (x2, y2), . . . , (xn, yn)])

1 n = P. length

2 for i = 1 to n
3 A = empty sequence

4 for j = 1 to n
5 if j 6= i
6 ax = P[j].x − P[i].x
7 ay = P[j].y − P[i].y
8 θ = angle of vector a = (ax , ay)
9 add θ to A

10 sort A
11 for θ ∈ A
12 if Binary-Search(A, θ +π/2) or Binary-Search(A, θ −π/2)
13 return true

14 return false

The main idea is to consider, for each point pi ∈ P , every other point pj 6= pi and the direction θij
of the vector a = pipj . The direction can be defined as the angle θij between vector a = pipj and

the X-axis (or any fixed axis). In time O(n logn) we can build a sorted array A that contains all the

angles. Then, for each angle θ ∈ A, we can check with a binary search whether A also contains one

of the two orthogonal angles θij ±π/2. So again, the total cost for pi is O(n logn). If we do this

for every pi, then the overall cost is O(n2 logn).
Notice that the sorted array A is effectively a dictionary. So, a similar complexity can be obtained

using any other type of efficient dictionary data structure.

⊲Solution 249

The most direct solution is conceptually similar to selection-sort. For each element A[i], we iterate

through every A[j] in A[i+ 1] . . . A[n], and we swap A[j] close to A[i].

Cluster(A)

1 i = 1

2 while i < A. length

3 for j = i+ 1 to A. length

4 if Equal(A[i],A[j])
5 i = i+ 1

6 swap A[i]↔ A[j]
7 i = i+ 1

The worst case is when all objects are different, so the algorithm runs the two nested loops with a

total of n+ (n−1)+ (n−2)+· · ·+2+1 = Θ(n2) iterations. Conversely, the best case is when all

objects are equivalent, so the algorithm terminates after the first inner loop, with a complexity of

Θ(n).

⊲Solution 250.1

Observe that danger periods do not overlap. Further, if a danger period is measured up to

position j − 1 (possibly empty), then the period can be extended to j if M[j].temperature >
M[j − 1].temperature and M[j].humidity < M[j − 1].humidity. Otherwise, the period ends at

j − 1 and a new one may start at j. This suggests a simple linear scan:

Maximal-Danger-Period(A)

1 i = 1

2 m = 0

3 for j = 2 to M. length

4 if M[j].temperature > M[j − 1].temperature and M[j].humidity < M[j − 1].humidity

5 if M[j].time−M[i].time >m
6 m = M[j].time−M[i].time

7 else i = j
8 return m

The complexity is O(n), since the algorithm amounts to a loop through the entire array M . The

worst case is the same as the best case, since the loop is unconditional.

⊲Solution 250.2

We can simply translate the solution for Question 1 into a Python function:

def max_danger_linear(M):

i = 0

m = 0

for j in range(1,len(M)):

if M[j].temperature > M[j−1].temperature and M[j].humidity < M[j−1].humidity:

if M[j].time − M[i].time > m:

m = M[j].time − M[i].time

else:

i = j

return m

⊲Solution 251.1

Algo-X(A, B, k) returns true if and only if A and B contain a common subsequence of numbers

of length k. More specifically, if there is a sequence A[i],A[i + 1], . . . A[i + k] that is equal to

B[j], B[j + 1], . . . B[j + k] for some i and j.

⊲Solution 251.2

Algo-Y(A, B) returns true if and only if A and B are completely disjoint, meaning that there are

no common elements in A and B. We can decide that in various ways. One is to merge the two

sequences and return false as soon as we find equal elements.

Better-Algo-Y(A, B)

1 X = sorted copy of A
2 Y = sorted copy of B
3 i = 1

4 j = 1

5 while i ≤ X. length and j ≤ Y. length

6 if X[i] == Y[j]
7 return false

8 elseif X[i] < Y[j]
9 i = i+ 1

10 else j = j + 1

11 return true

The complexity is O(n logn) because that is the cost of sorting A and B. The rest is a linear scan

of the sorted sequences.

⊲Solution 252.1

This decision problem amounts to finding a group of nodes that are all mutually connected. Such a

group is also called a connected component of the graph. This problem can be solved in polynomial

time with a breadth-first search. So, not only the problem is in NP, it is also in P, and in fact it can be

solved in linear time with the algorithm below. So we have an affirmative answer and a constructive

proof for all the three questions of this exercise.

Connected-Component(G, k)

1 S = ∅
2 for v ∈ V(G)
3 if v 6∈ S
4 c = 1

5 S = S ∪ {v}
6 Q = queue containing only v
7 while Q is not empty

8 v = pop first element from Q
9 for u ∈ Adj(v)

10 if u 6∈ S
11 S = S ∪ {u}
12 add u to Q
13 c = c + 1

14 if c ≥ k
15 return true

16 return false

⊲Solution 253.1

Algo-X returns the sum of the top-k elements of A.

⊲Solution 253.2

The complexity is Θ(n logn). The algorithm uses merge-sort as the main subroutine, plus a linear

scan that is at most Θ(n). So the dominating complexity is the complexity of merge-sort, which is

Θ(n logn) and is the same in the worst and best case.

⊲Solution 253.3

We can use the same idea of the classic divide-and-conquer k-selection algorithm for order statis-

tics: we partition using a chosen pivot, then recurse, at most once.

Better-Algo-X(A, k)

1 if k ≥ A. length

2 return Sum(A)
3 v = random value in A
4 L = empty sequence

5 M = empty sequence

6 R = empty sequence

7 for i = 1 to A. length

8 if A[i] < v
9 append A[i] to L

10 elseif A[i] > v
11 append A[i] to R
12 else append A[i] to M
13 if k < L. length

14 return Better-Algo-X(L, k)
15 if k− L. length ≤ M. length

16 return Sum(L)+ (k− L. length)∗ v
17 return Sum(L)+M. length∗ v

+Better-Algo-X(R, k− L. length−M. length)

Sum(A)

1 s = 0

2 for i = 1 to A. length

3 s = s + 1

4 return s

The algorithm is really the same as k-selection, so the complexity analysis is the same: the worst

case is quadratic, but the average and most common case is linear.

⊲Solution 254.1

Algo-X returns true if and only if there are two distinct elements A[i] and [j] at distance x from

each other, meaning A[i]−A[j] = x (with i 6= j), or false otherwise.

⊲Solution 254.2

Algo-X essentially invokes a binary search (Algo-Y) for each element of A[i] in the remainder of

the array. The best-case complexity is constant, which corresponds to an input array of size n in

which the first element is A[1] = y , and there is an element A[⌊n/2⌋+1] = y +x. The worst-case

complexity is instead Θ(n logn), which corresponds to an input array that contains no to elements

at distance x, for example, A = [2,4,6,8,10, . . . ,2n],x = 1.

⊲Solution 254.3

Since A is sorted, we can find two elements A[i] and A[j] at distance A[j]−A[i] = x with a linear

scan. Again, since A is sorted, we simply advance the index of the higher (further) element when

the distance is less than x (so as to increase the distance), or we advancing the base index i when

the distance is higher than x (so as to decrease the distance):

Better-Algo-X(A, k)

1 i = 0

2 j = 1

3 while j < A. length

4 if A[j] < A[i]+ x
5 j = j + 1

6 elseif A[j] > A[i]+ x
7 i = i+ 1

8 else return true

9 return false

The best-case complexity is constant, for example with A = [1,2, . . . , n], x = 1. The worst-case

complexity is when we don’t find two elements at distance x. For example,A = [2,4, . . . ,2n],x = 1.

