
Federating Heterogeneous Event Services

Conor Ryan, René Meier, and Vinny Cahill
Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

cahryan@eircom.net, rene.meier@cs.tcd.ie, vinny.cahill@cs.tcd.ie

Abstract

As event-based middleware is currently being applied
for application component integration in a range of
application areas, a variety of event services have been
proposed to address different application requirements.
The emergence of ubiquitous computing systems has
given rise to application integration across multiple areas
and as a result, has led to systems comprising several,
independently operating event services. Even though
event services are based on the same communication
pattern, application component integration across
heterogeneous services is typically prevented by the
constraints imposed by their respective event models.

This paper presents the design and implementation of
the Federated Event Service (FES). The FES enables
heterogeneous event services to cooperate and to operate
as a single logical service. It therefore facilitates building
event-based systems in which the application
requirements cannot be met by a single event service.

1. Introduction

Event services provide asynchronous, decoupled,
anonymous message-based communication. This
facilitates scalable distributed systems composed of
autonomous concurrently-executing entities. There are
many event services in existence addressing wide ranging
issues such as Internet scale (Siena [1]), quality of service
(CORBA Notification Service (CNS) [2]), and mobility
and location awareness (STEAM [3]). When integrating
systems that use distinct event services it may be
necessary to inter-work their event services to facilitate
communication between the systems.

There is currently no standard solution available for
heterogeneous event service inter-working. In the absence
of a standard solution, system developers are forced to
roll their own solutions. This is problematic as such
solutions can cost time, money and effort. These
solutions may be sub-optimal since developers, unless
they are experts in event systems and event system inter-
working, may not have considered or understood all of
the issues involved.

A federated service is a collection of autonomous
concurrent services that may be linked together to provide
a single logical service. This paper presents the design
and implementation of the Federated Event Service
(FES), a standard mechanism for federating
heterogeneous event services. We believe that such a
mechanism is a valuable solution for addressing the event
service inter-working problem described above. We also
believe that this mechanism is a viable alternative to
bespoke solutions for building or extending event-based
systems, when requirements cannot be met by a single
event service.

The remainder of this paper is structured as follows:
Section 2 surveys related work. Section 3 discusses event
service federation and related issues. Section 4 describes
the design of the FES. Section 5 and section 6 discuss a
test implementation and usage of the FES. Section 7
concludes this paper by summarizing our work.

2. Related Work

Based on our survey of related work there seems to be
little research into the area of federating or inter-working
heterogeneous event services. Most of the interest, for
commercial reasons, lies in the inter-working of the
CORBA Notification Service (CNS) and the Java
Message Service [4]. This inter-working requirement is a
less difficult problem than generic event service inter-
working as it is a bilateral inter-working requirement
supporting similar event models, feature sets and event
structures.

In [5] events are used to federate components of any
granularity including event services. Similar to the FES,
the approach in [6] uses a common event model and
gateways to provide interoperability between event
services. However, these approaches do not emphasize
the issues involved with and the opportunities to be
gained from heterogeneous event service federation. Our
work is specifically concerned with addressing the issues
involved with inter-working and federation of
heterogeneous event services and aims to provide this
mechanism as transparently as possible to existing
systems.

3. Federating Event Services

A federated event service provides a single logical
event service to clients; however, it consists of a number
of autonomous event services. The federation mechanism
is transparent to the participating event services and event
services are unaware of other event services in the
federation. Federation improves reliability – if an event
service fails, the rest of the event services are still
available. Services in a federation share the processing
load and this can improve performance and scalability.
Event services can still be administered individually. This
facilitates easier management of a large service.

Many issues must be considered in the design of a
system for the federation of heterogeneous event services.
Some of these issues face any system inter-working effort
while others are particular to event service inter-working.
Important issues that we are aware of are briefly
summarized here.

Event model heterogeneity: An event model consists
of a set of rules describing a communication model that is
based on events. Event models are discussed and
classified in [7]. For a federated service to be valuable it
must cater for a wide variety of event models. Important
features including event propagation support, event type
support, event filtering support, and event service specific
features such as mobility and QoS must be considered.

Communication: Requests issued across multiple event
services may be subject to failure if an individual event
service fails. Allowances have to be made for the fact that
mobile event services such as STEAM may be involved
in the communication path. Adequate routing protocols
must be considered

Naming: Event services use varying mechanisms to
identify event types and instances, e.g. event channels
(CORBA Event Service (CES) [8], CNS), subscription
filters (Siena, CNS) and subject identifiers (STEAM,
COSMIC [9]). The design must also consider identifier
uniqueness across the federation, case sensitive names
and varying maximum name lengths. Event service
federation introduces the requirement for individual event
service identification, to allow requests to be directed at a
subset of the federation and events to be forwarded to the
correct event services. Routing events and requests to all
event services is not a scalable option. The event service
federation may also require a unique identifier to allow
event services to participate in more than one federation.

