Elementary Data Structures and Hash Tables

Antonio Carzaniga
Faculty of Informatics
Università della Svizzera italiana

March 28, 2024

Outline

- Common concepts and notation
- Stacks

■ Queues
■ Linked lists

■ Trees

- Direct-access tables
- Hash tables

Concepts

■ A data structure is a way to organize and store information

- to facilitate access, or for other purposes

Concepts

■ A data structure is a way to organize and store information

- to facilitate access, or for other purposes
- A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.
- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

■ A data structure stores data and possibly meta-data

■ A data structure is a way to organize and store information

- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

- A data structure stores data and possibly meta-data
- e.g., a heap needs an array A to store the keys, plus a variable A. heap-size to remember how many elements are in the heap

■ The ubiquitous "last-in first-out" container (LIFO)

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty (S) returns true if and only if S is empty
- Push (S, x) pushes the value x onto the stack S
- Pop(S) extracts and returns the value on the top of the stack S

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty (S) returns true if and only if S is empty
- Push (S, x) pushes the value x onto the stack S
- Pop(S) extracts and returns the value on the top of the stack S
- Implementation
- using an array
- using a linked list

A Stack Implementation

A Stack Implementation

■ Array-based implementation

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

A Stack Implementation

■ Array-based implementation

- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

```
StACK-Empty(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE
```


A Stack Implementation

■ Array-based implementation

- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

```
Stack-Empty(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE
```

```
Push(S,x)
1 S.top = S.top +1
2 S[S.top] = x
```

```
Pop(S)
1 if Stack-Empty(S)
2 error "underflow"
3 else S.top = S.top - 1
r return S[S.top + 1]
```

Queue

■ The ubiquitous "first-in first-out" container (FIFO)

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- $\operatorname{Dequeve}(Q)$ extracts the element at the head of queue Q

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeve(Q) extracts the element at the head of queue Q
- Implementation
- Q is an array of fixed length Q. length
- i.e., Q holds at most Q. length elements
- enqueueing more than Q elements causes an "overflow" error
- Q.head is the position of the "head" of the queue
- Q.tail is the first empty position at the tail of the queue

EnQUEUE (\mathbf{Q}, \mathbf{x})	
1	if Q. queue-full
2	error "overflow"
3	else $Q[Q$. tail $]=x$
4	if Q. tail $<Q$. length
5	Q. tail $=Q$. tail +1
6	else Q. tail $=1$
7	if Q. tail $=Q$. head
8	$Q . q u e u e-f u l l ~=~ T R U E ~$
9	Q.queue-empty $=$ FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else $Q[Q . t a i l]=x$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail = 1
7	if Q . tail $==$ Q. head
8	Q.queue-full = true
9	Q.queue-empty $=$ FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else Q[Q.tail] $=x$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail = 1
7	if Q . tail $==$ Q. head
8	Q.queue-full = TRUE
9	Q.queue-empty = FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else $Q[Q . t a i l]=x$
4	if Q.tail < Q.length
5	Q.tail = Q.tail +1
6	else Q.tail = 1
7	if Q.tail = Q. head
8	Q.queue-full = true
9	Q.queue-empty $=$ FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else Q[Q.tail] $=x$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail = 1
7	if Q . tail $==$ Q. head
8	Q.queue-full = TRUE
9	Q.queue-empty = FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else $Q[Q . t a i l]=x$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail = 1
7	if Q. tail = Q. head
8	Q.queue-full = true
9	Q.queue-empty $=$ FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else Q[Q.tail] $=x$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail = 1
7	if Q . tail $==$ Q. head
8	Q.queue-full = TRUE
9	Q.queue-empty = FALSE

Enqueue(Q,x)	
1	if Q.queue-full
2	error "overflow"
3	else $Q[Q$. tail $]=x$
4	if Q.tail < Q.length
5	Q.tail = Q.tail +1
6	else Q.tail $=1$
7	if Q.tail = Q . head
8	Q.queue-full = true
9	Q.queue-empty $=$ FALSE