⊲Solution 255.1

def count_vertical(A):

#

Complexity: \Theta(n^2), since we go through all the pairs of

points.

#

n = len(A)//2

c = 0

for i in range(n):

for j in range(i + 1, n):

if A[2*i] == A[2*j]:

c = c + 1

return c

def count_horizontal(A):

#

Complexity: \Theta(n^2), since we go through all the pairs of

points.

#

n = len(A)//2

c = 0

for i in range(n):

for j in range(i + 1, n):

if A[2*i+1] == A[2*j+1]:

c = c + 1

return c

⊲Solution 255.2

def intersection(A):

#

Complexity: \Theta(n^4). Consider in fact the worst−case input:

A = [0,1,0,2,0,3,0,4,0,5,...,0,n]. In this case, we go through

the n(n−1)/2 vertical segments, and for each one of them we go

through each of the same n(n−1)/2 pairs of points looking for

intersecting horizontal segments.

#

n = len(A)//2

for v1 in range(n):

for v2 in range(v1+1,n):

if A[2*v1] == A[2*v2]:

x = A[2*v1]

y1 = A[2*v1+1]

y2 = A[2*v2+1]

for h1 in range(n):

for h2 in range(h1+1,n):

if A[2*h1+1] == A[2*h2+1]:

y = A[2*h1+1]

x1 = A[2*h1]

x2 = A[2*h2]

if ((y >= y1 and y <= y2) or (y >= y2 and y <= y1)) \

and ((x >= x1 and x <= x2) or (x >= x2 and y <= x1)):

return True

return False

⊲Solution 256

def increasing_or_decreasing(A):

#

Complexity: \Theta(n). There are two loops of length n.

#

inc = 0

j = 0

for i in range(1,len(A)):

if A[i] > A[i−1]:

if i − j > inc:

inc = i − j

else:

j = i

dec = 0

j = 0

for i in range(1,len(A)):

if A[i] < A[i−1]:

if i − j > dec:

dec = i − j

else:

j = i

if inc > dec:

return ’increasing’

elif dec > inc:

return ’decreasing’

elif inc == 0:

return ’flat’

else:

return ’equal’

⊲Solution 257.1

Algo-X sorts the input array so that all numbers that are equivalent to 0 mod 4 precede those

that are equivalent to 1 mod 4 that precede those that are equivalent to 2 mod 4, and then those

that are equivalent to 3 mod 4. The algorithm is essentially equivalent to insertion-sort, with this

special ordering relation (mod 4). The complexity is therefore Θ(n2).

⊲Solution 257.2

Linear-Algo-X(A)

1 m = 0

2 i = 1

3 while i < A. length

4 j = A. length

5 while i < j
6 if A[i] == m mod 4

7 i = i+ 1

8 elseif A[j] 6=m mod 4

9 j = j − 1

10 else swap A[i] ↔ A[j]
11 i = i+ 1

12 j = j − 1

13 m = m+ 1

⊲Solution 258.1

In essence, we are given a graph over the vertex set P , with an edge (p, q) whenever knows(p, q) =
true. In this case, the decision problem asks whether there are at least k vertices each with at

least ℓ neighbors. The problem is in P, since the question can be answered with a simple scan of

the graph as follows:

Solution(P,knows, k, ℓ)

1 c = 0

2 for all p ∈ P
3 d = 0

4 for all q ∈ P
5 if p 6= q and knows(p, q)
6 d = d+ 1

7 if d ≥ ℓ
8 c = c + 1

9 if c ≥ k
10 return true

11 return false

⊲Solution 258.2

Again we are given a graph over the vertex set P , with an edge (p, q) whenever knows(p, q) = true,

and we are asked whether there is a set S of at least k vertices such that no two vertices in S
are adjacent, meaning that no two persons in S have met each other. That is, for all p,q ∈ S,

knows(p, q) = false. This definition immediately suggests a verification algorithm that proves

that the problem is in NP. The verification algorithm takes the set S as a proof of a true answer.

Verification(P,knows, k, S)

1 if |S| < k
2 return false

3 for all p ∈ P
4 d = 0

5 for all q ∈ P
6 if p 6= q and knows(p, q)
7 return false

8 return true

⊲Solution 259.1

Algo-Y checks whether there are at least k pairs of distinct elements ai, aj in A (with i 6= j) such

that ai = (aj)2. The complexity is Θ(n2).

⊲Solution 259.2

A straightforward O(n logn) solution is to sort the array and then, for each value, look for its

square using binary search.

Another idea—just a bit more involved, but also more elegant (at least in the humble opinion of

your teacher)—is to also sort the array, but then proceed with two linear scans. The scans use two

indexes i < j that move (linearly) to the right. The only problem is that we also need to consider

negative numbers. For example, ai = 4, aj = −2 would be counted as a valid pair, but the linear

right-ward scan would miss this case. However, we can simply have two scans: one for the positive

numbers aj where j moves to the right, and one for the negative numbers aj where j moves to

the left.

Better-Algo-Y(A, k)

1 B = sorted copy of A
2 z = 1

3 while B[z] < 0 // we find the first non-negative number

4 z = z + 1

5 i = z
6 j = i− 1 // here we consider negative numbers B[j] (if any)

7 while j > 0 and i ≤ B. length

8 if B[j] · B[j] < B[i]
9 j = j − 1

10 elseif B[j] · B[j] > B[i]
11 i = i+ 1

12 else k = k− 1

13 if k == 0

14 return true

15 i = i+ 1

16 j = j − 1

17 i = z
18 j = i
19 while i ≤ B. length

20 if B[j] · B[j] < B[i]
21 j = j + 1

22 elseif B[j] · B[j] > B[i]
23 i = i+ 1

24 else k = k− 1

25 if k == 0

26 return true

27 i = i+ 1

28 j = j + 1

29 return false

⊲Solution 260.1

One way to solve this problem is to try every alignment between sequence A and the reverse of

sequence B. For example, if A = [3,7,4,5,7] and B = [3,7,5,4,3], then we would try the following

alignments:

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

A 3 7 4 5 7

B rev 3 4 5 7 3

and for each alignment, we then look for the longest contiguous sequence of equal values, which

we can do easily in linear time. With this idea, it is also easy to figure out that we don’t need

to actually reverse the second sequence, and instead we simply need to go through its positions

backwards. In fact, the more natural thing to do with the above alignments, as in the code below

(next page), is to iterate forward in B and backwards in A. In any case, the complexity is Θ(n2),
since there are O(n) alignments, and each one requires a linear O(n) scan.

def longest_mirror(A,B):

m = 0

for p in range(1, len(A)+1): # p is a prefix length for A

l = 0

i = 0

while i < p and i < len(B):

if A[p − 1 − i] == B[i]:

l = l + 1

if l > m:

m = l

else:

l = 0

i = i + 1

for p in range(1, len(B)): # p is a suffix length for B

l = 0

i = p

while i < len(B) and len(A) − 1 − i + p >= 0:

if A[len(A) − 1 − i + p] == B[i]:

l = l + 1

if l > m:

m = l

else:

l = 0

i = i + 1

return m

Another way to solve the problem—again, more elegant, according to your teacher—is with dy-

namic programming. Below is the code. However, you should try to figure it out!

def longest_mirror(A,B):

DP = [0]*len(A)

m = 0

for j in range(len(B)−1,−1,−1):

for i in range(len(A)−1,−1,−1):

if A[i] == B[j]:

if i > 0:

DP[i] = DP[i−1] + 1

else:

DP[i] = 1

if DP[i] > m:

m = DP[i]

else:

DP[i] = 0

return m

The complexity of this dynamic programming solution is also Θ(n2), since we have two, fixed loops

over A and B, which in the worst case can be of size n/2 each.

