
HOMED: A Peer-to-Peer Overlay Architecture for Large-Scale Content-based
Publish/Subscribe Systems

Yongjin Choi, Keuntae Park and Daeyeon Park
Department of Electrical Engineering & Computer Science

Korea Advanced Institute of Science and Technology(KAIST)
Yusung-Gu, Taejon, Korea

{yjchoi, ktpark}@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract

Content-based publish/subscrbe systems provide an use-
ful alternative to traditional address-based communication
due to their ability to decouple communication between
participants. It has remained a challenge to design a scal-
able overlay supporting the complexity of content-based
networks, while satisfying the desirable properties large
distributed systems should have. This paper presents a new
peer-to-peer overlay called HOMED for distributed pub-
lish/subscribe systems. It can construct a flexible and ef-
ficient event dissemination tree by organizing participants
based on their interest. The delivery depth of an event
as well as subscribing/unsubscribing overhead scales loga-
rithmically with the number of participating nodes.

1. Introduction

Publish/subscribe has become increasingly popular in
building a large-scale distributed systems. While traditional
synchronous request/replay communication needs an ex-
plicit IP address of the destination, publish/subscribe sys-
tems deliver a message to all, and only those, interested
clients based on its content and their subscription set. Thus,
publishers do not need to be aware of the set of receivers
that varies according to a given message. Example appli-
cations that can benefit from this loosely coupled nature
of publish/subscribe are news distribution, e-Business (eg.
auction), multiplayer online games, system monitoring, and
location-based service for mobile devices.

To use a publish/subscribe communication service, re-
ceivers register subscriptions that represent or summarize
their interests. In turn, they will be notified of an event
that matches their interests. Based on the selective power
of the subscription language, publish/subscribe can be clas-
sified [3] as :

• Topic-based. Topics or subjects are used to bundle
peers with methods to classify event content. Partici-
pants publish events and subscribe to individual topics
selected from a predefined set.

• Content-based. A subscription can specify any predi-
cate (or filter) over the entire content of the publication.
In distributed content-based systems, the subscription
is flooded to every possible publishers. A published
event is forwarded if a neighboring node has a match-
ing predicate. Thus, content-routing is the process of
finding an event dissemination tree.

Although a topic-based system can be implemented very
efficiently, many of modern applications require a content-
based publish/subscribe with high expressiveness. How-
ever, as mentioned in [3], scalability and expressiveness are
conflicting goals that must be traded-off.

Most content-based systems employ an overlay network
of event brokers, which support rich subscription languages
(eg. SIENA [3], Gryphon [1]). However, they commonly
have the two drawbacks as follows. First, state of the
art systems have static overlay networks consisted of re-
liable brokers under the administrative control, or assume
that a spanning tree of entire brokers is known beforehand.
Clearly, this is not feasible when a system involves an enor-
mous number of brokers, which join and leave the over-
lay network dynamically. In extreme case applications,
publish/subscribe systems may be organized only by client
nodes without any specialized brokers. Second, a broker
keeps a large amount of routing state and its control mes-
sage overhead is huge. This is because every broker can
be an intermediate router on the paths of an event dissem-
ination tree. Although the covering relation between sub-
scriptions can reduce this overhead by aggregating them, an
unsubscription may have to forward more specific subscrip-
tions covered by it. Hence, the total control traffic effec-
tively has a flooding overhead.



Recently, content-based systems based on peer-to-peer
(P2P) networks are proposed [5] [12] [9] [2] to solve these
problems. P2P networks (eg. Chord [11], Pastry [10])
address the desirable properties that distributed systems
should satisfy. They employ the event broker whose nodeId
is the hash of an event type (or a topic name) as theren-
dezvous node(RN), or use P2P routing substrate for the
event dissemination tree. However, the features they exploit
from P2P systems are limited to self-organization, fault-
tolerance, and guaranteed routing depth. Still, their routing
state and control message overhead are enormous, since ev-
ery broker should maintain the predicates of the subscribers
whose P2P multicast paths traverse it. In other words, a
node may have to participate in routing the events even
though it has no interest in them. Due to the same reason,
the routing depth for notifications is unnecessarily long. In
conclusion, a distributed publish/subscribe needs a struc-
tured overlay network, but it must be designed with great
care since the underlying peer-to-peer architecture has a sig-
nificant effect on the performance.

