
Algorithms and Data Structures
Course Introduction

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

February 21, 2023



General Information

On-line course information

▶ on iCorsi: INF.B.SP 2023.23

▶ and on my web page: https://www.inf.usi.ch/carzaniga/edu/algo/

▶ previous edition also on-line: https://www.inf.usi.ch/carzaniga/edu/algo22s/

Announcements
▶ you are responsible for reading the announcements (posted through iCorsi)

Personal consultations: by appointment
▶ Antonio Carzaniga (yours, truly)
▶ Thomas Bertini
▶ Fabio Di Lauro
▶ Bojan Lazarevskj
▶ Shamiek Mangipudi



General Information

On-line course information

▶ on iCorsi: INF.B.SP 2023.23

▶ and on my web page: https://www.inf.usi.ch/carzaniga/edu/algo/

▶ previous edition also on-line: https://www.inf.usi.ch/carzaniga/edu/algo22s/

Announcements
▶ you are responsible for reading the announcements (posted through iCorsi)

Personal consultations: by appointment
▶ Antonio Carzaniga (yours, truly)
▶ Thomas Bertini
▶ Fabio Di Lauro
▶ Bojan Lazarevskj
▶ Shamiek Mangipudi



General Information

On-line course information

▶ on iCorsi: INF.B.SP 2023.23

▶ and on my web page: https://www.inf.usi.ch/carzaniga/edu/algo/

▶ previous edition also on-line: https://www.inf.usi.ch/carzaniga/edu/algo22s/

Announcements
▶ you are responsible for reading the announcements (posted through iCorsi)

Personal consultations: by appointment
▶ Antonio Carzaniga (yours, truly)
▶ Thomas Bertini
▶ Fabio Di Lauro
▶ Bojan Lazarevskj
▶ Shamiek Mangipudi



Assessment

+40% midterm exam

+60% final exam

±10% instructor’s discretionary evaluation
▶ participation
▶ extra credits
▶ trajectory
▶ . . .

−100% plagiarism penalties



Assessment

+40% midterm exam

+60% final exam

±10% instructor’s discretionary evaluation
▶ participation
▶ extra credits
▶ trajectory
▶ . . .

−100% plagiarism penalties



Assessment

+40% midterm exam

+60% final exam

±10% instructor’s discretionary evaluation
▶ participation
▶ extra credits
▶ trajectory
▶ . . .

−100% plagiarism penalties



Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations



Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations



Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations



Plagiarism

Do NOT take someone else’s material and present it as your own!

“material” means ideas, words, code, suggestions, corrections on one’s work, etc.

Using someone else’s material may be appropriate
▶ e.g., software libraries
▶ always clearly identify the external material, and acknowledge its source!

Failing to do so means committing plagiarism.
▶ the work will be evaluated based on its added value

Plagiarism or cheating on an assignment or an exam may result in
▶ failing that assignment or that exam
▶ losing one or more points in the final note!

Penalties may be escalated in accordance with the regulations



A note on learning Algorithms
. . . or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms

. . . or anything else, really
You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn

—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



A note on learning Algorithms
.. .or anything else, really

You are here to learn!

I can’t make you learn—learning is indirect!

I will try as best as I can to present ideas and create a great learning environment

You have to put in enough time!—studying and exercising

I will give you all the resources and all the help I can give you



Textbook

Introduction to Algorithms
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press



Textbook

Introduction to Algorithms
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press



Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/python_exercises.html

Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf



Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/python_exercises.html

Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf



Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/python_exercises.html

Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf



Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/python_exercises.html

Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf



Exercises and Other Material

Notes on Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/programming.html

Exercises for Elementary Algorithmic Programming in Python
https://www.inf.usi.ch/carzaniga/edu/algo/python_exercises.html

Other exercises (a bit more involved) in Python, with solutions
https://www.inf.usi.ch/carzaniga/edu/python/index.html

A collection of 285 exam exercises, many of them with solutions
https://www.inf.usi.ch/carzaniga/edu/algo/exercises.pdf



Our Time and Energy

Personal meetings
▶ extemporaneous, any time I have time!
▶ individually or in small groups
▶ questions, exercises, discussions, . . .

Exercise sessions
▶ every Friday 14:30–16:30 in C1.04
▶ in-class supervised exercises, analysis of solutions, discussions



Our Time and Energy

Personal meetings
▶ extemporaneous, any time I have time!
▶ individually or in small groups
▶ questions, exercises, discussions, . . .

Exercise sessions
▶ every Friday 14:30–16:30 in C1.04
▶ in-class supervised exercises, analysis of solutions, discussions



Our Time and Energy

Personal meetings
▶ extemporaneous, any time I have time!
▶ individually or in small groups
▶ questions, exercises, discussions, . . .