⊲Solution 260.2

See the solution for Question 1.

⊲Solution 261

The description of the algorithm already gives us a solution: for each day i ∈ {1,2, . . . , n} we

compute the ranking between ai, bi, and ci and check whether the ranking is different from that

of the previous day.

Count-Inversions(A, B,C)

1 r_prev = “null”

2 c = 0

3 for i = 1 to A. length

4 if A[i] < B[i]
5 if B[i] < C[i]
6 r = “abc”

7 elseif A[i] < C[i]
8 r = “acb”

9 else r = “cab”

10 else if A[i] < C[i]
11 r = “bac”

12 elseif B[i] < C[i]
13 r = “bca”

14 else r = “cba”

15 if r 6= r_prev

16 c = c + 1

17 r_prev = r
18 return c

⊲Solution 262

We scan the input array A and store an array of the unique values contained in A. We return false

as soon as we find a fourth unique value. Below are two variants of this algorithm. The first one is

completely self-contained. The second one uses an auxiliary Find procedure.

At-Most-Three-Values(A)

1 V = empty array

2 for i = 1 to A. length

3 j = 1

4 while j ≤ V. length and A[i] 6= V[j]
5 j = j + 1

6 if j > 3

7 return false

8 if j > V. length

9 append A[i] to V
10 return true

At-Most-Three-Values(A)

1 V = empty array

2 for i = 1 to A. length

3 if not Find(V,A[i])
4 if V. length < 3

5 append A[i] to V
6 else return false

7 return true

Find(A,x)

1 for i = 1 to A. length

2 if A[k] == x
3 return true

4 return false

⊲Solution 263.1

Algo-X checks whether all except at most two points in the time series given by A are on the same

line. The worst-case complexity is Θ(n3). This worst case corresponds to an input A in which all

but the last two points lay on the same line. For example, A = 1,1, . . . ,1,2,3 would be a worst-case

input.

⊲Solution 263.2

Our goal is to check that at least n − 2 points are on the same straight line. To check that a

set of points are on the same line, we can take one reference point p, and then check that every

other point q defines the same line (passing through p and q), meaning a line with the same slope

r = (yq − yp)/(xq − xp).
In this case, however, we must allow for at most two exceptions, and one of the exceptions could

be our chosen reference point p. If the reference point p is one of the points on the line, then n−3

slope values out of the n−1 we compute—each defined by one of the n−1 remaining points—will

be identical. If on the other hand p is one of the points that does not lay on the line, then most

slope values will be different.

Since at most two points are not on the line, we just need to try at most three reference points.

Any three points would do, so we use the first three.

Better-Algo-X(A)

1 if A. length ≤ 4

2 return true

3 for i = 1 to 3

4 if Check-Line(A, i)
5 return true

6 return false

Check-Line(A, i)

1 V = empty array

2 C = empty array

3 for j = 1 to A. length

4 if i 6= j
5 r = (A[k]−A[i])/(k− i)
6 k = 1

7 while k < V. length and V[k] 6= r
8 k = k+ 1

9 if k ≤ V. length

10 C[k] = C[k]+ 1

11 if C[k] ≥ A. length− 3

12 return true

13 elseif V. length ≥ 3

14 return false

15 else append r to V
16 append 1 to C
17 return false

The core of the algorithm is in the Check-Line(A, i) procedure, which uses point i as a reference

point and then checks that all other points except possibly two of them form a line with the

same slope. To implement Check-Line we effectively maintain a map of at most three entries

slope → count that associates a slope value with a count of points. We implement the map with

two arrays, V and C, such that V[k]→ C[k].
When we find a fourth slope value, we know that the result is false. Conversely, when we find that

one slope value has a count of n− 3, then the answer is true.

The complexity of Better-Algo-X is the complexity of Check-Line, which is linear in the size of

A.

⊲Solution 263.3

The solution for Question 2 has a linear complexity and is therefore also a solution for this ques-

tion.

⊲Solution 264

In essence, d(v) is the size of the set of nodes reachable from v by following the arcs of G in

reverse. So, we first build the reverse adjacency list, meaning the adjacency list of the graph

obtained by flipping the direction of all the arcs of G. With that graph, we then run a breadth-first

search for each vertex v, where we count the nodes we reach. We then return the maximal count.

Max-Dependencies(G = (V,Adj))

1 RAdj = array of n empty lists (n = |V |)
2 for all v ∈ V
3 for all u ∈ Adj[v]
4 append v to RAdj[u]
5 m = 0

6 for all v ∈ V
7 d = 0

8 S = {v}
9 Q = queue containing v

10 while Q is not empty

11 u = dequeue node from Q
12 for all w ∈ RAdj[u]
13 if w 6∈ S
14 S = S ∪ {w}
15 d = d+ 1

16 enqueue w into Q
17 if d > m
18 m = d
19 return m

The complexity of Max-Dependencies is the complexity of a breadth-first search done for each

vertex, so Θ(n(n+m)), where n and m are the numbers of vertexes and arcs in G, respectively.

⊲Solution 265

Max-Heap-Insert(H,x)

1 H.heap-size = H.heap-size+ 1

2 i = H.heap-size

3 H[i] = x
4 while i > 1 and H[i] > H[⌊i/2⌋]
5 swap H[i]↔ H[⌊i/2⌋]
6 i = ⌊i/2⌋
[3]

[7, 3]

[7, 3, 3]

[7, 3, 3, 2]

[9, 7, 3, 2, 3]

[9, 7, 5, 2, 3, 3]

[9, 7, 9, 2, 3, 3, 5]

[9, 8, 9, 7, 3, 3, 5, 2]

[9, 8, 9, 7, 3, 3, 5, 2, 5]

[9, 8, 9, 7, 3, 3, 5, 2, 5, 2]

[9, 9, 9, 7, 8, 3, 5, 2, 5, 2, 3]

[9, 9, 9, 7, 8, 4, 5, 2, 5, 2, 3, 3]

[9, 9, 9, 7, 8, 7, 5, 2, 5, 2, 3, 3, 4]

[9, 9, 9, 7, 8, 7, 5, 2, 5, 2, 3, 3, 4, 3]

[9, 9, 9, 7, 8, 7, 9, 2, 5, 2, 3, 3, 4, 3, 5]

⊲Solution 266.1

Algo-X checks whether A contains an element A[i] that is equal to the sum of all other elements

in A.

⊲Solution 266.2

The worst-case complexity is Θ(n2). In such a case, the algorithm goes through each one of the n
elements, computes the sum of all the other n − 1 elements in n steps, and then returns false.