In this paper, we propose a new peer-to-peer overlay,
called HOMED, suitable for large-scale publish/subscribes.
The design guidelines are (i) a mesh like structure rather
than a tree is preferred for a reliable and adaptive event dis-
semination tree, (ii) a node neighbors with the nodes whose
interests are similar to its interest in the overlay network in
order that only interested nodes participate in disseminat-
ing the event. To ease construction and routing, HOMED
organizes the overlay network based on the interest digest
of each node rather than the complex selection predicate.
HOMED can be used not only for flexible topic or type
based systems by nature, but also as a routing substrate
for highly selective content-based systems. In HOMED, an
event is delivered along the path of a binomial tree. Also,
the subscribe/unsubscribe overhead is limited toO (log N).

The rest of this paper is structured as follows. In what
follows, we describe our basic design and the operations of
a HOMED in Section 2. Section 3 presents some imple-
mentation issues and extensions. We summarize our contri-
butions and discuss future plans in Section 4.

2. Design

HOMED (Hypercube Overlay Mesh for Event Dissem-
ination) is a scalable overlay network for large-scale pub-
lish/subscribes. HOMED design centers around a virtual
hypercube, which is a generalization of a three-dimensional
cube intod dimensions. Each node in the HOMED has ad
bits identifer based on its subscription predicate. Therefore,
a node is mapped onto a vertex in the logical hypercube. An
event is propagated to interested receivers along an embed-
ded multicast tree in the hypercube. Due to this awareness
of interests, HOMED can find the “best” event dissemina-

tion tree with minimum overhead.
First, we describe our HOMED in its basic form. In Sec-

tion 3, we present several extensions that improve the per-
formance and flexibility.

2.1. ID assignment

Every node joins a HOMED with its predicates specify-
ing the events of interest. A HOMED node can be a broker
serving many clients or a client itself in brokerless systems.
By some ID generating function, a set of predicates (or a
predicate) is transformed to ad bit ID (Interest Digest) .The
ID is used as the basis of HOMED topology. Although the
ID function has some effect on the performance, ID is just a
guide-rule to construct an event dissemination tree and sup-
port a content-based service.

The unique requirement of the ID function is that its re-
sulting IDs preserve a bitwise covering relation. More pre-
cisely, if a predicateα is covered by another predicateβ, its
digest IDβ must subsume all1s of IDα. A simple ID func-
tion is that Step 1) splitd bits into as many segments as the
number of attributes Step 2) divide the range of the attribute
values by the number of bits in the segment , and Step 3)
set individual bit to1 if the predicate contains the value the
bit represents. For an attribute that specify constrains as a
range of values, it is necessary to divide the range into a
finite number of intervals and name each.

Bloom-filter based approaches [13] [8] can be interesting
alternatives since the bloom-filter also satisfies the above re-
quirement. Subscription partitioning methodology in [14] is
also a useful basis of the ID function. In addition, it is often
desirable to make an ID based on only a subset of attributes
in many applications. However, we will not elaborate on
the technical issues here since designing a good ID function
depends on the application domain and is beyond the scope
of this paper.

2.2. Event Dissemination

To maintain the virtual hypercube topology, every
HOMED node has a routing table calledID cover tableas
shown in Figure 1. A HOMED node has anID cover that
indicates the set of IDs the node must cover. If all vertices
of the hypercube have the corresponding HOMED nodes,
the ID cover of each node is the same as its ID. However, as
the number of the nodes is much smaller than the number of
vertices in the hypercube typically, each node is responsible
for larger ID space than its ID.

The ID cover table hasd entries, each of them corre-
sponds to an ID whose hamming distance is 1 (i.e. ideal
hamming neighbors of the node). Each entry has the phys-
ical address and ID cover of the neighbor that covers the
corresponding ID. The final column is a scalar metric, such



010ABCNbr001010111 011 001111
Bpt A B C
S

A

B

C

S

100

000

101

001

010 011

111110

1.3

0.9

1.1

cost

Figure 1. ID Cover Table.

as the network “distance”, which is used for constructing an
efficient event dissemination tree. The bottom entry is the
list of backpointers that reference the node. When the ID
cover of a node changes, the nodes in that list are informed
to update or change their neighbors. This will be explained
minutely in Section 2.3.

A published event has an eID generated by the ID func-
tion. The eID represents the ID space where the event
should be delivered. Hence, the dissemination is the pro-
cess of matching the ID space of the event with nodes’ ID.
This consists of the two phases: the first phase isrouting to
find some node whose ID matches the eID and the second
phase ismulticastingfrom that node with an event dissemi-
nation tree.