Exercise sessions
▶ every Friday 14:30–16:30 in C1.04
▶ in-class supervised exercises, analysis of solutions, discussions



an introductory example. . .



Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz, circa 1450
(already known in China and Korea, circa 1200 CE)



Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz, circa 1450
(already known in China and Korea, circa 1200 CE)



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!

Muhammad ibn Musa
al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book
(Baghdad, circa 830)

▶ methods for adding, multiplying, and dividing
numbers (and more)

▶ these procedures were precise, unambiguous,
mechanical, efficient, and correct

▶ they were algorithms!
Muhammad ibn Musa

al-Khwārizm̄ı



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Example: Poetic Rhythms

Imagine you are a poet, perhaps a bit of a musician, and also a mathematician. . .

The rhythm of your musical poetry is based on a regular beat
▶ that is, a “beat” is the basic unit of time

You compose your rhythms with one- and two-beat intervals
▶ a rhythm is a sequence of elements (words, syllables, notes) of 1 or 2 time units

How many 1,2-rhythms can you compose over a total of n beats?



Example: Poetic Rhythms

Imagine you are a poet, perhaps a bit of a musician, and also a mathematician. . .
The rhythm of your musical poetry is based on a regular beat
▶ that is, a “beat” is the basic unit of time

You compose your rhythms with one- and two-beat intervals
▶ a rhythm is a sequence of elements (words, syllables, notes) of 1 or 2 time units

How many 1,2-rhythms can you compose over a total of n beats?



Example: Poetic Rhythms

Imagine you are a poet, perhaps a bit of a musician, and also a mathematician. . .
The rhythm of your musical poetry is based on a regular beat
▶ that is, a “beat” is the basic unit of time

You compose your rhythms with one- and two-beat intervals
▶ a rhythm is a sequence of elements (words, syllables, notes) of 1 or 2 time units

How many 1,2-rhythms can you compose over a total of n beats?



Example: Poetic Rhythms

Imagine you are a poet, perhaps a bit of a musician, and also a mathematician. . .
The rhythm of your musical poetry is based on a regular beat
▶ that is, a “beat” is the basic unit of time

You compose your rhythms with one- and two-beat intervals
▶ a rhythm is a sequence of elements (words, syllables, notes) of 1 or 2 time units

How many 1,2-rhythms can you compose over a total of n beats?



Example: Poetic Rhythms

How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5



Example: Poetic Rhythms

How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5



Example: Poetic Rhythms

How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5



Example: Poetic Rhythms

How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5



Example: Poetic Rhythms

How many 1,2-rhythms can you compose over a total of n beats?

Let’s call this function PINGALA(n), or P(n) for short, in honor of the ancient Indian
poet and mathematician who is the first person known to have studied these things

Example:

We have n = 4 total beats. How many different rhythms can we have?

1–1–1–1 Ta–Ta–Ta–Ta–
1–1–2 Ta–Ta–Ta-a–
1–2–1 Ta–Ta-a–Ta–
2–1–1 Ta-a–Ta–Ta–

2–2 Ta-a–Ta-a–

P(4) = 5



Example: Poetic Rhythms

How many rhythms can you compose over a total of n beats?

Example:

P(4) = 5

P(3) = 3

P(8) =?

We want a general algorithm to compute P(n)



Example: Poetic Rhythms

How many rhythms can you compose over a total of n beats?

Example:

P(4) = 5

P(3) =?

P(8) =?

We want a general algorithm to compute P(n)



Example: Poetic Rhythms

How many rhythms can you compose over a total of n beats?

Example:

P(4) = 5

P(3) = 3

P(8) =?

We want a general algorithm to compute P(n)



Example: Poetic Rhythms

How many rhythms can you compose over a total of n beats?

Example:

P(4) = 5

P(3) = 3

P(8) =?

We want a general algorithm to compute P(n)



Example: Poetic Rhythms

How many rhythms can you compose over a total of n beats?

Example:

P(4) = 5

P(3) = 3

P(8) =?

We want a general algorithm to compute P(n)



A First Algorithm

n = 5:

PINGALA(5) = 8 PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8 PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8

PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8

PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8

PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8 PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



A First Algorithm

n = 5:

PINGALA(5) = 8 PINGALA(5) = PINGALA(4) + PINGALA(3)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)



Questions on Our First Algorithm

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. Is the algorithm efficient?
▶ How much time does it take to complete?

3. Can we do better?



Questions on Our First Algorithm

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. Is the algorithm efficient?
▶ How much time does it take to complete?

3. Can we do better?



Questions on Our First Algorithm

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. Is the algorithm efficient?
▶ How much time does it take to complete?