The best-case complexity is instead Θ(n), which happens when the first element equals the sum

of all other elements, which the algorithm computes in Θ(n) steps.

⊲Solution 266.3

If there is an element x such that the sum of every other element is x, then the total sum of all

elements must be 2x. So, we can simply compute the total sum s, in Θ(n) time, and then look for

s/2 in A, also in Θ(n) time.

Better-Algo-X(A)

1 s = 0

2 for i = 1 to A. length

3 s = s +A[i]
4 for i = 1 to A. length

5 if A[i] == s/2
6 return true

7 return false

⊲Solution 267.1

Algo-Y checks whether any two adjacent positions in the matrix contain equal elements. Adjacent

means different positions whose column and row indexes differ by at most one.

⊲Solution 267.2

The complexity is Θ(n2). The worst case is when there are no two equal elements, so the two loops

go through all the
(
n
2

)
pairs of elements, only to return false at the end. Conversely, the best-case

complexity is O(1), which happens when the first two elements of the first row of the matrix are

equal.

⊲Solution 267.3

For each element i, j in the matrix, which we denote here as Mi,j, there are at most 6 neighbors,

namely Mi,j±1, Mi±1,j, and Mi±1,j±1. We can therefore scan all those pairs of adjacent positions in

Θ(n) time. (Recall that the size of the matrix is rc = n.)

Better-Algo-Y(A, r , c)

1 for i = 1 to r − 1

2 for j = 1 to c
3 if A[ic + j + 1] == A[(i+ 1)c + j + 1] // Mi,j == Mi+1,j

4 return true

5 for i = 1 to r
6 for j = 1 to c − 1

7 if A[ic + j + 1] == A[ic + j + 2] // Mi,j == Mi,j+1

8 return true

9 for i = 1 to r − 1

10 for j = 1 to c − 1

11 if A[ic + j + 1] == A[(i+ 1)c + j + 2] // Mi,j == Mi+1,j+1

12 return true

13 if A[(i+ 1)c + j + 1] == A[ic + j + 2] // Mi+1,j == Mi,j+1

14 return true

15 return false

⊲Solution 268

The averagem = (A[n]+A[1])/2 is such that eitherm = A[1] = A[n], in which case the algorithm

can immediately return i = 1 or i = n, or A[1] < m < A[n] or A[1] > m > A[n]. In both these

latter cases, we can proceed with a binary search. We just have to make sure that we run the binary

search consistently with the specific relative order between A[1] and A[n].

Find-Avg-Point(A)

1 r = A. length

2 if A[1] == A[r]
3 return 1

4 m = (A[r] +A[1])/2
5 ℓ = 1

6 while ℓ + 1 < r
7 c = ⌊(ℓ+ r + 1)/2⌋
8 if A[c] > m
9 if A[ℓ] > m

10 ℓ = c
11 else r = c
12 elseif A[c] < m
13 if A[ℓ] < m
14 ℓ = c
15 else r = c
16 else return c
17 return ℓ

⊲Solution 269

The e-top order requires that all the elements in the even positions are less than or equal to all the

elements in the odd positions. Since there are about n/2 even positions and n/2 odd positions in

the array—more specifically, there are exactly n/2 even and n/2 odd positions if n is itself even, or

(n−1)/2 even and (n+1)/2 odd positions if n is odd—the e-top order is equivalent to partitioning

the array by the median value m ∈ A.

Sort-E-Top(A)

1 n = A. length

2 if n is even

3 k = n/2
4 else k = (n+ 1)/2
5 m = Selection(A, k)
6 i = 1

7 j = 2

8 while i ≤ n or j ≤ n
9 if A[i] ≤m

10 i = i+ 2

11 elseif A[j] > m
12 j = j + 2

13 else swap A[i]↔ A[j]
14 i = i+ 2

15 j = j + 2

Selection(A, k)

1 n = A. length

2 L = empty array

3 M = empty array

4 R = empty array

5 v = pick an element at random from A
6 for i = 1 to n
7 if A[i] < v
8 append A[i] to L
9 elseif A[i] > v

10 append A[i] to R
11 else append A[i] to M
12 if k ≤ L. length

13 return Selection(L, k)
14 elseif k ≤ L. length+M. length

15 return v
16 else return Selection(R, k− L. length−M. length)

⊲Solution 270

BST-Count-In-Range(T ,a, b)

1 if T == NIL

2 return 0

3 if a ≤ T .key and b ≥ T .key

4 return 1+ BST-Count-In-Range(T . left, a, b)+ BST-Count-In-Range(T .right, a, b)
5 if b < T.key

6 return BST-Count-In-Range(T . left, a, b)
7 else return BST-Count-In-Range(T .right, a, b)

In the worst case, we have to count all the nodes in T . So the complexity is Θ(n). In the best case,

the root key T .key is the minimum (and therefore T . left is nil) and the given range [a, b] is to

the left of that key, so the algorithm terminates immediately after one recursion into T . left, and

therefore the complexity is O(1). Same thing in the other direction.

⊲Solution 271.1

We start from the base-station position, and we discover all nodes within radius r of that position,

then we do the same from every discovered node until we do not discover more nodes. If this

process discovers all nodes, then we return true. Otherwise, we return false.

Check-Connectivity(X, Y , r)

1 n = X. length

2 D = [false]∗n // D[i] indicates whether sensor i was discovered

3 Q = empty queue

4 enqueue coordinates (0,0) into Q
5 while Q is not empty

6 (x,y) = dequeue coordinates from Q
7 for i = 1 to n
8 if D[i] == false and (X[i]− x)2 + (Y[i] −y)2 ≤ r
9 D[i] = true

10 enqueue coordinates (X[i], Y[i]) into Q
11 for i = 1 to n
12 if D[i] == false

13 return false

14 return true

The worst-case complexity is Θ(n2), since that is what the algorithm costs when all sensors are

discovered. In this case, all nodes are added to the queue Q and therefore processed by the main

loop exactly once. With each iteration of the main loop, we consider a sensor at some coordinates

(x,y), and we then scan the entire set of sensors to see which other sensors are within range of

the sensor at (x,y). Thus the complexity is Θ(n2).

⊲Solution 271.2

The minimal connectivity range is at most equal to the maximal distance of any sensor from

the base station. This is because, with that range, each sensor would be directly connected

to the base station. We set that distance as rmax , and then use Check-Connectivity(X, Y , r)
to perform a binary search on the result r . The binary search works because, by definition,

Check-Connectivity(X, Y , r) returns true for any value r greater or equal to the minimal con-

nectivity range r , and false for any value r less than the minimal connectivity range r .

Minimal-Connectivity-Range(X, Y , t)

1 rmax = 0

2 for i = 1 to X. length // note that X. length = Y. length = n
3 if

√
(X[i])2 + (Y[i])2 > rmax

4 rmax =
√
(X[i])2 + (Y[i])2

5 rmin = 0

6 while rmax − rmin > t
7 r = (rmax + rmin)/2
8 if Check-Connectivity(X, Y , r)
9 rmax = r

10 else rmin = r
11 return (rmax + rmin)/2

The complexity is given by the numeric values of the maximal distance rmax and the threshold t.
More specifically, starting from a range rmax , we divide by 2 repeatedly until we reach t. Therefore,

the while-loop runs for log2 (rmax/t) iterations. At each iteration, we invoke Check-Connectivity,

which costs us Θ(n2). Therefore, the complexity is Θ(n2 log (rmax/t))

⊲Solution 272.1

The problem is in NP. We prove that by showing an algorithm that verifies a certificate for a “yes”

answer in polynomial time. As a certificate, we give the verification algorithm 2k indexes I =
[i1, i2, . . . , i2k−1, i2k] that define k pairs.