Algorithm 2.1: ROUTE(eID)

ID ← publisher;
while ((d = dist(ID, eID)) 6= 0){ (i)
//find the node whose hamming distance is shortest among neighbors
for each (node in ID.Nbr){

if (dist(node, eID)< d){
d = dist(node, eID);
ID = node;

}}
forward to ID;
}

Algorithm 2.2: DISSEMINATION(ID, eID)

for each (node in ID.Nbr){
if (dist(node, eID) = 0)

insert node intoclist; //an ordered list w.r.t the cost metric
}

if (clist 6= null){
for each (node in clist){

eID′ = split(ID, node, eID); (ii)
DISSEMINATION(node, eID′);

}}

100

000

101

001

010 011

111110

000

100

110 101

111

Routing

Multicast 

delivery

1**110 1*1111
Figure 2. An example of event dissemination.

The routing procedure is shown in pseudo code form in
Algorithm 2.1. dist(A, B) at (i) returns hamming distance
between A and B. Wild cards in IDs are ignored in calcu-
lating the hamming distance since they mean “don’t care”.
An event is forwarded to the node whose ID is closest in
hamming distance among neighbors.

Once reached a matching node, the event is multi-
cast with the tree constructed as shown in Algorithm 2.2.
split(A, B, eID) at (ii) divides the ID space of eID at the
first different bit between A and B, and returns each of re-
sulting split IDspaces to A and B. A node that receives the
event forwards it only to the neighbors whose ID is in eID.
At the same time, the node splits eID space and assign each
of the results to the neighbors. The neighbors are respon-
sible for the delivery of the event to the nodes in their split
eID. The event is delivered recursively until all interested
nodes receive it. A node engaged in the split process earlier
gets more portion of eID sincesplit() divides the ID space
binomially. In HOMED, a node with better cost metric is
given a higher priority in the split process among interested
neighbors. Therefore the resulting tree is efficient with re-
spect to the metric in the ID cover table.

Figure 2 shows an example of event dissemination in the
3-dimensional HOMED. An event occurs at the node 000
and the eID of the event is (1**). The event is routed to the
first matching node 100 and then multicast. ID spaces on
arrows show that eID is split as the event moves toward the
leaves of the multicast tree. In this example, the node 101
is assigned the responsibility for delivering the event to 111
since the node 101 has a better cost metric than 110.

It is notable that no node is engaged in the multicast of
the event that it is not interested in, which means that the
event is disseminated very efficiently with minimum mes-
sages. While not explicitly proven here, suppose that IDs
of every nodes are different, the expected number of event
notification steps isO (log N) rather thand, whereN is the
number of HOMED nodes in the network.



2.3. Subscribing

When a new subscriber enters the publish/subscribe net-
work, it contacts any well-known node with subscription in-
formation. From that node, it traces ID cover table to find its
position in the network. This participation process is called
subscribing. During the subscribing, the node gets direct
neighbor information and its portion of ID cover so that it
can complete its ID cover table.

Algorithm 2.3: SUBSCRIBE(ID)

ID.Nbr = ID.Bpt =∅; ID.Cvr ={ID};
n ← a well-known node;

//step1: find the position
n ← ROUTE(ID);

//step2: split ID cover and make the ID table of the joining node
ID.Cvr ← split(n, ID, n.Cvr);
L ← {x|dist(x, ID) = 1}; //hamming neighbors (hn)
for each (hn in L){

for each (node inn.Nbr∪ n.Bpt){
if (hn ∈ node.Cvr){

ID.Nbr ← (hn, node, node.Cvr);
node.Bpt= node.Bpt∪ ID;

}}
if (hn ∈ ID.Cvr)

ID.Nbr ← (hn, ID, ID.Cvr);
}

//step3: update neighbor’s table
L ← {n} ∪ n.Bpt;
for each (bpn in L){

for each (hn in bpn.Nbr){
if (hn ∈ ID.Cvr){

replace thehn entry with (hn, ID, ID.Cvr);
movebpn from n.Bpt to ID.Bpt;
} else if(hn = n)
hn.Cvr← n.Cvr;

}}

Algorithm 2.3 shows the sequence of subscribing pro-
cess with pseudo code. It is organized as three steps. At
the first step, a subscriber looks for the node that covers
the its ID. This is accomplished simply by callROUTE
with its ID. The second step is to determine the ID cover
of the subscriber. The subscriber gets its ID cover portion
by split() function. And, the subscriber makes the neigh-
bor list from neighbors and backpointers of the node that
previously covered its ID. The split of ID cover incurs the
split of backpointer list. As a final step, nodes that point
the ID cover which is split from the original node change
the neighbor list to point new owner of the ID cover. New
and old owners also update their backpointer lists to reflect
those nodes.

For the comprehension, we provide a step-by-step exam-
ple in Figure 3, where the ID size is 3 bits.

