
Analysis of Insertion Sort

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 7, 2023



Outline

Sorting

Insertion Sort

Analysis



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉

Output: a sequence 〈b1, b2, . . . , bn〉 such that

◮ 〈b1, b2, . . . , bn〉 is a permutation of 〈a1, a2, . . . , an〉



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉

Output: a sequence 〈b1, b2, . . . , bn〉 such that

◮ 〈b1, b2, . . . , bn〉 is a permutation of 〈a1, a2, . . . , an〉

◮ 〈b1, b2, . . . , bn〉 is sorted

b1 ≤ b2 ≤ · · · ≤ bn



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉

Output: a sequence 〈b1, b2, . . . , bn〉 such that

◮ 〈b1, b2, . . . , bn〉 is a permutation of 〈a1, a2, . . . , an〉

◮ 〈b1, b2, . . . , bn〉 is sorted

b1 ≤ b2 ≤ · · · ≤ bn

Typically, A is implemented as an array



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉

Output: a sequence 〈b1, b2, . . . , bn〉 such that

◮ 〈b1, b2, . . . , bn〉 is a permutation of 〈a1, a2, . . . , an〉

◮ 〈b1, b2, . . . , bn〉 is sorted

b1 ≤ b2 ≤ · · · ≤ bn

Typically, A is implemented as an array

A = 6 8 3 2 7 6 11 5 9 4



Sorting

Input: a sequence A = 〈a1, a2, . . . , an〉

Output: a sequence 〈b1, b2, . . . , bn〉 such that

◮ 〈b1, b2, . . . , bn〉 is a permutation of 〈a1, a2, . . . , an〉

◮ 〈b1, b2, . . . , bn〉 is sorted

b1 ≤ b2 ≤ · · · ≤ bn

Typically, A is implemented as an array

A = 2 3 4 5 6 6 7 8 9 11

in-place sort



Insertion Sort

Idea: it is like sorting a hand of cards



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 6 8 3 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 6 8 3 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 6 8 3 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 6 8 3 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 6 3 8 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 3 6 8 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 3 6 8 2 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 3 6 2 8 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 3 2 6 8 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 8 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 8 7 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 7 8 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 7 8 6 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 7 6 8 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 7 8 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 7 8 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 7 8 11 5 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 7 8 5 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 7 5 8 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 6 5 7 8 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 6 5 6 7 8 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 11 9 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 9 11 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 9 11 4



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 9 4 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 8 4 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 7 4 8 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 6 4 7 8 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 6 4 6 7 8 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 5 4 6 6 7 8 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 4 5 6 6 7 8 9 11



Insertion Sort

Idea: it is like sorting a hand of cards

◮ scan the sequence le� to right

◮ pick the value at the current position aj

◮ insert it in its correct position in the sequence 〈a1, a2, . . . aj−1〉 so as to maintain a sorted
subsequence 〈a1, a2, . . . aj〉

A = 2 3 4 5 6 6 7 8 9 11



Insertion Sort (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Insertion Sort (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Is INSERTION-SORT correct?

What is the time complexity of INSERTION-SORT?

Can we do better?



Complexity of INSERTION-SORT

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Complexity of INSERTION-SORT

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Outer loop (lines 1–5) runs exactly n − 1 times (with n = length(A))

What about the inner loop (lines 3–5)?

◮ best, worst, and average case?



Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Best case:



Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Best case: the inner loop is never executed

◮ what case is this?



Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Best case: the inner loop is never executed

◮ what case is this?

Worst case:



Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Best case: the inner loop is never executed

◮ what case is this?

Worst case: the inner loop is executed exactly j − 1 times for every iteration of the outer
loop

◮ what case is this?



Complexity of INSERTION-SORT (3)

The worst-case complexity is when the inner loop is executed exactly j − 1 times, so

T (n) =

n∑

j=2

(j − 1)



Complexity of INSERTION-SORT (3)

The worst-case complexity is when the inner loop is executed exactly j − 1 times, so

T (n) =

n∑

j=2

(j − 1)

T (n) is the arithmetic series
∑n−1
k=1 k, so

T (n) =
n(n − 1)

2

T (n) = Θ(n2)



Complexity of INSERTION-SORT (3)

The worst-case complexity is when the inner loop is executed exactly j − 1 times, so

T (n) =

n∑

j=2

(j − 1)

T (n) is the arithmetic series
∑n−1
k=1 k, so

T (n) =
n(n − 1)

2

T (n) = Θ(n2)

Best-case is T (n) = Θ(n)



Complexity of INSERTION-SORT (3)

The worst-case complexity is when the inner loop is executed exactly j − 1 times, so

T (n) =

n∑

j=2

(j − 1)

T (n) is the arithmetic series
∑n−1
k=1 k, so

T (n) =
n(n − 1)

2

T (n) = Θ(n2)

Best-case is T (n) = Θ(n)

Average-case is T (n) = Θ(n2)



Correctness



Correctness

Does INSERTION-SORT terminate for all valid inputs?



Correctness

Does INSERTION-SORT terminate for all valid inputs?

If so, does it satisfy the conditions of the sorting problem?

◮ A contains a permutation of the initial value of A

◮ A is sorted: A[1] ≤ A[2] ≤ · · · ≤ A[length(A)]



Correctness

Does INSERTION-SORT terminate for all valid inputs?