Verify(k,A, I)

1 if I. length 6= 2k
2 return false

3 for p = 1 to k− 1

4 for q = p + 1 to 2k
5 if I[p] == I[q]
6 return false

7 for p = 1 to k− 1

8 if A[I[2p + 1]]+A[I[2p + 2]] 6= A[I[1]]+A[I[2]]
9 return false

10 return true

⊲Solution 272.2

The problem is in P. We prove that by showing an algorithm that solves the problem in polynomial

time. The main idea of this algorithm is to compute the values of all pairs, and then to find repeated

values. We find repeated values by sorting the array of values, and then by counting consecutive

equal values.

Solve(k,A)

1 B = empty array

2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 append A[j] +A[i] to B
5 sort B
6 j = 1

7 for i = 2 to B. length

8 if B[i] 6= B[j]
9 j = i

10 if i− j + 1 ≥ k
11 return true

12 return false

⊲Solution 273.1

Algo-X returns true if A and B contain exactly the same elements, in any order, or false oth-

erwise. The worst-case is when A contains distinct elements, and B contains exactly the same

elements, but in reverse order. In this case the complexity is Θ(n2). In the best case, the length of

A is a small fixed value (independent of the total length n) and the algorithm returns false after

the first iteration of the inner while-loop. In this case, the complexity if O(1).

⊲Solution 273.2

We must compare the sequences as multi-sets. We do that by first sorting the two sequences, so

that we can then compare the sequences element-by-element in each position.

Better-Algo-X(A, B)

1 if A. length 6= B. length

2 return false

3 C = sorted copy of A
4 D = sorted copy of B
5 for i = 1 to A. length

6 if C[i] 6= D[j]
7 return false

8 return true

⊲Solution 274

BST-Count-Outside-Range(T ,a, b)

1 return BST-Count-In-Range(T ,−∞, a)+ BST-Count-In-Range(T , b,∞)

BST-Count-In-Range(T ,a, b)

1 if T == NIL

2 return 0

3 if a < T.key and b > T.key

4 return 1+ BST-Count-In-Range(T . left, a, b)+ BST-Count-In-Range(T .right, a, b)
5 if b ≤ T .key

6 return BST-Count-In-Range(T . left, a, b)
7 else return BST-Count-In-Range(T .right, a, b)

In the worst case, we have to count all the nodes in T . So the complexity is Θ(n). In the best

case, the root key T .key is the minimum (and therefore T . left is nil), T .right.key is the maximum

(and therefore T .right.right is nil), and the minimum and the maximum keys are both in the

interval [a, b]. In this case, the first call to BST-Count-In-Range(T ,−∞, a) recurses to T . left

so the algorithm terminates immediately after one recursion into T . left and returns immediately

(since T . left is nil), and the second call BST-Count-In-Range(T , b,∞) recurses only to T .right and

then to T .right.right.

⊲Solution 275.1

The problem is in NP. We prove that by showing an algorithm that verifies a certificate for a “yes”

answer in polynomial time. As a certificate, we give two users a and b for which we verify that

their distance in the social network graph is greater than n.

Verify(U, F,n,a, b)

1 D = BFS(U, F, a)
2 . . .

⊲Solution 275.2

The problem is in P. We prove that by showing an algorithm that solves the problem in polynomial

time.

Solve(U, F,n)

1 for u ∈ U
2 D = BFS(U, F,u)
3 for v ∈ U
4 if D[v] > n
5 return true

⊲Solution 276.1

Algo-X returns the maximal length of any contiguous subsequence of A whose total value is equal

to an element of B. If no such sequence exists, the result is 0.

The worst-case is when the result is 0, which happens when the algorithm iterates through its four

nested loops. So, intuitively, the complexity is O(n4). As it turns out, a slightly more involved

analysis shows that this intuitive upper bound is also tight.

The algorithm effectively iterates over all the pairs (SA, b) where SA is a contiguous subsequence

of A, and b is an element of B. For each of the nA − ℓ + 1 subsequences of length ℓ, the algorithm

computes the sum of the subsequence in ℓ steps. So, the overall cost of the computations of all

the subsequences is 1(nA) + 2(nA − 1) + 3(nA − 2) + · · · + (nA − 1)(2) + (nA)(1). Intuitively,

this sum is O((nA)3) and Ω((nA)2). It is also possible to show, for example using a geometric

argument, that the O((nA)3) upper bound is also tight, so the overall complexity for the sums of

all the subsequences is Θ((nA)3). And the algorithm runs this for every element of B, so the overall

complexity is Θ(nB(nA)3). And since we can choose nA = n/2 and nB = n/2, the total complexity

is Θ(n4).

⊲Solution 276.2

We can get an immediate improvement of a factor of n by simply computing the sums of the

various subsequences incrementally. That is, once you have a sum of a subsequence of length ℓ
starting at position i, you can get the next sequence starting at position i + 1 in constant time by

adding the element at position i+ ℓ and subtracting the element at position i.

Better-Algo-X(A, B)

1 for ℓ = A. length downto 1

2 for j = 1 to B. length

3 s = 0

4 for k = 1 to ℓ
5 s = s +A[k]
6 if s == B[j]
7 return ℓ
8 for i = 2 to A. length− ℓ+ 1

9 s = s −A[i]+A[i+ ℓ− 1]
10 if s == B[j]
11 return ℓ
12 return 0

⊲Solution 277.1

Algo-Y prints in ascending order all the elements of A whose occurrence count is maximal. The

complexity is Θ(n2). Any input is the worst-case input. This is because the two nested loops that

determine the Θ(n2) are executed to completion in all cases.

⊲Solution 277.2

Better-Algo-Y(A)

1 B = copy of A
2 sort B
3 if B. length == 0

4 return 0

5 m = 1

6 c = 1

7 for i = 2 to B. length

8 if B[i] == B[i− 1]
9 c = c + 1

10 if c > m
11 m = c
12 else c = 1

13 c = 1

14 for i = 1 to B. length

15 if i > 1 and B[i] == B[i− 1]
16 c = c + 1

17 else c = 1

18 if c == m
19 print B[i]
The complexity of Better-Algo-Y is dominated by the complexity of sorting the input array A, so

Θ(n logn). The rest of the algorithm amounts to two linear scans, so Θ(n).

⊲Solution 278

BST-Count-Outside-Range(T ,a, b)

1 return BST-Count-In-Range(T ,−∞, a)+ BST-Count-In-Range(T , b,∞)
BST-Count-In-Range(T ,a, b)

1 if T == NIL

2 return 0

3 if a < T.key and b > T.key

4 return 1+ BST-Count-In-Range(T . left, a, b)+ BST-Count-In-Range(T .right, a, b)
5 if b ≤ T .key

6 return BST-Count-In-Range(T . left, a, b)
7 else return BST-Count-In-Range(T .right, a, b)

In the worst case, we have to count all the nodes in T . So the complexity is Θ(n). In the best

case, the root key T .key is the minimum (and therefore T . left is nil), T .right.key is the maximum

(and therefore T .right.right is nil), and the minimum and the maximum keys are both in the

interval [a, b]. In this case, the first call to BST-Count-In-Range(T ,−∞, a) recurses to T . left

so the algorithm terminates immediately after one recursion into T . left and returns immediately

(since T . left is nil), and the second call BST-Count-In-Range(T , b,∞) recurses only to T .right and

then to T .right.right.