1**AABNbr110101000 1** 1**0**Bpt B
A

A100
B001 1**BABNbr011101000 0** 0**0**Bpt A

B

10*CABNbr110101000 10* 11*0**Bpt B C
A

A100
B001 10*BABNbr011101000 0** 0**0**Bpt A C

B
11*ACBNbr101110011 11* 10*0**Bpt A

C
C111

10*CADNbr110101000 10* 11*0*1Bpt B C D
A

A100
B001 10*BADNbr011101000 0*1 0*10*0Bpt C D

B
11*ACBNbr101110011 11* 10*0*1Bpt A

C
C111

D0000*1DBANbr010001100 0*0 0*010*Bpt A B
D

Figure 3. An example of subscribing.

In subscribing, number of messages to set up ID cover
table is log N + 2d whereN is the total number of sub-
scribers andd is the number of bits in ID. A new subscriber
sends just one message to find the node that covers its ID
and the message moveslog N hops on average. It also con-
tacts all the neighbor nodes and backpointing nodes of the
original owner of the ID cover in order to fill the neighbor
list. The number of messages are2d as total number of
neighbor nodes and backpointing nodes in the network are
the same and the average number per node isd.

2.4. Unsubscribing

Subscribers can leave the subscribe network at anytime,
which is calledunsubscribing. To maintain the HOMED
network, other subscribers must cover the ID cover of the
leaving node and update their neighbor information. Sub-



scribers that want to leave the network send notification to
any one neighbor then it inherits the ID cover of the leaving
node.

Each node knows the ID cover table of neighbor nodes
that is piggybacked in the periodic heart beat message. The
node that succeeds to the ID cover of the leaving node
sends notification of ID cover change to all the backpointing
nodes of itself and the unsubscribing node. It also informs
the neighbors of the leaving node that backpointers to the
node are no longer needed. Unsubscribing operation is ex-
pressed by pseudo code in Algorithm 2.4.

Algorithm 2.4: UNSUBSCRIBE(leaveID)

ID.Cvr = ID.Cvr∪ leaveID.Cvr;
//step1: redirect references from leaveID to ID
for each (bpn in leaveID.Bpt){

for each (hn in bpn.Nbr){
if (hn ∈ ID.Cvr){

replace thehn entry with (hn, ID, ID.Cvr);
}}}

//step2: eliminate obsolete backpointers
for each (node in leaveID.Nbr)

node.Bpt= node.Bpt− {leaveID};

//step3: notify ID cover change
for each (node in ID.Bpt){

for each (nb in node.Nbr){
if (nb = ID)

nb.Cvr← ID.Cvr;
}}
ID.Bpt = ID.Bpt∪ leaveID.Bpt;

Duringunsubscribing, 3d messages are delivered by one
hop transmission as the node knows where to send ID cover
change notifications and obsolete backpointer notifications
by hearing neighbor’s ID cover table in heart beat message.

2.5. Node Departure

Node departuremeans a leaving of a node without notifi-
cation. Reaction mechanism is basically the same as unsub-
scribing except that neighbors detect the node departure by
periodic heart beat messages. The first node that perceives
the node departure inherits the ID cover of the leaving node
and executes unsubscribing process explained above.

HOMED’s mesh like structure gives the benefit of lo-
calized recovery of the node departure; only neighbors of
the leaving node are involved in the process. While previ-
ous approaches need to contact almost all nodes to elimi-
nate obsolete subscription through the reverse path of the
tree, HOMED can handle a the node departure with much
smaller message and delay overhead.

3. Discussion

In this section, we discuss some design issues and possi-
ble improvements.

3.1. Handling duplicate IDs

In HOMED, an ID is not guaranteed to be unique in the
network since IDs are determined by interests of nodes. So,
several nodes can have the same ID. Although it is desir-
able to avoid this ID conflict as much as possible with the
“good” ID function discriminating interests, HOMED must
be able to handle duplicate IDs. One possible solution is
that the nodes with the same ID construct an overlay multi-
cast tree [6] [7] rooted at the first joining node or the most
powerful one. Another solution is that an ID is composed
of interest and identifier of a node. An event also has the
corresponding part in its ID, which is normally set to (con-
tent ID, ***). In this case, publishers can select receivers
among interested ones.

3.2.k-ary Hypercube

In the previous section, an ID is represented by a binary
bit vector, and thus the resulting HOMED topology is built
on a logical binary hypercube. However, each bit in an ID
can be substituted withb bits for the HOMED network that
requires a large ID space.1 The routing table of HOMED
is organized with base2b in much the same way as that of
Pastry [10]. We have the two choices of how many entries
a node must have amongk (= 2b) possible values.

