Advanced Networking

Course Introduction

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

February 21, 2022

Outline

- General course information
- Program
- Preliminary schedule
- A preview of *Advanced Networking*

General Information

- On-line course information
 - on iCorsi
 - and on my web page: https://www.inf.usi.ch/carzaniga/edu/adv-ntw/

General Information

- On-line course information
 - on iCorsi
 - ▶ and on my web page: https://www.inf.usi.ch/carzaniga/edu/adv-ntw/
- Announcements (you are responsible for reading them!)
 - through iCorsi
 - ► and https://www.inf.usi.ch/carzaniga/edu/adv-ntw/

General Information

- On-line course information
 - on iCorsi
 - ▶ and on my web page: https://www.inf.usi.ch/carzaniga/edu/adv-ntw/
- Announcements (you are responsible for reading them!)
 - through iCorsi
 - and https://www.inf.usi.ch/carzaniga/edu/adv-ntw/
- Office hours
 - Antonio Carzaniga: by appointment
 - Ali Fattaholmanan: by appointment

Textbooks (1)

Computer Networking A Top-Down Approach

James F. Kurose Keith W. Ross

Addison-Wesley

KUROSE ROSS

Textbooks (1)

Computer Networking A Top-Down Approach

James F. Kurose Keith W. Ross

Addison-Wesley

Textbooks (1)

Computer Networking A Top-Down Approach

James F. Kurose Keith W. Ross

Addison-Wesley

Textbooks (2)

Mathematical Foundations of Computer Networking

Srinivasan Keshav

Addison-Wesley Professional

Evaluation

- +70% homework assignments and projects
- +30% paper presentations
- ±10% instructor's discretionary evaluation
 - participation
 - extra credits
 - trajectory
 - ...

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

Do NOT take someone else's material and present it as your own!

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

Do NOT take someone else's material and present it as your own!

ALWAYS properly acknowledge your sources!

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

"material" means: ideas, words, code, suggestions, corrections on one's work, etc.

A student should never take someone else's material and present it as his or her own. Doing so means committing plagiarism.

"material" means: ideas, words, code, suggestions, corrections on one's work, etc.

- Using someone else's material may be appropriate
 - e.g., software libraries
 - always clearly identify the external material, and acknowledge its source; failing to do so means committing plagiarism.
 - the work will be evaluated based on its added value

- Committing plagiarism on an assignment or an exam will result in *failing that* assignment or that exam
- Penalties may be escalated in accordance with the regulations of the Faculty of Informatics

Deadlines

Deadlines are firm.

- Exceptions may be granted
 - at the instructors' discretion
 - only for documented medical conditions or other documented emergencies

- Exceptions may be granted
 - at the instructors' discretion
 - only for documented medical conditions or other documented emergencies
- Each late day will reduce the assignment's grade by *one third of the total value* of that assignment

- Exceptions may be granted
 - at the instructors' discretion
 - only for documented medical conditions or other documented emergencies
- Each late day will reduce the assignment's grade by one third of the total value of that assignment
 - corollary: the grade of an assignment turned in more than two days late is 0

What this course is about

(What and How)

How Are We Going To Learn?

- Problem solving
 - 1. I give you a problem, which we discuss together
 - 2. You solve it on your own without any directions
 - 3. We discuss your solutions
 - 4. I present my solution
 - 5. We generalize and study the theory

How Are We Going To Learn?

- Problem solving
 - 1. I give you a problem, which we discuss together
 - 2. You solve it on your own without any directions
 - 3. We discuss your solutions
 - 4. I present my solution
 - 5. We generalize and study the theory
- The Feynman* technique (sort-of)
 - The best way to learn a concept is to teach it!
 - Seminars on topics of your choice, possibly including the topics of the course
 - We all discuss, but the point is that you are the teacher!

^{*} Richard Feynman, theoretical physicist, great teacher, genius, amazing human being!

■ Recap on Basic Networking Concepts: Network architecture, application protocols, TCP, datagram network service, router architecture, forwarding, routing, and in particular link-state routing.

- Recap on Basic Networking Concepts: Network architecture, application protocols, TCP, datagram network service, router architecture, forwarding, routing, and in particular link-state routing.
- Sampling from the nodes in a network
 - ► Graph model; Monte-Carlo simulation; analytic solutions; design and optimization

- Recap on Basic Networking Concepts: Network architecture, application protocols, TCP, datagram network service, router architecture, forwarding, routing, and in particular link-state routing.
- Sampling from the nodes in a network
 - ► Graph model; Monte-Carlo simulation; analytic solutions; design and optimization
- Traffic engineering
 - ► Flow problems; linear programming; whole-flow optimization; integer linear programming; randomized routing schemes.

- Recap on Basic Networking Concepts: Network architecture, application protocols, TCP, datagram network service, router architecture, forwarding, routing, and in particular link-state routing.
- Sampling from the nodes in a network
 - ► Graph model; Monte-Carlo simulation; analytic solutions; design and optimization
- Traffic engineering
 - ► Flow problems; linear programming; whole-flow optimization; integer linear programming; randomized routing schemes.
- Network modeling and simulation
 - Packet-level modeling and simulation

- A network as a queuing system
 - ▶ Basics of queueing models; basic results in queuing theory; Little's theorem and applications; Poisson processes; analysis of an M/M/1 queue and applications; statistical multiplexing

- A network as a queuing system
 - Basics of queueing models; basic results in queuing theory; Little's theorem and applications; Poisson processes; analysis of an M/M/1 queue and applications; statistical multiplexing
- Network and Communication Security
 - Basics of communication security; modern cryptography and provable security; basics of symmetric cryptography; basics of public-key cryptography; concrete protocols and systems: IPSec

- A network as a queuing system
 - Basics of queueing models; basic results in queuing theory; Little's theorem and applications; Poisson processes; analysis of an M/M/1 queue and applications; statistical multiplexing
- Network and Communication Security
 - Basics of communication security; modern cryptography and provable security; basics of symmetric cryptography; basics of public-key cryptography; concrete protocols and systems: IPSec
- Advanced Architectures and Protocols
 - ► The modern Web: HTTP/2; the future Web: HTTP/3? Data-center networking: architectures and protocols; DCTCP; Timely

- A network as a queuing system
 - Basics of queueing models; basic results in queuing theory; Little's theorem and applications; Poisson processes; analysis of an M/M/1 queue and applications; statistical multiplexing
- Network and Communication Security
 - Basics of communication security; modern cryptography and provable security; basics of symmetric cryptography; basics of public-key cryptography; concrete protocols and systems: IPSec
- Advanced Architectures and Protocols
 - ► The modern Web: HTTP/2; the future Web: HTTP/3? Data-center networking: architectures and protocols; DCTCP; Timely
- Programmable Networks
 - SDN: programming the control plane: the OpenFlow interface. Programmable data plane: P4.