⊲Solution 279.1

The problem is in NP. We prove that by showing an algorithm that verifies a certificate for a “yes”

answer in polynomial time. As a certificate, we give two users a and b for which we verify that

their distance in the social network graph is greater than n.

Verify(U, F,n,a, b)

1 D = BFS(U, F, a)
2 . . .

⊲Solution 279.2

The problem is in P. We prove that by showing an algorithm that solves the problem in polynomial

time.

Solve(U, F,n)

1 for u ∈ U
2 D = BFS(U, F,u)
3 for v ∈ U
4 if D[v] > n
5 return true

⊲Solution 280.1

Algo-X returns the maximal length of any contiguous subsequence of A whose total value is equal

to an element of B. If no such sequence exists, the result is 0.

The worst-case is when the result is 0, which happens when the algorithm iterates through its four

nested loops. So, intuitively, the complexity is O(n4). As it turns out, a slightly more involved

analysis shows that this intuitive upper bound is also tight.

The algorithm effectively iterates over all the pairs (SA, b) where SA is a contiguous subsequence

of A, and b is an element of B. For each of the nA − ℓ + 1 subsequences of length ℓ, the algorithm

computes the sum of the subsequence in ℓ steps. So, the overall cost of the computations of all

the subsequences is 1(nA) + 2(nA − 1) + 3(nA − 2) + · · · + (nA − 1)(2) + (nA)(1). Intuitively,

this sum is O((nA)3) and Ω((nA)2). It is also possible to show, for example using a geometric

argument, that the O((nA)3) upper bound is also tight, so the overall complexity for the sums of

all the subsequences is Θ((nA)3). And the algorithm runs this for every element of B, so the overall

complexity is Θ(nB(nA)3). And since we can choose nA = n/2 and nB = n/2, the total complexity

is Θ(n4).

⊲Solution 280.2

We can get an immediate improvement of a factor of n by simply computing the sums of the

various subsequences incrementally. That is, once you have a sum of a subsequence of length ℓ
starting at position i, you can get the next sequence starting at position i + 1 in constant time by

adding the element at position i+ ℓ and subtracting the element at position i.

Better-Algo-X(A, B)

1 for ℓ = A. length downto 1

2 for j = 1 to B. length

3 s = 0

4 for k = 1 to ℓ
5 s = s +A[k]
6 if s == B[j]
7 return ℓ
8 for i = 2 to A. length− ℓ+ 1

9 s = s −A[i]+A[i+ ℓ− 1]
10 if s == B[j]
11 return ℓ
12 return 0

⊲Solution 281.1

Algo-Y prints in ascending order all the elements of A whose occurrence count is maximal. The

complexity is Θ(n2). Any input is the worst-case input. This is because the two nested loops that

determine the Θ(n2) are executed to completion in all cases.

⊲Solution 281.2

Better-Algo-Y(A)

1 B = copy of A
2 sort B
3 if B. length == 0

4 return 0

5 m = 1

6 c = 1

7 for i = 2 to B. length

8 if B[i] == B[i− 1]
9 c = c + 1

10 if c > m
11 m = c
12 else c = 1

13 c = 1

14 for i = 1 to B. length

15 if i > 1 and B[i] == B[i− 1]
16 c = c + 1

17 else c = 1

18 if c == m
19 print B[i]
The complexity of Better-Algo-Y is dominated by the complexity of sorting the input array A, so

Θ(n logn). The rest of the algorithm amounts to two linear scans, so Θ(n).

⊲Solution 282

Compare-Intervals(a1, b1, a2, b2)

1 if a1 > b1

2 swap a1 ↔ b1

3 if a2 > b2

4 swap a2 ↔ b2

5 if a2 > b1 or a1 > b2

6 return “disjoint”

7 if a1 == a2 and b1 == b2

8 return “1 equals 2”

9 if a1 < a2

10 if b2 ≤ b1

11 return “1 covers 2”

12 elseif a2 < b1

13 return “partial”

14 else return “touch”

15 elseif b2 ≤ b1

16 return “2 covers 1”

17 elseif b2 > a1

18 return “partial”

19 else return “touch”

The complexity is constant, O(1).

⊲Solution 283.1

The problem is in P, as we show in the answer for Question 2. Therefore, the problem is also in NP.

We can also prove that the problem is in NP by showing an algorithm that verifies a given pairing.

In particular, we give a “witness” pairing as an array P = [(i1, j1), (i2, j2), . . . , (in, jn)] of n pairs of

indexes into A.

Verify-Uniform-Pairing(A, P)

1 n = A. length/2
2 if P. length 6= n
3 return false

4 v = A[P[1][1]] +A[P[1][2]]
5 for i = 2 to n
6 if A[P[i][1]]+A[P[i][2]] 6= v
7 return false

8 I = empty array

9 for i = 1 to n
10 append P.[i][1] to I
11 append P.[i][2] to I
12 sort I
13 for i = 1 to 2n
14 if I[i] 6= i
15 return false

16 return true

⊲Solution 283.2

The problem is in P. We prove that by showing an algorithm that solves the problem in polynomial

time.

Has-Uniform-Pairing(A)

1 B = sorted copy of A
2 v = B[1]+ B[A. length]
3 i = 2

4 j = A. length− 1

5 while j > i
6 if B[i]+ B[j] 6= v
7 return false

8 i = i+ 1

9 j = j − 1

10 return true

⊲Solution 284.1

At-Most-K-Leaves(T , k)

1 if Count-Leaves(T) ≤ k
2 return true

3 else return false

Count-Leaves(T)

1 if T == nil

2 return 0

3 if T . left == nil and T .right == nil

4 return 1

5 return Count-Leaves(T . left)+ Count-Leaves(T .right)

The complexity is Count-Leaves is Θ(n), since the algorithm performs a full walk of the tree.

At-Most-K-Leaves simply calls Count-Leaves, so its complexity is also Θn.

⊲Solution 284.2

We can perform the same walk through the tree without using recursion, by simply using a breadth-

first search on the tree.

At-Most-K-Leaves-Itr(T , k)

1 Q = empty queue

2 ℓ = 0

3 if T 6= nil

4 enqueue T into Q
5 while Q is not empty

6 t = dequeue from Q
7 if t. left == nil and t.right == nil

8 ℓ = ℓ + 1

9 if ℓ > k
10 return false

11 else if t. left 6= nil

12 enqueue t. left into Q
13 if t.right 6= nil

14 enqueue t.right into Q
15 return true

⊲Solution 285.1

Algo-X returns the maximal length of any contiguous sub-sequence of indexes 1 ≤ i ≤ n such that

A[i] > B[i]. Interpreting A and B as data at times 1,2, . . . , n, then Algo-X returns the maximal

interval (length) where the A curve is greater than the B curve.

