Basic Concepts
In Computer Networking

Antonio Carzaniga

Faculty of Informatics
University of Lugano

March 11, 2005
Outline

- What is the Internet?
- Types of network
- Types of service
- Protocols
- The Internet protocol stack
What is the Internet?

Internet
What is the Internet?
What is the Internet?
What is the Internet?
What is the Internet?

Internet

end system
or host

© 2005 Antonio Carzaniga
end system or host
End Systems

- *end system or host (☐)*
 - a computer
end system or host

- a computer
- a server (well, that would also be a computer)
End Systems

- *end system or host* (☐)
 - a computer
 - a server (well, that would also be a computer)
 - a camera (a.k.a., webcam)
- *end system or host* (☐)
 - a computer
 - a server (well, that would also be a computer)
 - a camera (a.k.a., webcam)
 - a temperature sensor
end systems or host

- a computer
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a cell phone
end system or host (☐)

- a computer
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a cell phone
- a PDA
end system or host

- a computer
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a cell phone
- a PDA
- ...
- a car
- a television set
- a picture frame
- a toaster
- ...

© 2005 Antonio Carzaniga
end system or host

- a computer
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a cell phone
- a PDA
- ...
- a car
- a television set
- a picture frame
- a toaster
- ...
- a toilet seat?
- a toothpick?
- ...
What is “Inside” the Internet?

[Diagram with boxes]

© 2005 Antonio Carzaniga
What is “Inside” the Internet?
What is “Inside” the Internet?

local-area network

packet switch
What is “Inside” the Internet?

local-area network

packet switch
The Internet uses packet switching
Basic Concepts

- The Internet uses *packet switching*

- *Packet switch*: a *link-layer switch* or a *router*
Basic Concepts

- The Internet uses *packet switching*

- *Packet switch*: a link-layer switch or a router

- *Route*: sequence of switches that a packet goes through (a.k.a. *path*)
The Internet uses *packet switching*

Packet switch: a *link-layer switch* or a *router*

Route: sequence of switches that a packet goes through (a.k.a. *path*)

Protocol: control the sending and receiving of information to and from end systems and packet switches
The Internet is a *packet-switched* network
Packet Switching

- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
The Internet is a *packet-switched* network

Information is transmitted in *packets*

Switches operate on an individual packet
Packet Switching

- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
- Switches operate on an individual packet
- A switch (router) receives packets and forwards them along to other switches or to end systems
Packet Switching

- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
- Switches operate on an individual packet
- A switch (router) receives packets and forwards them along to other switches or to end systems
- Every forwarding decision is done on the basis of the information contained in the packet
Circuit Switching
Circuit Switching

- The telephone network is a typical circuit-switched network
The telephone network is a typical circuit-switched network.

Communication requires a connection setup phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.).
The telephone network is a typical circuit-switched network.

Communication requires a *connection setup* phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.).

After a successful setup, the communicating systems are connected by a set of links that are dedicated to their connection for the entire duration of their conversation.
Circuit Switching

- The telephone network is a typical circuit-switched network

- Communication requires a *connection setup* phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.)

- After a successful setup, the communicating systems are connected by a set of links that are dedicated to their connection for the entire duration of their conversation

- When the conversation ends, the network tears down the connection, freeing the corresponding resources (links, buffers, etc.) for other connections
Circuit vs. Packet Switching
Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase. On the other hand, once the connection is established, circuit switching is much more efficient in both space overhead and processing.
Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase. On the other hand, once the connection is established, circuit switching is much more efficient in both space overhead and processing.

- Packet switching does not incur any setup cost. However, it always incurs a significant processing cost for forwarding, as well as space overhead, because every packet must be self-contained.
Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase. On the other hand, once the connection is established, circuit switching is much more efficient in both space overhead and processing.

- Packet switching does not incur any setup cost. However, it always incurs a significant processing cost for forwarding, as well as space overhead, because every packet must be self-contained.

- Circuit switching admits a straightforward implementation of quality-of-service guarantees, because network resources are reserved at connection setup time.
Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase. On the other hand, once the connection is established, circuit switching is much more efficient in both space overhead and processing.

