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+40% midterm exam

+60% final exam

±10% instructor’s discretionary evaluation
▶ participation
▶ extra credits
▶ trajectory
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−100% plagiarism penalties
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Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations
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A note on learning Algorithms
. . . or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you
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Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
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Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf
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Our Time and Energy

Personal meetings
▶ extemporaneous, any time I have time!
▶ individually or in small groups
▶ questions, exercises, discussions, . . .

Exercise sessions
▶ every Friday 14:30–16:30 in C1.04
▶ in-class supervised exercises, analysis of solutions, discussions
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an introductory example. . .
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Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı
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Example: Poetic Rhythms

Imagine you are a poet, perhaps a bit of a musician, and also a mathematician. . .

The rhythm of your musical poetry is based on a regular beat
▶ that is, a “beat” is the basic unit of time

You compose your rhythms with one- and two-beat intervals
▶ a rhythm is a sequence of elements (words, syllables, notes) of 1 or 2 time units

How many 1,2-rhythms can you compose over a total of n beats?
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How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5
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A First Algorithm

n = 5:

PINGALA(5) = 8 PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)
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1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. Is the algorithm efficient?
▶ How much time does it take to complete?

3. Can we do better?
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Comments

Different implementations perform differently

▶ with different languages you get different performances

▶ compiler optimizations can make a difference

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm
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Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2

T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2

⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)
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T (n) ≥ (
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2)n ≈ (1.4)n

T (n) grows exponentially with n
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A Better Algorithm

Idea: we can avoid repeating the same computations over and over again

PINGALA-MEM(n,M)
1 if n ≤ 2
2 return n
3 if M = = ∅
4 M = array of n NIL elements
5 if M[n] = = NIL
6 M[n] = PINGALA-MEM(n − 1,M) + PINGALA-MEM(n − 2,M)
7 returnM[n]
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An Even Better Algorithm

Idea: we can build P(n) from the ground up, with just a couple of extra variables!

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P
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Complexity of PINGALA-INC
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The complexity of PINGALA-INC(n) is linear in n
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