Scalability: How can the sizing limits of an individual
event service or system be maintained when the event
service participates in a federation? What performance
overheads are introduced?

Security: Security in federated event services unveils
many issues such as system wide administration,
authentication and authorization issues. For a good

overview of security issues as they pertain to event
services, see [10].

Transparency: As previously explained it is important
that the federation remains as transparent as possible to
event services and systems. In addition event services
may have multiple client applications and it may not be
realistic or even possible to update them to provide
support for federation due to cost, time or unavailability
of source code.

Integrating semantically misaligned events: Events
generated in different systems may contain identical
contents but in different forms. As discussed in [6], such
events may be propagated between systems assuming
mapping information is available in the systems involved.

4. FES Architecture

As shown in Figure 1, a FES system consists of two or
more event services and one or more gateways that bridge
them. A gateway interfaces to each event service by
means of an adapter. The gateways in a FES system form
a completely distributed system. Each gateway is an equal
peer in the system. There are no centralized points of
control or failure and gateways do not maintain any
global state.

key

GA BS

G

DC

P P

P

G

S subscriber

publisher

event service

gateway

FES request

event service request

Figure 1. An example FES system.

An event service that a gateway, or any event service
client, is directly connected to is known as a direct event
service. An event service that a gateway, or any event
service client, is not directly connected to is known as an
indirect event service. An event service that is used to
route a request is known as an intermediate event service.

The FES supports event announcement, subscription
and publication requests. These requests may be issued at
any event service or gateway. The gateways propagate
requests to the relevant event services. A distinction must

be made between normal event service requests as issued
by a client to its direct event service (event service
request) and requests issued by a client to event service(s)
in the federation (FES request).

For example in figure 1, subscriber s issues an event
service request to event service A. In addition s also
issues the same subscription request as a FES request to
the federation. The request is propagated to event services
B, C, and D by the FES gateways. Any event published in
the federation that matches the subscription request will
be propagated back to event service A by the gateways
and finally to subscriber s.

4.1. The FES Event Model

The FES event model acts as a common language
between event services. To define the event model for
proof of concept purposes, three basic types are required:
string, double and long. These basic types are
based on CORBA basic IDL types [11].

A FES Event is a structured event that is composed
of a subject, a set of parameters and a set of attributes.
Identifiers are case sensitive. The subject (type string)
identifies the application event type, e.g. “DeviceOffline”.
The identifier (or the subject) must be unique within a
FES system. Parameters contain application specific data.
Attributes represent the non-functional properties of an
event such as the delivery priority of an event. Parameter
and attributes may be accessed by index and by identifier.
An event may contain 0 or more parameters. A parameter
consists of an event unique parameter index of type
long; an event unique parameter identifier of type
string; a type identifier of type long that specifies the
type of the parameter data and the parameter data.
Attributes have the same structure as parameters. The
FES does not place any limit on event size although this
implementation of the FES does not support event
fragmentation.

The FES supports any event service attribute that may
be applied on an event-service-by-event-service basis
(hop-by-hop) by adapters. The FES defines an open
ended set of attributes and associated semantics, such as
event delivery priority and event validity proximity.
Adapters may ignore attributes that their event services do
not support. Default semantics are also specified for each
attribute. These defaults are applied by adapters when
attributes must be supplied at an event service but are not
specified in an incoming event, for example when
mapping a location ignorant CNS event to a location-
aware STEAM event.

The structured event type was chosen as this type is
commonly supported in event models. It allows flexible
filtering. It is relatively easy to map an un-typed event to
a structured event. The CNS specification defines how
CES un-typed events should be mapped to CNS

structured events. The CES/CNS typed events are rarely
used, as they are difficult to understand and implement [2,
p.212]. Parameter/attribute access by identifier and index
and case sensitive identifiers help to facilitate the
mapping of event models to the FES event model.