- Packet switching does not incur any setup cost. However, it always incurs a significant processing cost for forwarding, as well as space overhead, because every packet must be self-contained.

- Circuit switching admits a straightforward implementation of quality-of-service guarantees, because network resources are reserved at connection setup time.

- Guaranteeing any quality of service with packet switching is very difficult.
Circuit vs. Packet Switching (2)

- Circuit switching allows only a limited sharing of communication resources. In other words, circuit switching is an inefficient way to use the network.
Circuit vs. Packet Switching (2)

- Circuit switching allows only a limited sharing of communication resources. In other words, circuit switching is an inefficient way to use the network.

- Packet switching achieves a much better utilization of network resources, because it is designed specifically to share links (buffers, etc.).
Virtual Circuits

- Idea: combine the advantages of circuit switching and packet switching
Virtual Circuits

- Idea: combine the advantages of circuit switching and packet switching

- The service model is connection oriented, and therefore requires a connection setup phase
Virtual Circuits

- Idea: combine the advantages of circuit switching and packet switching
- The service model is connection oriented, and therefore requires a connection setup phase
- The connection does not create a physical circuit, but rather a “virtual circuit”
Virtual Circuits

- Idea: combine the advantages of circuit switching and packet switching

- The service model is connection oriented, and therefore requires a connection setup phase

- The connection does not create a physical circuit, but rather a “virtual circuit”

- Information is sent in packets, so links can be shared more effectively
Virtual Circuits

◆ Idea: combine the advantages of circuit switching and packet switching

◆ The service model is connection oriented, and therefore requires a connection setup phase

◆ The connection does not create a physical circuit, but rather a “virtual circuit”

◆ Information is sent in packets, so links can be shared more effectively

◆ Packets carry a virtual circuit identifiers, which allow very fast processing (forwarding) and incur a space low-overhead
Taxonomy of Networks

communication network

- circuit switching
 - time division multiplexing
 - frequency division multiplexing

- packet switching
 - virtual circuit
 - datagram network

© 2005 Antonio Carzaniga
What kind of service does the Internet offer to end systems?
Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?
Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?

Connection-oriented reliable
- virtual duplex communication channel \((A \leftrightarrow B)\)—conceptually similar to a telephone service
- information is transmitted “reliably” and in order
Type of Service

- Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?

- **Connection-oriented reliable**
 - virtual duplex communication channel \((A \leftrightarrow B)\)—conceptually similar to a telephone service
 - information is transmitted “reliably” and in order

- **Connectionless unreliable**
 - the network accepts “datagrams” for delivery—this is conceptually similar to the postal service
 - “unreliable” service (a.k.a. “best effort”)
How reliable is a “reliable” service?
Type of Service (2)

- How reliable is a “reliable” service?

- The term “reliable” means that information will eventually reach its destination if a route is viable within a certain amount of time.
How reliable is a “reliable” service?

The term “reliable” means that information will eventually reach its destination if a route is viable within a certain amount of time.

The network makes absolutely no guarantees on latency (i.e., the time it takes to transmit some information from a source to a destination)
End systems as well as packet switches run protocols. What is a protocol?
End systems as well as packet switches run protocols. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob

Alice

Bob

hello
End systems as well as packet switches run protocols. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob

Alice

Bob

hello

hello, this is Alice
End systems as well as packet switches run protocols. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob
End systems as well as packet switches run *protocols*. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob

```
Alice: hello, this is Alice
Bob: Alice, what’s up?
Alice: bla, bla...
```
End systems as well as packet switches run protocols. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob

Alice

hello

hello, this is Alice

Alice, what’s up?

bla, bla...

okay, bye

Bob
End systems as well as packet switches run protocols. What is a protocol?

