
More on Sorting:

Quick Sort and Heap Sort

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 23, 2023



Outline

Another divide-and-conquer sorting algorithm

The heap

Heap sort



Sorting Algorithms Seen So Far



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

?? Θ(n log n) yes

?? Θ(n log n) yes



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

Can we use the same idea for sorting A?



Using the Partitioning Algorithm

Basic step: partition A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater than v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

Can we use the same idea for sorting A?

Can we partition A in place?



Another Strategy for Sorting

Problem: sorting



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8 11 201336 21



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8 11 20 13 36 21



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8 11 20 13 36 21

q = 6



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8 11 20 13 36 21

q = 6
A[1 . . . q − 1]



Another Strategy for Sorting

Problem: sorting

Idea: rearrange the sequence A[1 . . . n] in three parts based on a chosen “pivot” value
v ∈ A

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 521 8 13 11 20 54 1 v = 8

2 4 5 5 1 8 11 20 13 36 21

q = 6
A[1 . . . q − 1] A[q + 1 . . . n]



Another Divide-and-Conquer for Sorting

Divide:



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer:



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine:



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ notice the difference withMERGESORT



Another Divide-and-Conquer for Sorting

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that

1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ notice the difference withMERGESORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)



Partition



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8 v = A[end]



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8 v = A[end]

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

36 11 5 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 11 36 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 11 36 21 1 13 2 20 5 4 8

i

q



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 11 36 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 11 36 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 11 36 21 1 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 36 21 11 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 36 21 11 13 2 20 5 4 8

i

q



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 36 21 11 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 36 21 11 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 36 21 11 13 2 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 21 11 13 36 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 21 11 13 36 20 5 4 8

i

q



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 21 11 13 36 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 21 11 13 36 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 21 11 13 36 20 5 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 11 13 36 20 21 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 11 13 36 20 21 4 8

i

q



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 11 13 36 20 21 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 11 13 36 20 21 4 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 13 36 20 21 11 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 13 36 20 21 11 8

i

q



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 13 36 20 21 11 8

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 8 36 20 21 11 13

q

i



Partition

Start with q = 1
◮ i.e., assume all elements are greater than the pivot

Scan the array le�-to-right, starting at position 2

If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 8 36 20 21 11 13

q



CompleteQUICKSORT Algorithm

PARTITION(A, begin, end)

1 q = begin

2 v = A[end]

3 for i = begin to end

4 if A[i] ≤ v

5 swap A[i] and A[q]
6 q = q + 1
7 return q − 1

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)



Complexity of PARTITION

PARTITION(A, begin, end)

1 q = begin

2 v = A[end]

3 for i = begin to end

4 if A[i] ≤ v

5 swap A[i] and A[q]
6 q = q + 1
7 return q − 1



Complexity of PARTITION

PARTITION(A, begin, end)

1 q = begin

2 v = A[end]

3 for i = begin to end

4 if A[i] ≤ v

5 swap A[i] and A[q]
6 q = q + 1
7 return q − 1

T (n) = Θ(n)



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case

◮ q = begin or q = end



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case

◮ q = begin or q = end

◮ the partition transforms P of size n in P of size n − 1



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case

◮ q = begin or q = end

◮ the partition transforms P of size n in P of size n − 1

T (n) = T (n − 1) + Θ(n)



Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case

◮ q = begin or q = end

◮ the partition transforms P of size n in P of size n − 1

T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case

◮ q = ⌈n/2⌉



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case

◮ q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋ and ⌈n/2⌉ − 1,
respectively



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case

◮ q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋ and ⌈n/2⌉ − 1,
respectively

T (n) = 2T (n/2) + Θ(n)



Complexity of QUICKSORT (2)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case

◮ q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋ and ⌈n/2⌉ − 1,
respectively

T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(n log n)



Sorting Algorithms Seen So Far



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICKSORT



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICKSORT Θ(n2) Θ(n log n) Θ(n log n) yes