The FES supports event filtering via the FES filtering
language. At a minimum the FES filtering language must
support subject based filtering. The FES approach to
filtering does not depend on the extent of its filtering
prowess. The FES makes use of two filters whenever a
consumer makes a subscription request to an indirect
event service. (1) The subscription as made by the
consumer at the direct event service in the direct event
service filtering language (direct filter). (2) The
subscription as made by a gateway on behalf of the
consumer at an indirect event service in the indirect event
service filtering language (indirect filter). The filter that is
applied at the indirect event service must always define
the same set of events or a superset of the events that was
defined by the filter that was specified by the subscriber
at the direct event service. In the case where a superset of
events is specified at the indirect event service, unwanted
events may cross a FES system to the direct event service.
However, these events will not reach the consumer, as the
direct event service filter will filter them out. The original
filter in the FES filtering language must be preserved at
all times so that it may be applied consistently at all
indirect event services.

FES requests define the functions that are supported
by the FES. A request specifies the event service where it
originated from (the source event service), the event
service(s) at which the request should be applied
(destination event service(s)), and the request parameters.
For example, a subscription request specifies the filter
that should be applied. A publication request specifies the
event that should be published.

The FES may distribute requests to one or more
destination event services. Requests are one-way
functions that may be applied at most once to each
destination event service.

An announcement request specifies a particular event
type that may be published by an event service producer.
Event services may propagate this information to
consumers. This facility allows event services and
consumers to prepare for future event arrival. An
unannouncement request specifies an event type that will
no longer be published by an event service producer in
the future. This facility allows event services and
consumers to tear down resources that are will no longer
be required to handle events of a certain type. A
subscription request defines the events that a consumer of
an event service is interested in. The consumer supplies a
filter to specify this. An unsubscription request defines
the events that a consumer of an event service is no
longer interested in. The consumer supplies a filter to

specify this. A publication request defines an event that a
producer of an event service has published to an event
service. These requests are different from the other kinds
of requests as they are generated automatically by the
FES whenever it receives an event from an event service.

A client of a FES system may specify the event
services that a request is sent to via a request distribution
list. A distribution list provides functionality that is not
part of normal event services, i.e. clients may target
specific sets of subscribers and publishers. Clients need
not be bound to certain event service instances. Instead
they may specify the type of event service, or a range of
event services to send a request to assuming that a
suitable event service naming convention was employed.
Distribution lists improve the scalability of the system.

A FES request is encapsulated in an Event derived
ControlEvent. Control events are the only means by
which requests may be communicated to gateways and by
which gateways communicate. A gateway acts as a
producer and a consumer of control events for each of the
event services that it is connected to. Therefore a request
may be forwarded to a gateway by publishing the relevant
control event to an event service to which the gateway is
connected. A request may be propagated over many
gateways and event services in this fashion to reach a
particular event service. In addition control events may be
passed to a gateway by other means such as user input or
via command line parameters.

4.2. FES Gateways and Adapters

The FES is realized by a set of event services that are
connected by gateways. Gateways subscribe to their
direct event services via adapters for control events.

When a gateway receives a control event it examines
the event’s distribution list to determine whether the
request contained within should be applied at a direct
event service and/or whether the event should be
forwarded to other gateway(s) for application at indirect
event service(s).

If the request should be applied at a direct event
service then the gateway unwraps the request details and
carries out the necessary request. For example, if the
request is a subscription request, then the control event
contains a filter. The subscription request is then made via
the event service’s adapter. If for example the request is a
publication request then the control event contains an
event. This event is extracted and published to the event
service via the adapter.

If the request should be applied at an indirect event
service(s) then the gateway must make a routing decision
to decide which of its directly connected event services it
should publish the control event to in order to route the
request to the correct gateway(s).

The gateway must manage some local state
information regarding the requests that it has made to its
direct event services. For example, this includes
information pertaining to subscriptions that have been
made at a direct event service. When a publish request is
then received from an adapter, the gateway can determine
the distribution list for the event.

The adapter pattern is used to encapsulate
heterogeneity among event services in the FES. This
includes encapsulating event service requests and the
mapping of FES requests to event service specific
requests and vice-versa. FES model mapping is an
implementation detail of an adapter. Generally, there are
three kinds of event mapping that an adapter may
perform: user-defined (via configuration information
and/or plug-in code), automatic, and combined user-
defined/automatic event mapping. The integrity of a
control event must be maintained at all times so requests
may be applied consistently at event services. The size of
control events can vary dynamically since they may
contain serialized FES events. Therefore, depending on
the maximum event size in a FES system, event services
with limited event size may not be suitable as
intermediate event services.

The FES adapter interface defines five main methods
corresponding to the FES requests described above. The
adapter implementation must map these methods and
events to event service specific functions and events. If an
event service does not support announcements and/or
subscriptions then null implementation can be provided
for these methods. On start-up an adapter implementation
must subscribe to its event service for control events. If
an event service does not support filtering then the
adapter must do its own filtering to single out control
events. Received control events must be passed to the
gateway for processing. All other events received by an
adapter must be converted to publication control events
before passing them to the gateway.