1. For each row, a node has two neighbors whose ID
segment is numerically closest among smaller and
bigger ones. The delivery depth is increased to
O

(
2b log2b N

)
.

2. A node’s routing table has2b − 1 entries for each row
as in Pastry. While the routing table size becomes
O

(
2b log2b N

)
, the deliver depth isO (log2b N).

Therefore, there is a trade-off between the size of routing
tables and the depth of event delivery trees.

3.3. Supporting Content-Based Systems

HOMED may suffer from the same problem that topic-
based systems have because it is based on the simple ID.
Let us assume that a node has an ID segment 0110, which
represents an integer attribute0 < x < 100, but the actual
interest of the node is30 < x < 80. Then, it will receive

1This is similar to that binary hypercubes is generalized tok-ary n-
cubes.



unnecessary messages when they are out of the range of its
interest. To reduce those false positives, the exact predi-
cate must be known to all other nodes as existing content-
based systems do. This will result in unacceptable over-
head. However, HOMED can localize the propagation of
exact predicates. For the previous example, the node with
ID (0110...) sends its predicate only to the nodes that have
the same ID segment 0110, since one of them will deliver
matching events.

Content-based networking in HOMED has two advan-
tages. First, a predicate is propagated only to a small num-
ber of nodes by a subset of subscriber’s neighbors, and thus
the number of hops in propagation is limited. Second, pred-
icates do not have to be known in time since they are used
only for reducing false positives. In HOMED, predicates
are piggybacked on heartbeat messages. Based on the ag-
gregated predicates, each node in the event dissemination
tree decides matching descendants using algorithm of [4].

4. Conclusion

In this paper, we have presented a new peer-to-
peer overlay called HOMED suitable for large-scale pub-
lish/subscribe systems. HOMED can construct a flexible
and efficient event dissemination tree with minimum par-
ticipation of the nodes that have no interest in the event. At
the same time, it has the desirable properties such as limited
delivery depth and overhead.

Evaluation of publish/subscribe systems is a hard work
since they are affected by a lot of components including the
probabilistic model of publishers and subscribers. Measur-
ing the performance of HOMED is now in progress.

It is another challenge to exploit physical locality in
content-based publish/subscribe. While HOMED already
has the scheme to assign different responsibilities to the de-
scendants of a tree, a network-wide optimization is possible
using proximity estimation techniques such as IDMaps and
GNP. To couple HOMED with them is under study.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast proto-
col for content-based publish-subscribe systems.The 19th
IEEE International Conference on Distributed Computing
Systems (ICDCS ’99), pages 262–272, May 1999.

[2] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: A scal-
able publish-subscribe system for internet games. InPro-
ceedings of the 1st Workshop on Network and System Sup-
port for Games (Netgames), Braunschweig, Germany, Apr.
2002.

[3] A. Carzaniga and A. L. Wolf. Design and evaluation of a
wide-area event notification service.ACM Transactions on
Computer Systems, 19(3):332–383, Aug. 2001.

[4] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. InProceedings of the 2003 ACM SIGCOMM Con-
ference, Karlsruhe, Germany, Aug 2003.

[5] M. Castro, P. Druschel, A. M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized publish-subscribe
infrastructure. InProceedings of the 3rd International Work-
shop on Networked Group Communication (NGC’01), vol-
ume 2233, pages 30–43, Nov. 2001.

[6] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProceedings of ACM SIGMETRICS, Jun. 2000.

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole. Overcast: Reliable multicasting with an
overlay network. InProceedings of the 4th Symposium on
Operating Systems Design and Implementation, Oct. 2000.

[8] G. Koloniari and E. Pitoura. Bloom-based filters for hierar-
chical data. Inthe 5th Workshop on Distributed Data and
Structures (WDAS), Jun. 2003.

[9] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker net-
works in an event-based middleware.The 2nd International
Workshop on Distributed Event-Based Systems (DEBS’03),
Jun. 2003.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. InProceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Hiedelberg, Germany, Nov. 2001.

[11] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InProceedings of the 2001 ACM SIG-
COMM Conference, pages 149–160, San Diego, California,
USA, 2001.

[12] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. The 2nd International Workshop on Dis-
tributed Event-Based Systems (DEBS’03), Jun. 2003.

[13] P. Triantafillou and A. Economides. Subscription sum-
maries for scalability and efficiency in publish/subscribe
systems. The 2nd International Workshop on Distributed
Event-Based Systems (DEBS’03), Jun. 2003.

[14] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and
H. J. Wang. Subscription partitioning and routing in content-
based publish/subscribe systems. In16th International Sym-
posium on DIStributed Computing, 2002.