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q . h e a d]$
4	if Q. head $<$ Q. length
5	Q.head = Q.head + 1
6	else Q.head = 1
7	if Q.tail == Q. head
8	Q.queue-empty = TRUE
9	Q.queue-full = FALSE
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q . h e a d]$
4	if Q.head < Q. length
5	Q.head = Q.head +1
6	else Q.head = 1
7	if Q .tail $==$ Q .head
8	Q.queue-empty = TRUE
9	Q.queue-full = FALSE
10	return x

Dequeve (Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q.head = Q. head +1
6	else Q.head = 1
7	if Q.tail == Q. head
8	Q.queue-empty = TRUE
9	Q.queue-full = FALSE
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q . h e a d]$
4	if Q. head $<Q$. length
5	Q. head = Q.head +1
6	else Q.head = 1
7	if Q.tail == Q.head
8	Q.queue-empty = TRUE
9	Q.queue-full = FALSE
10	return X

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q . h e a d]$
4	if Q. head < Q . length
5	Q. head = Q. head +1
6	else Q. head = 1
7	if Q.tail == Q.head
8	Q.queue-empty = TRUE
9	Q.queue-full = FALSE
10	return x

■ Interface

- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete($(, x)$ removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Interface
- LIST-INSERT (L, x) adds element x at beginning of a list L
- List-Delete (L, x) removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Implementation
- a doubly-linked list
- each element x has two "links" x.prev and x. next to the previous and next elements, respectively
- each element x holds a key x. key
- it is convenient to have a dummy "sentinel" element L.nil

List-Init(L)
 1 L.nil.prev = L.nil
 2 L.nil.next = L.nil

List-INSERT (L, x)	
1	x.next $=$ L.nil.next
2	L.nil.next.prev $=x$
3	L.nil.next $=x$
4	x.prev $=$ L.nil

List-Search (L, k)
$1 \quad x=$ L.nil.next
2 while $x \neq$ L.nil $\wedge x$.key $\neq k$
$3 x=x$.next
4 return x

Complexity

Algorithm Complexity

Algorithm Complexity
STACK-EMPTY

Complexity

Algorithm	Complexity
STACK-EMPTY	$O(1)$

Push

Algorithm	Complexity
StACK-EmPTY	$O(1)$
PUSH	$O(1)$
POP	$O(1)$
ENQUEUE	$O(1)$
DEQUEUE	$O(1)$

LIST-INSERT

Algorithm	Complexity
STACK-EMPTY	$O(1)$
PUSH	$O(1)$
POP	$O(1)$
ENQUEUE	$O(1)$
DEQUEUE	$O(1)$
LIST-INSERT	$O(1)$
LIST-DELETE	

Algorithm	Complexity
STACK-EMPTY	$O(1)$
PUSH	$O(1)$
POP	$O(1)$
ENQUEUE	$O(1)$
DEQUEUE	$O(1)$
LIST-INSERT	$O(1)$
LIST-DELETE	$O(1)$

LIST-SEARCH

Algorithm	Complexity
STACK-EMPTY	$O(1)$
PUSH	$O(1)$
POP	$O(1)$
ENQUEUE	$O(1)$
DEQUEUE	$O(1)$
LIST-INSERT	$O(1)$
LIST-DELETE	$O(1)$
LIST-SEARCH	$\Theta(n)$

Dictionary

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set

Dictionary

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set

■ Interface (generic interface)

- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k

Dictionary

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete(D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- Implementation
- many (concrete) data structures

Dictionary

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set

■ Interface (generic interface)

- Insert (D, k) adds a key k to the dictionary D
- Delete(D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- Implementation
- many (concrete) data structures
- hash tables

Direct-Address Table

- A direct-address table implements a dictionary
- A direct-address table implements a dictionary
- The universe of keys is $U=\{1,2, \ldots, M\}$
- A direct-address table implements a dictionary
- The universe of keys is $U=\{1,2, \ldots, M\}$
- Implementation
- an array T of size M
- each key has its own position in T

■ A direct-address table implements a dictionary
■ The universe of keys is $U=\{1,2, \ldots, M\}$

- Implementation
- an array T of size M
- each key has its own position in T
Direct-Address-Insert (T, k)
$1 \quad T[k]=$ True

Direct-Address-Delete (T, k)
$1 T[k]=$ FALSE

> Direct-Address-Search (T, k)
> $1 \quad$ return $T[k]$

Direct-Address Table (2)

- Complexity

■ Complexity
All direct-address table operations are O (1)!