3. Can we do better?



Questions on Our First Algorithm

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

1. Is the algorithm correct?
▶ for every valid input, does it terminate?
▶ if so, does it do the right thing?

2. Is the algorithm efficient?
▶ How much time does it take to complete?

3. Can we do better?



Correctness

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

For now we wave our hands. . .

▶ “the algorithm is clearly correct!”

▶ assuming n > 0



Correctness

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

For now we wave our hands. . .

▶ “the algorithm is clearly correct!”

▶ assuming n > 0



Performance

How long does it take?

Let’s try it out. . .



Performance

How long does it take?

Let’s try it out. . .



Results

20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

n

ru
nn

in
g

tim
e

(s
ec

on
ds

)
Racket

Java
Python

C
C-gcc



Comments

Different implementations perform differently

▶ with different languages you get different performances

▶ compiler optimizations can make a difference

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

▶ with different languages you get different performances

▶ compiler optimizations can make a difference

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

▶ with different languages you get different performances

▶ compiler optimizations can make a difference

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

▶ with different languages you get different performances

▶ compiler optimizations can make a difference

However, the differences are not substantial

▶ all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2

T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2

⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T (n) be the number of basic steps needed to compute PINGALA(n)

PINGALA(n)
1 if n ≤ 2
2 return n
3 return PINGALA(n − 1) + PINGALA(n − 2)

T (1) = T (2) = 2
T (n) = T (n − 1) + T (n − 2) + 2 ⇒ T (n) ≥ P(n)



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)

Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2)

≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4))

≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6)))

≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . .

≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how T (n) = grows with n

T (n) ≥ T (n − 1) + T (n − 2)
Now, since T (n) ≥ T (n − 1) ≥ T (n − 2) ≥ T (n − 3) ≥ . . .

T (n) ≥ 2T (n − 2) ≥ 2(2T (n − 4)) ≥ 2(2(2T (n − 6))) ≥ . . . ≥ 2
n
2

This means that

T (n) ≥ (
√

2)n ≈ (1.4)n

T (n) grows exponentially with n

Can we do better?



A Better Algorithm

Idea: we can avoid repeating the same computations over and over again

PINGALA-MEM(n,M)
1 if n ≤ 2
2 return n
3 if M = = ∅
4 M = array of n NIL elements
5 if M[n] = = NIL
6 M[n] = PINGALA-MEM(n − 1,M) + PINGALA-MEM(n − 2,M)
7 returnM[n]



A Better Algorithm

Idea: we can avoid repeating the same computations over and over again

PINGALA-MEM(n,M)
1 if n ≤ 2
2 return n
3 if M = = ∅
4 M = array of n NIL elements
5 if M[n] = = NIL
6 M[n] = PINGALA-MEM(n − 1,M) + PINGALA-MEM(n − 2,M)
7 returnM[n]



A Better Algorithm

Idea: we can avoid repeating the same computations over and over again

PINGALA-MEM(n,M)
1 if n ≤ 2
2 return n
3 if M = = ∅
4 M = array of n NIL elements
5 if M[n] = = NIL
6 M[n] = PINGALA-MEM(n − 1,M) + PINGALA-MEM(n − 2,M)
7 returnM[n]



An Even Better Algorithm

Idea: we can build P(n) from the ground up, with just a couple of extra variables!

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P



An Even Better Algorithm

Idea: we can build P(n) from the ground up, with just a couple of extra variables!

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P



An Even Better Algorithm

Idea: we can build P(n) from the ground up, with just a couple of extra variables!

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P



Results

20 40 60 80 100 120 140 160 180 200
0

20

40

60

n

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Racket
Java

Python
C

C-gcc
(Python) Pingala-Inc



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) = 4 + 5(n − 2) = 5n + . . . = O(n)

The complexity of PINGALA-INC(n) is linear in n



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) =

4 + 5(n − 2) = 5n + . . . = O(n)

The complexity of PINGALA-INC(n) is linear in n



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) = 4 + 5(n − 2)

= 5n + . . . = O(n)

The complexity of PINGALA-INC(n) is linear in n



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) = 4 + 5(n − 2) = 5n + . . .

= O(n)

The complexity of PINGALA-INC(n) is linear in n



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) = 4 + 5(n − 2) = 5n + . . . = O(n)

The complexity of PINGALA-INC(n) is linear in n



Complexity of PINGALA-INC

PINGALA-INC(n)
1 if n ≤ 2
2 return n
3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev
8 prev = P
9 return P

T (n) = 4 + 5(n − 2) = 5n + . . . = O(n)

The complexity of PINGALA-INC(n) is linear in n


