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1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ notice the difference withMERGESORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)
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CompleteQUICKSORT Algorithm

PARTITION(A, begin, end)

1 q = begin

2 v = A[end]

3 for i = begin to end

4 if A[i] ≤ v

5 swap A[i] and A[q]
6 q = q + 1
7 return q − 1

QUICKSORT(A, begin, end)
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QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)
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Worst case
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Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps

Useful applications

◮ sorting

◮ priority queue
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Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

36

21 11

13 20 8 5

13 2 4 15 8



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

21 11

13 20 8 5

13 2 4 15 8



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15



Heap-Extract-Max

HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15

Nowwe have two subtrees where themax-heap property holds



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

8 11

13 20 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

20 11

13 8 8 5

13 2 4 15



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property

21

20 11

13 15 8 5

13 2 4 8



Max-Heapify

MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i
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MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]
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6 if r ≤ A.heap-size and A[r] > A[largest]
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T (n) = Θ(log n)
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Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

What is the complexity of HEAP-SORT?

T (n) = Θ(n log n)

Benefits

◮ in-place sorting; worst-case isΘ(n log n)
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