Direct-Address Table (2)

■ Complexity
All direct-address table operations are O (1)!
So why isn't every set implemented with a direct-address table?

Direct-Address Table (2)

- Complexity

All direct-address table operations are O (1)!

So why isn't every set implemented with a direct-address table?

■ The space complexity is $\Theta(|U|)$

- $|U|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than |U|
- i.e., a direct-address table usually wastes a lot of space

Direct-Address Table (2)

- Complexity

All direct-address table operations are O (1)!

So why isn't every set implemented with a direct-address table?

■ The space complexity is $\Theta(|U|)$

- $|U|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than |U|
- i.e., a direct-address table usually wastes a lot of space

■ Can we have the benefits of a direct-address table but with a table of reasonable size?

Hash Table

■ Idea

- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

```
Hash-Insert( }T,k
1 T[h(k)] = TRUE
```

Hash-Delete (T, k)
$1 \quad T[h(k)]=\operatorname{FALSE}$

Hash-Search (T, k)
1 return $T[h(k)]$

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

```
Hash-Insert( }T,k
1 T[h(k)] = TRUE
```

Hash-Delete (T, k)
$1 \quad T[h(k)]=\operatorname{FALSE}$

Hash-Search (T, k)
1 return $T[h(k)]$

Are these algorithms correct?

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

```
Hash-Insert( }T,k
1 T[h(k)] = TRUE
```

Hash-Delete (T, k)
$1 \quad T[h(k)]=\operatorname{FALSE}$

Hash-Search (T, k)
1 return $T[h(k)]$

Are these algorithms correct? No!

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

```
Hash-Insert ( }T,k
1 T[h(k)] = TRUE
```

Hash-Delete (T, k)
$1 \quad T[h(k)]=$ FALSE

Hash-Search (T, k)
1 return $T[h(k)]$

Are these algorithms correct? No!
What if two distinct keys $k_{1} \neq k_{2}$ collide? (I.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$)

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length)

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length)

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length)

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length)

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We further assume that $h(k)$ can be computed in $O(1)$ time

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length)

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We further assume that $h(k)$ can be computed in $O(1)$ time
■ Therefore, the complexity of Chained-Hash-Search is

$$
\Theta(1+\alpha)
$$

Open-Address Hash Table

Hash-Insert (T, k)	
	$j=h(k)$
2	for $i=1$ to T. length
3	if $T[j]=$ NIL
4	$T[j]=k$
5	return j
6	elseif $j<T$.length
7	$j=j+1$
8	else $j=1$
	error "overflow"

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

Open-Addressing (2)

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$
- When a collision occurs, we simply find another free cell in T

Open-Addressing (2)

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$
- When a collision occurs, we simply find another free cell in T

■ A sequential "probe" may not be optimal

- can you figure out why?

Hash-Insert (T, k)	
1	for $i=1$ to T.length
2	$j=h(k, i)$
3	if $T[j]==$ NIL
4	$T[j]=k$
5	return j
6	error "overflow"

```
Hash-Insert \((T, k)\)
1 for \(i=1\) to \(T\).length
    \(j=h(k, i)\)
    if \(T[j]==\) NIL
        \(T[j]=k\)
        return \(j\)
    error "overflow"
```

- Notice that $h(k, \cdot)$ must be a permutation
- i.e., $h(k, 1), h(k, 2), \ldots, h(k,|T|)$ must cover the entire table T