The complexity is Θ(n2), since Algo-X calls Algo-Y for each value of 1 ≤ i ≤ n, and Algo-Y always

runs for n− i steps.

⊲Solution 285.2

Better-Algo-X(A, B)

1 ℓ = 0

2 j = 1

3 for i = 1 to A. length

4 if A[i] > B[i]
5 if i− j + 1 > ℓ
6 ℓ = i− j + 1

7 else j = i+ 1

8 return ℓ

The complexity of Better-Algo-X is Θ(n), since the algorithm simply scans A and B once.

⊲Solution 286

In essence, the resulting order must be such that the value in the middle position A[⌊n/2⌋] is

maximal, and that the subsequence to the left of A[⌊n/2⌋] is increasing while the subsequence

on the right is decreasing. Other than that, the two sides don’t need to be balanced or otherwise

correlated in any way. Also, there are no complexity constraints. So, we can develop a very sim-

ple solution based on Insertion-Sort. The idea here is to first sort the whole sequence, with

Insertion-Sort, and then to invert the right half of A.

Mountain-Sort(A)

1 n = A. length

2 for i = 2 to n
3 j = i
4 while j > 1 and A[j − 1] > A[j]
5 swap A[j − 1]↔ A[j]
6 j = j − 1

7 i = ⌊n/2⌋
8 j = n
9 while i < j

10 swap A[i]↔ A[j]
11 i = i+ 1

12 j = j − 1

The complexity is Θ(n2), which is the complexity of sorting the array.

Another approach could be to first put the maximal value in the middle, and then sort the left half

in increasing order and the right half in decreasing order.

⊲Solution 287.1

Algo-X returns the number of unique values in A

⊲Solution 287.2

The worst-case complexity is Θ(n2). This is a case in which the algorithm must check that A[i] is

not equal to any other value A[j] (with i 6= j). In the best case, the algorithm goes through each

value A[i] but then does not run the inner loop more than a constant amount of times. This is

the case, for example, in which A contains n copies of the same value. In this case, the inner loop

terminates immediately for every A[i], and therefore the complexity is Θ(n).
⊲Solution 287.3

We first sort A, and then go through the sorted data B, counting how many elements B[i] are

different from their adjacent elements B[i− 1] and B[i+ 1].

Better-Algo-X(A)

1 B = copy of A sorted in ascending order

2 x = 0

3 for i = 1 to B. length

4 if (i == 1 or B[i] 6= B[i− 1]) and (i == n or B[i] 6= B[i+ 1])
5 x = x + 1

6 return x

⊲Solution 288.1

Algo-Y returns the highest total sales in a period of ten days.

⊲Solution 288.2

The complexity is Θ(n2). The nested loops perform complete iterations over T without any short-

cut. So, the complexity is the same also in the best case.

⊲Solution 288.3

We first sort the set of transactions by date, and then we simply scan the set of transactions

maintaining the total (net) gain for a window of transactions that are all within 10 days of each

other.

Better-Algo-Y(T)

1 S = copy of T sorted by date

2 i = 1

3 j = 1

4 v = 0

5 m = 0

6 while j ≤ S. length

7 if S[j].date− S[i].date ≤ 10

8 v = v + S[j].amount

9 j = j + 1

10 if m < v
11 m = v
12 else v = v − S[i].amount

13 i = i+ 1

14 return m

After sorting T , at a cost of Θ(n logn), Better-Algo-Y performs a linear scan of the sorted array.

The overall complexity is therefore Θ(n logn).

⊲Solution 289.1

H is not a valid min heap because the value H[3] = 8 should be less than or equal to both the

values H[6] = 9 and H[7] = 5. So, H[7] < H[3] violates the min-heap property. Similarly,

H[13] = 6 < H[6] = 9 also violate the same property. A simple fix is to swap those two pairs of

values: H[7]↔ H[3] and H[13]↔ H[6]. The resulting content of the array is:

H = [3,5,5,6,10,6,8,6,7,20,11,17,9,9,10]

⊲Solution 289.2

Min-Heap-Add(H)

1 append x to H
2 i = H. length

3 while i > 1 and H[i] < H[⌊i/2⌋]
4 swap H[i]↔ H[⌊i/2⌋]
5 i = ⌊i/2⌋

⊲Solution 289.3

H = [3,5,5,6,10,6,8,6,7,20,11,17,9,9,10,4]

H = [3,5,5,6,10,6,8,6,7,20,11,17,9,9,4,10]

H = [3,5,5,6,10,6,4,6,7,20,11,17,9,9,8,10]

H = [3,5,4,6,10,6,5,6,7,20,11,17,9,9,8,10]

⊲Solution 290

We can compute the square root using a straightforward binary search.

Square-Root(n)

1 h = n+ 1

2 l = 0

3 while l+ 1 < h
4 m = ⌊(l+ h)/2⌋
5 if m ·m> n
6 h = m
7 elseif m ·m < n
8 l = m
9 else return m

10 return m

⊲Solution 291

The input consists of a sorted sub-sequence of negative numbers (possibly empty) followed by a

sorted sub-sequence of positive numbers (possibly empty), possibly with zeroes within and be-

tween the first and second sequence. So, all we have to do is pack the first subsequence of negative

numbers towards the left side of A, then pack the subsequence of positive numbers towards the

right side of A, and then set to 0 all the positions that are left in the middle.

Re-Sort(A)

1 n = A. length

2 i = 1

3 ibase = i
4 while i ≤ n and A[i] ≤ 0

5 if A[i] < 0

6 A[ibase] = A[i]
7 ibase = ibase + 1

8 i = i+ 1

9 j = n
10 jbase = j
11 while j ≥ i
12 if A[j] > 0

13 A[jbase] = A[j]
14 jbase = jbase − 1

15 j = j + 1

16 while ibase ≤ jbase

17 A[ibase] = 0

18 ibase = ibase + 1

⊲Solution 292.1

The problem is in NP, since it is easy to play the game following a given set of choices S that serve

as a “witness” for a true answer.

Verify(A, B, c, S)

1 n = A. length // assume A. length == B. length

2 i = 1

3 j = 1

4 k = 1

5 t = 0 // total cost of the game

6 while i ≤ n or j ≤ n
7 if i ≤ n and j ≤ n
8 if S[k] == discard-both

9 if suit(A[i]) 6= suit(B[j]) and value(A[i]) 6= value(B[j])
10 return false

11 i = i+ 1

12 j = j + 1

13 elseif S[k] == discard-A // discard from A
14 t = t + value(A[i])
15 i = i+ 1

16 else t = t + value(B[j]) // discard from B
17 j = j + 1

18 k = k+ 1

19 elseif i < n
20 t = t + value(A[i])
21 i = i+ 1

22 else t = t + value(B[j])
23 j = j + 1

24 if t < c
25 return true

26 else return false

⊲Solution 292.2

The problem is in P. We can decide by checking that the minimal cost of a game is less than the

given cost limit c. We find the minimal cost of a game with a dynamic programming algorithm.

The dynamic-programming solution is simply a coding of all the possible choices in the game.