Sorting Algorithms Seen So Far

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICKSORT Θ(n2) Θ(n log n) Θ(n log n) yes

?? Θ(n log n) yes



Binary Heap



Binary Heap

Our first real data structure



Binary Heap

Our first real data structure

Interface



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps

Useful applications



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps

Useful applications

◮ sorting



Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps

Useful applications

◮ sorting

◮ priority queue



Binary Heap: Structure



Binary Heap: Structure

Conceptually a full binary tree



Binary Heap: Structure

Conceptually a full binary tree



Binary Heap: Structure

Conceptually a full binary tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15



Binary Heap: Structure

Conceptually a full binary tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Implemented as an array



Binary Heap: Structure

Conceptually a full binary tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Implemented as an array



Binary Heap: Structure

Conceptually a full binary tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Implemented as an array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Binary Heap: Properties



Binary Heap: Properties



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Binary Heap: Properties

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]



Example

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]



Example

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]

E.g.,



Example

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]

E.g.,

36

21 11

13 20 8 5

13 2 4 15 8



Example

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]

E.g.,

36

21 11

13 20 8 5

13 2 4 15 8

Where is the max element?



Example

Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]

E.g.,

36

21 11

13 20 8 5

13 2 4 15 8

Where is the max element?

How can we implement HEAP-EXTRACT-MAX?



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

36

21 11

13 20 8 5

13 2 4 15 8



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

21 11

13 20 8 5

13 2 4 15 8



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15

Nowwe have two subtrees where themax-heap property holds



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

8 11

13 20 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

20 11

13 8 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

20 11

13 15 8 5

13 2 4 8



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

20 11

13 15 8 5

13 2 4 8



Max-Heapify

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)



Max-Heapify

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)

Complexity of MAX-HEAPIFY?



Max-Heapify

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)

Complexity of MAX-HEAPIFY? The height of the tree!



Max-Heapify

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)

Complexity of MAX-HEAPIFY? The height of the tree!

T (n) = Θ(log n)



Building a Heap



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10

⋆

⋆ ⋆

⋆ ⋆



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10

⋆

⋆ ⋆

⋆ ⋆ • •

• • •



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10

⋆

⋆ ⋆

⋆ ⋆ • •

• • •

⋆ heapify points
• leaves



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10

⋆

⋆ ⋆

⋆ ⋆ • •

• • •

⋆ heapify points
• leaves

1 2 3 4 5 6 7 8 9 10



Building a Heap

BUILD-MAX-HEAP(A)

1 A.heap-size = length(A)

2 for i = ⌊length(A)/2⌋ downto 1
3 MAX-HEAPIFY(A, i)

length(A) = 10

1

2 3

4 5 6 7

8 9 10

⋆

⋆ ⋆

⋆ ⋆ • •

• • •

⋆ heapify points
• leaves

1 2 3 4 5 6 7 8 9 10

⋆ ⋆ ⋆ ⋆ ⋆ • • • • •



Heap Sort

Idea: we can use a heap to sort an array



Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)



Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

What is the complexity of HEAP-SORT?



Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

What is the complexity of HEAP-SORT?

T (n) = Θ(n log n)



Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

What is the complexity of HEAP-SORT?

T (n) = Θ(n log n)

Benefits

◮ in-place sorting; worst-case isΘ(n log n)



Summary of Sorting Algorithms



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICK-SORT



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICK-SORT Θ(n2) Θ(n log n) Θ(n log n) yes



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICK-SORT Θ(n2) Θ(n log n) Θ(n log n) yes

HEAP-SORT



Summary of Sorting Algorithms

Algorithm Complexity In place?

worst average best

INSERTION-SORT Θ(n2) Θ(n2) Θ(n) yes

SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes

MERGE-SORT Θ(n log n) Θ(n log n) Θ(n log n) no

QUICK-SORT Θ(n2) Θ(n log n) Θ(n log n) yes

HEAP-SORT Θ(n log n) Θ(n log n) Θ(n log n) yes