4.3 Using the FES

The following steps outline how the FES may be used
to federate heterogeneous event services.
1) Identify the events to be propagated between event

services.
2) Select and/or implement appropriate event service

adapters.
3) Configure gateways with event mapping information

if necessary.
4) Place gateways between appropriate event services to

allow inter-event service communication to occur.
5) Event propagation between event services is initiated

by forwarding a relevant subscription request to the
appropriate gateway(s). This can be generally

achieved by publishing the corresponding control
event to any event service in the federation.

4.4. Assessment

The FES architecture addresses some of the issues
outlined in section 3. A common, flexible FES event
model and the adapter pattern are used to address event
model heterogeneity and naming issues. The FES is
transparent to event services. Existing event service
clients require modification to support dynamic FES
requests. Modifications are not required to propagate a
static set of event types between event services.
Distribution lists can aid scalability. The FES cannot
provide end to end request/event context support (e.g.
QoS attributes), unless all event services in the request
path provide the necessary support. Other issues are left
open for future work.

5. Implementing FES Gateways and
Adapters

Two approaches were considered for implementation
of the FES.

In the compiled approach, a configuration file that
describes event mappings, event services and gateways is
input into a tool that generates FES systems. This tool
produces the necessary FES system code including
gateways and adapters. Support for different types of
event services can be plugged into the tool. This approach
produces efficient run-time translation and mapping code,
as there is no need to look up and interpret this
information at run time. This approach can also produce
closer mappings to event service APIs and interface
languages. However, a change in the configuration will
require a re-build of the system or parts of the system and
a reinstallation.

The interpreted approach requires the development a
generic gateway component and an adapter for each event
service. Gateways and adapters read event mapping and
configuration information on startup and apply this
information when translating and mapping data. This
approach produces slower run-time code than the
compiled approach as configuration information is
accessed and interpreted at run time for each event and
request. However, a change in the configuration will only
require a restart of the relevant FES components.

It was decided to initially implement the interpreted
approach as this approach is easier to develop, test and
debug. The implementation supports subject based
filtering only. To test the FES design the STEAM, Siena
and CNS event services were chosen as FES participants.
These event services have sufficiently different event
models, event services, feature sets and implementations

to test the FES design. All adapters implement automatic
event mapping, automatically mapping between event
service structured events and the FES structured event at
run time. The development platform was Visual C++ 6.0
on Windows 2000 Professional. The Win32 TAO CNS
implementation was used [12, 13].

Implementing the STEAM adapter was relatively
straightforward. STEAM proximity information is
mapped to a FES “Proximity” attribute. The subject based
filtering of STEAM easily maps to the FES filtering
requirement.

The CNS adapter maps the CNS priority attribute to a
FES “Priority” attribute. The CNS allows filtering on any
part of a CNS structured event. The CNS adapter maps
the FES event subject to the event_name field of a
CNS structured event header.

The Siena C++ API does not support the event push
propagation model. Therefore the Siena adapter manages
a separate thread to pull events from Siena and push these
events to the gateway. The Siena structured event maps
well to the FES event. However, Siena has no concept of
an event subject. Therefore for automatic event mapping
the Siena parameter “FES_Subject” is used by the adapter
implementation to specify the subject of the event Siena
filtering supports filtering on any parameter in the event.

6. Using FES Gateways and Adapters

The following use case describes a traffic monitoring
system that is composed of three heterogeneous event
services that are federated via the FES. This system
monitors traffic speeds at various locations in a city and
logs the license number and speed of vehicles that exceed
speed limits. In this system, vehicles broadcast various
events over an ad hoc wireless network using the STEAM
event service that include the current speed of the vehicle.
The current speed of the vehicle is published every
second via a “Speed” event on the car’s onboard real time
network via a real time event service (RTES). This event
contains the car’s current speed and its license number. A
FES gateway is used to inter-work the RTES and STEAM
event services. Fixed roadside traffic monitors located at
or near speed limit signs subscribe for these speed events
and publish them on a wide area fixed Siena event
service. Each monitor contains a FES gateway inter-
working the STEAM and Siena event services. The
subscription filter employed at the STEAM event service
in each monitor depends on the speed limit in the area. In
the city traffic control office there exists a traffic control
application. This application allows the operator to set the
speed limits for various areas in the city. The roadside
signs dynamically display the current speed limit. In
addition, setting a speed limit changes the corresponding
subscription to the STEAM event service at the roadside
monitor.