Solve(A, B, c)

1 if DP(A,1, B,1) < c
2 return true

3 else return false

DP(A, i, B, j)

1 if i > A. length and j > B. length

2 return 0

3 if i == A. length

4 t = 0

5 while j ≤ B. length

6 t = t + valueB[j]
7 j = j + 1

8 return t
9 if j == B. length

10 t = 0

11 while i ≤ A. length

12 t = t + valueA[i]
13 i = i+ 1

14 return t
15 t = min{DP(A, i+ 1, B, j)+ value(A[i]),DP(A, i, B, j + 1)+ value(B[j])}
16 if suit(A[i]) == suit(B[j]) or value(A[i]) == value(B[j])
17 t = min{t,DP(A, i+ 1, B, j + 1)}
18 return t

Now, this solution is not really polynomial, since the combination of all possible choices given

by the multiple recursion of the DP function leads to an exponential complexity. However, the

algorithm can be readily turned into a polynomial one by using memoization, which is left as an

exercise for the reader. . .

⊲Solution 293.1

Algo-X returns true if and only if the characters of B are a subset of those of A, considering also

their multiplicity. So, for example, B =“aac” is a subset of A =“aabbcc”. The worst-case is when B
does not contain any of the characters of A. For example, A =“aaa. . . ” and B =“bbb. . . ”. In fact,

the outer loop (over A) is fixed, and the inner loop (over B) can only terminate when A[i] == B[j]
for some i and j. So, in the worst case, the complexity is Θ(n2).

⊲Solution 293.2

We must compare the sequences as multi-sets. We can do that by first sorting the two sequences,

so that we can then compare them element-by-element as if we were performing a merge of the

two (sorted) sequences.

Better-Algo-X(A, B)

1 C = sorted copy of A
2 D = sorted copy of B
3 j = 1

4 for i = 1 to A. length

5 if j > B. length

6 return true

7 elseif C[i] == D[j]
8 j = j + 1

9 elseif C[i] > D[j]
10 return false

11 if j ≤ B. length

12 return false

13 else return true

The main body of this algorithm runs in O(n) time, so the overall complexity is Θ(n logn) for

sorting A and B.

Since the values of the characters in A and B are numbers from a fixed and small range, we can

also develop an O(n) solution:

Better-Algo-X-Linear(A, B)

1 n = A. length

2 C = []
3 D = []
4 for i = 1 to m //m is the size of the alphabet

5 append 0 to C
6 append 0 to D
7 for i = 1 to n
8 C[A[i]] = C[A[i]]+ 1

9 D[B[i]] = D[B[i]]+ 1

10 for i = 1 to m
11 if C[i] < D[j]
12 return false

13 return true

⊲Solution 294

Notice that G can be seen as the union of c connected components, with 1 ≤ c ≤ n, where each

connected component is a maximal set of vertexes that form a connected subgraph of G. We can

then connect those components by adding c − 1 edges to form a spanning tree of the connected

components.

In practice, we can start from any vertex v0, then visit all the vertexes reachable from v0, directly

or indirectly using BFS, then find the first vertex v1 that was not already visited, and therefore

implicitly count an additional edge (v0, v1), and again visit all the vertexes reachable from v1

(BFS); then again find the next non-visited vertex v2, implicitly count an additional edge (v1, v2),
and so on until we visited every vertex in G.

Minimal-Additional-Edges(G = (V, E))
1 Visited = ∅ // vertexes that were already visited

2 c = 0 // number of connected components

3 while Visited 6= V
4 u = any vertex that is not in Visited // must exist, since Visited 6= V
5 c = c + 1 // we now run a BFS starting from u
6 Q = empty queue

7 enqueue u in Q
8 Visited = Visited ∪ {u}
9 while Q is not empty

10 v = dequeue vertex from Q
11 for w ∈ Adj(v)
12 if w 6∈ Visited

13 enqueue w in Q
14 Visited = Visited ∪ {w}
15 return c − 1

⊲Solution 295

A simple way of changing a key is to delete the current one and then insert the new one. However,

here we need to do that without creating any new node. That can be done simply by recycling the

node we delete, so as to then use it for the following insertion.

BST-Root-Change(t, x)

1 if t. left == nil and t.right == nil

2 t.key = x
3 return t
4 elseif t. left == nil

5 r = t.right

6 r .parent = nil

7 t.right = nil

8 elseif t.right == nil

9 r = t. left

10 r .parent = nil

11 t. left = nil

12 else r = t
13 t = t.right

14 while t. left 6= nil

15 t = t. left

16 if t == t.parent. left

17 t.parent. left = t.right

18 else t.parent.right = t.right

19 t.right = nil

20 r .key = t.key

21 t.key = x
22 BST-Insert(r , t)
23 return r

BST-Insert(r , t)

1 while true

2 if t.key ≤ r .key

3 if r . left == nil

4 r . left = t
5 return

6 r = r . left

7 else if r .right == nil

8 r .right = t
9 return

10 r = r .right

The complexity is Θ(h). This is because the while-loop in the third deletion case goes at most

through h iterations, and so does the insertion loop.

⊲Solution 296.1

For k = 1, the minimal cover is the interval that goes from the minimum to the maximum values

of A. From this single interval, we can build two intervals of minimal total length by removing the

largest interval that does not contain any number, that is, the largest gap between any two numbers

in A. And then again, we can obtain three minimal intervals by removing the second-largest gap,

and so on. Thus in general we can obtain k minimal intervals by removing the k − 1 largest gaps.

And since all we care about is the length, we don’t need to keep track of which intervals (although

that wouldn’t be difficult either) and instead we can simply compute the total length and then

subtract the top k− 1 gap lengths.

Minimal-K-Interval-Cover-Length(A, k)

1 n = A. length

2 B = sorted copy of A
3 G = array of n− 1 numbers

4 for i = 1 to n− 1

5 G[i] = B[i+ 1]− B[i]
6 sort G in decreasing order

7 ℓ = B[n]− B[1]
8 for i = 1 to min(k,n− 1)
9 ℓ = ℓ −G[i]

10 return ℓ

The complexity is Θ(n logn), which is the complexity of the sorting of A and G. The rest of the

algorithm is O(n).

⊲Solution 296.2

See the solution to Question 1.

⊲Solution 297.1

Algo-X returns the sum of the k smallest values in A. If A contains less than k values, then

the result is nil. The complexity is Θ(n2), since there are two nested loops that are run without

shortcuts in the worst case of k > n.

⊲Solution 297.2

It is easy enough to sort the array and then add up the first k elements. Or return nil if the length

n of the array is less than k.

Better-Algo-X(A, k)

1 n = A. length

2 if k > n
3 return nil

4 B = sorted copy of A
5 s = 0

6 for i = 1 to k
7 s = s + B[i]
8 return s

The complexity is Θ(n logn), which is the complexity of sorting A.

⊲Solution 298.1

Algo-Y returns true if the input array A contains more than 3 distinct values, or false otherwise.

The complexity is Θ(n logn), due to the sorting algorithm.

⊲Solution 298.2

We can simply scan the input array and build an array of at most three elements to store the first

three distinct values.

Better-Algo-Y(A)

1 V = array of 3 elements

2 k = 0

3 for i = 1 to A. length

4 j = 1

5 while j ≤ k and V[j] 6= A[i]
6 j = j + 1

7 if j > k
8 if k > 3

9 return true

10 else V[j] = A[i]
11 k = k+ 1

12 return false

The complexity is Θ(n), since the main loop goes through the entire array, while the inner loop

goes through at most k iterations, where k ≤ 3.