E.g., let’s consider a phone call: Alice calls Bob

Alice: hello
Bob: hello, this is Alice
Alice: Alice, what’s up?
Bob: bla, bla...
Alice: okay, bye
Bob: bye
Communication Protocols

◆ Phases of the protocol
 ▶ *handshake* establishes the identity and/or the context for a conversation
 ▶ *conversation* free-form exchange
 ▶ *closing* terminates the conversation
Phases of the protocol

- *handshake* establishes the identity and/or the context for a conversation
- *conversation* free-form exchange
- *closing* terminates the conversation

This protocol assumes a connection-oriented medium
The protocol involves two parties (Alice and Bob)
...
Another example: air traffic control
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
- ... Alitalia 631, contact Malpensa approach at 119.20
- ...
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ...
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
- ... Alitalia 631, contact Malpensa approach at 119.20
- ...
- ... Alitalia 631, contact Malpensa approach at 119.20
- 1-1-9 point 2-0, Alitalia 631, goodbye
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
- ... Alitalia 631, contact Malpensa approach at 119.20
- ... Alitalia 631, contact Malpensa approach at 119.20
- 1-1-9 point 2-0, Alitalia 631, goodbye
- ... Center, request, Delta 800
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ...
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - 1-1-9 point 2-0, Alitalia 631, goodbye
 - ... Center, request, Delta 800
 - ... United 971, climb and maintain flight level 3-7-0
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
- ... Alitalia 631, contact Malpensa approach at 119.20
- ...
- ... Alitalia 631, contact Malpensa approach at 119.20
- 1-1-9 point 2-0, Alitalia 631, goodbye
- ... Center, request, Delta 800
- ... United 971, climb and maintain flight level 3-7-0
- flight level 3-7-0, United 971
Another example: air traffic control

- ... United 971, turn left heading 2-7-0
- left to 2-7-0, United 971
- ... Alitalia 631, contact Malpensa approach at 119.20
- ...
- ... Alitalia 631, contact Malpensa approach at 119.20
- 1-1-9 point 2-0, Alitalia 631, goodbye
- ... Center, request, Delta 800
- ... United 971, climb and maintain flight level 3-7-0
- flight level 3-7-0, United 971
- ... Delta 800, go ahead
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ...
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - 1-1-9 point 2-0, Alitalia 631, goodbye
 - ... Center, request, Delta 800
 - ... United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971
 - ... Delta 800, go ahead
 - requesting flight level 3-5-0, Delta 800

© 2005 Antonio Carzaniga
Communication Protocols (2)

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ...
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - 1-1-9 point 2-0, Alitalia 631, goodbye
 - ... Center, request, Delta 800
 - ... United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971
 - ... Delta 800, go ahead
 - requesting flight level 3-5-0, Delta 800
 - Delta 800, unable at the moment
Communication Protocols (2)
A connectionless protocol
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements
- Timeout and retransmission
Communication Protocols (2)

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements
- Timeout and retransmission
- “Master” role
Let’s revisit the phone-call protocol
Let’s revisit the phone-call protocol.

Alice

hello

Bob
Let’s revisit the phone-call protocol
Let’s revisit the phone-call protocol
Let’s revisit the phone-call protocol.

Alice: hello
Bob: hello, this is Alice
Alice: who?
Bob: sorry, wrong number
Another run of the phone-call protocol
Another run of the phone-call protocol
Another run of the phone-call protocol

Alice -> Bob: hello

Bob -> Alice: hello?
Another run of the phone-call protocol

Alice

Bob

hello

hello?

anybody there?
Communication Protocols: Principles

- A protocol is a lot like a program
 - in fact, it is a *distributed program*, where different processes can send messages to each other
A protocol is a lot like a program

- in fact, it is a *distributed program*, where different processes can send messages to each other

- It is an *executable* specification
Communication Protocols: Principles

- A protocol is a lot like a program
 - in fact, it is a *distributed program*, where different processes can send messages to each other

- It is an *executable* specification

- It must be *unambiguous*
Communication Protocols: Principles

- A protocol is a lot like a program
 - in fact, it is a *distributed program*, where different processes can send messages to each other

- It is an *executable* specification

- It must be *unambiguous*

- It must be *complete*
 - i.e., it must include actions and/or responses for all possible situations and all possible messages
Communication Protocols: Principles

◆ A protocol is a lot like a program
 ▶ in fact, it is a *distributed program*, where different processes can send messages to each other

◆ It is an *executable* specification

◆ It must be *unambiguous*

◆ It must be *complete*
 ▶ i.e., it must include actions and/or responses for all possible situations and all possible messages

◆ A network protocol must also define all the necessary *message formats*
Another protocol: deciding where to go for dinner
Another protocol: deciding where to go for dinner

Alice

how about pizza?