Figure 2 outlines the configuration of the test
application that we developed to simulate this use case.
Here CNS acts as the RTES. G1 is a CNS/STEAM
gateway. It is passed simulated GPS locations to ‘move’ it
between traffic monitors. CNS PUB is a CNS publisher in
the ‘vehicle’ that publishes varying “Speed” events every
second to the CNS event service. G2 and G3 act as the
roadside STEAM/Siena gateways. SIENA SUB is a Siena
subscriber, subscribing for specific “Speed” events. The
STEAM event service is collocated with the relevant
gateways. On start-up a ‘hardwired’ subscription request
is issued to G1 to specify a filter of “Speed”, with a
distribution list of “Cns” and with the source specified as
“Siena”.

Vehicle

Traffic Monitor

CNS PUB

STEAM/Siena
Gateway G2

Traffic Monitor

STEAM/Siena
Gateway G3

Siena Server

Traffic Monitoring
App

Siena SUB

CNS STEAM/CNS
Gateway G1

Ad-hoc wireless l ink

Fixed Internet l inks

Siena

Figure 2. Test FES Application - Traffic Monitoring

System.

7. Conclusions

This paper presented the design of the Federated Event
Service (FES) – a system for inter-working and federating
heterogeneous event services. A proof of concept
implementation and test application were presented in
order to show that distinct event services can be federated
with the FES.

Several issues pertaining to heterogeneous event
service federation were outlined and discussed. Some of
the raised issues as well as issues related to request
tunneling, automatic configuration, and federation
monitoring remain open for future research.

References

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design

and Evaluation of a Wide-Area Event Notification
Service," ACM Transactions on Computer Systems, vol.
19, pp. 283 - 331, 2001.

[2] Object Management Group, CORBAservices: Common
Object Services Specification - Notification Service
Specification, Version 1.0.1: Object Management Group,
2002.

[3] R. Meier and V. Cahill, "Exploiting Proximity in Event-
Based Middleware for Collaborative Mobile
Applications," in Proceedings of the 4th IFIP Int.
Conference on Distributed Applications and Interoperable
Systems (DAIS'03), LNCS 2893. Paris, France: Springer-
Verlag Heidelberg, Germany, 2003, pp. 285-296.

[4] M. Aleksy, M. Schader, and A. Schnell, "Implementation
of a Bridge Between CORBA's Notification Service and
the Java Message Service," in Proceedings of the 36th
Hawaii International Conference on System Sciences
(HICSS). Big Island, Hawaii, USA, 2003.

[5] J. Bates, J. Bacon, K. Moody, and M. Spiteri, "Using
Events for the Scalable Federation of Heterogeneous
Components," in Proceedings of the 8th ACM SIGOPS
European Workshop: Support for Composing Distributed
Applications. Sintra, Portugal, 1998, pp. 58-65.

[6] J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao,
"Event Storage and Federation Using ODMG," in
Proceedings of the 9th International Workshop on
Persistent Object Systems (POS 2000), vol. LNCS 2135.
Lillehammer, Norway, 2000, pp. 265-281.

[7] R. Meier and V. Cahill, "Taxonomy of Distributed Event-
Based Programming Systems," in Proceedings of the Int.
Workshop on Distributed Event-Based Systems
(ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 585-588.

[8] Object Management Group, CORBAservices: Common
Object Services Specification - Event Service
Specification: Object Management Group, 1995.

[9] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira,
"COSMIC: A Middleware for Event-Based Interaction on
CAN," in Proceedings of the 9th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA2003). Lisbon, Portugal, 2003.

[10] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf,
"Security Issues and Requirements for Internet-scale
Publish-Subscribe Systems," in Proceedings of the 35th
Hawaii International Conference on System Sciences
(HICSS). Big Island, Hawaii, USA, 2002.

[11] Object Management Group, The Common Object Request
Broker: Architecture and Specification, Revision 3.0;
Chapter 3: OMG IDL Syntax and Semantics: Object
Management Group, 2002.

[12] D. C. Schmidt, "Real-Time CORBA with TAO (The ACE
ORB)," www.cs.wustl.edu/~schmidt/TAO.html, 2004.

[13] T. Harrison, D. Levine, and D. Schmidt, "The Design and
Performance of a Real-Time CORBA Event Service," in
Proceedings of the 1997 Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA'97). Atlanta, Georgia, USA: ACM Press, 1997,
pp. 184-200.