Bob
Another protocol: deciding where to go for dinner

Alice

how about pizza?

we did that already

Bob
Another protocol: deciding where to go for dinner

Alice: how about pizza?
Bob: we did that already
Alice: okay, you decide
Another protocol: deciding where to go for dinner

Alice

Bob

how about pizza?

we did that already

okay, you decide

uhm... er...
Another protocol: deciding where to go for dinner

Alice

how about pizza?

Bob

we did that already

okay, you decide

uhm... er...

so?
Another protocol: deciding where to go for dinner

Alice: how about pizza?
Bob: we did that already
Alice: okay, you decide
Bob: uhm... er...
Alice: so?
Bob: let's just do pizza
Alice calls Bob to decide where to go for dinner
Alice calls Bob to decide where to go for dinner
Alice calls Bob to decide where to go for dinner

Alice

Bob

hello

hello, this is Alice
Alice calls Bob to decide where to go for dinner

Alice

hello

Bob

hello, this is Alice

Alice, what’s up?
Alice calls Bob to decide where to go for dinner.

Alice: hello, this is Alice.
Bob: hello.
Alice: what’s up?
Bob: Alice, what’s up?
Alice: what to do for dinner?…
Bob: what to do for dinner?…
Alice calls Bob to decide where to go for dinner

Alice

hello

Bob

hello, this is Alice

Alice, what’s up?

what to do for dinner?...

okay, bye

© 2005 Antonio Carzaniga
Alice calls Bob to decide where to go for dinner

Alice

hello

Bob

hello, this is Alice

Alice, what’s up?

what to do for dinner?...

okay, bye

bye
Alice calls Bob to decide where to go for dinner
Protocol Layering

- Alice calls Bob to decide where to go for dinner

phone call protocol
Alice calls Bob to decide where to go for dinner

- dinner protocol
- phone call protocol
Alice calls Bob to decide where to go for dinner

- dinner protocol
- phone call protocol
- call setup
Alice calls Bob to decide where to go for dinner

- dinner protocol
- phone call protocol
- call setup
- voice over IP
Alice calls Bob to decide where to go for dinner

- dinner protocol
- phone call protocol
- call setup
- voice over IP
- ...
Internet Protocol Stack
application
Internet Protocol Stack

- application
- transport
Internet Protocol Stack

application
transport
network
Internet Protocol Stack

<table>
<thead>
<tr>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport</td>
</tr>
<tr>
<td>network</td>
</tr>
<tr>
<td>link</td>
</tr>
<tr>
<td>Layer</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>application</td>
</tr>
<tr>
<td>transport</td>
</tr>
<tr>
<td>network</td>
</tr>
<tr>
<td>link</td>
</tr>
<tr>
<td>physical</td>
</tr>
</tbody>
</table>
Internet Protocol Stack (2)

- **Application** (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages
Internet Protocol Stack (2)

- **Application** (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages

- **Transport** (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)
Internet Protocol Stack (2)

- **Application** (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages

- **Transport** (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)

- **Network** (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)
Internet Protocol Stack (2)

- **Application** (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages

- **Transport** (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)

- **Network** (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)

- **Link** (e.g., Ethernet and PPP)
 - point-to-point or local broadcast communication
 - frames (or packets)
Internet Protocol Stack (2)

- **Application** (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages

- **Transport** (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)

- **Network** (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)

- **Link** (e.g., Ethernet and PPP)
 - point-to-point or local broadcast communication
 - frames (or packets)

- **Physical**