If so, does it satisfy the conditions of the sorting problem?

◮ A contains a permutation of the initial value of A

◮ A is sorted: A[1] ≤ A[2] ≤ · · · ≤ A[length(A)]

We want a formal proof of correctness

◮ does not seem straightforward. . .



The Logic of Algorithmic Steps



The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

1 //must return a value greater than n
2 m = n ∗ n + 1
3 returnm



The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

1 //must return a value greater than n
2 m = n ∗ n + 1
3 returnm

Example 2: (branching)

SORTTWO(A)

1 //must sort (in-place) an array of 2 elements
2 if A[1] > A[2]
3 t = A[1]
4 A[1] = A[2]
5 A[2] = t



The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[2] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[3] > A[2]
7 return A[3]
8 else return A[2]



The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[2] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[3] > A[2]
7 return A[3]
8 else return A[2]

Is this algorithm correct?



The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[2] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[3] > A[2]
7 return A[3]
8 else return A[2]

Is this algorithm correct?

Why?



The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[1] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[2] > A[3]
7 return A[2]
8 else return A[3]



The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[1] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[2] > A[3]
7 return A[2]
8 else return A[3]

Is this algorithm correct?



The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1 // find themaximum value in an array of 3 elements
2 if A[1] > A[2]
3 if A[1] > A[3]
4 return A[1]
5 else return A[3]
6 else if A[2] > A[3]
7 return A[2]
8 else return A[3]

Is this algorithm correct?

Prove it!



The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(a, b, c)

1 // find the maximum among 3 values
2 if a > b and a > c

3 return a

4 if b > c

5 return b

6 else return c



The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(a, b, c)

1 // find the maximum among 3 values
2 if a > b and a > c

3 return a

4 if b > c

5 return b

6 else return c

Is this algorithm correct?



The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(a, b, c)

1 // find the maximum among 3 values
2 if a > b and a > c

3 return a

4 if b > c

5 return b

6 else return c

Is this algorithm correct?

Prove it!



Main Idea



Main Idea

Every execution path defines a condition on the input values: we call it path condition



Main Idea

Every execution path defines a condition on the input values: we call it path condition

The path condition of every pathmust imply the correctness condition



Main Idea

Every execution path defines a condition on the input values: we call it path condition

The path condition of every pathmust imply the correctness condition

An algorithmmust be correct for every possible execution path



Main Idea

Every execution path defines a condition on the input values: we call it path condition

The path condition of every pathmust imply the correctness condition

An algorithmmust be correct for every possible execution path

Problem: what happens when we have loops?



Loop Invariants



Loop Invariants

We formulate a loop-invariant condition C

◮ Cmust remain true through the loop



Loop Invariants

We formulate a loop-invariant condition C

◮ Cmust remain true through the loop

◮ C is relevant to the problem definition: we use C at the end of the loop to prove the
correctness of the result



Loop Invariants

We formulate a loop-invariant condition C

◮ Cmust remain true through the loop

◮ C is relevant to the problem definition: we use C at the end of the loop to prove the
correctness of the result

Then, we only need to prove that the algorithm terminates



Loop Invariants (2)



Loop Invariants (2)

Formulation: this is where we try to be smart

◮ the invariantmust reflect the structure of the algorithm

◮ it must be the basis to prove the correctness of the solution



Loop Invariants (2)

Formulation: this is where we try to be smart

◮ the invariantmust reflect the structure of the algorithm

◮ it must be the basis to prove the correctness of the solution

Proof of validity (i.e., that C is indeed a loop invariant): typical proof by induction

◮ initialization: wemust prove that

the invariant C is true before entering the loop

◮ maintenance: wemust prove that

if C is true at the beginning of a cycle then it remains true a�er one cycle



Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Themain idea is to insert A[i] in A[1 . . i − 1] so as to maintain a sorted subsequence
A[1 . . i]



Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Themain idea is to insert A[i] in A[1 . . i − 1] so as to maintain a sorted subsequence
A[1 . . i]

Invariant: (outer loop) the subarray A[1 . . i − 1] consists of the elements originally in
A[1 . . i − 1] in sorted order



Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Initialization: j = 2, so A[1 . . j − 1] is the single element A[1]

◮ A[1] contains the original element in A[1]

◮ A[1] is trivially sorted



Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Maintenance: informally, if A[1 . . i − 1] is a permutation of the original A[1 . . i − 1] and
A[1 . . i − 1] is sorted (invariant), then ifwe enter the inner loop:

◮ shi�s the subarray A[k . . i − 1] by one position to the right

◮ inserts key, which was originally in A[i] at its proper position 1 ≤ k ≤ i − 1, in sorted order



Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1



Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that



Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)

1 for i = 2 to length(A)
2 j = i

3 while j > 1 and A[j − 1] > A[j]
4 swap A[j] and A[j − 1]
5 j = j − 1

Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that

◮ A[1 . . i − 1] is a permutation of the original A[1 . . . i − 1]

◮ A[1 . . i − 1] is sorted

Given the termination condition, A[1 . . i − 1] is the whole A

So INSERTION-SORT is correct!



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop

1. Formulate an invariant C



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

2. Initialization (for all valid inputs)

◮ prove that C holds right before the first execution of the first instruction of the loop



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

2. Initialization (for all valid inputs)

◮ prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

◮ prove that if C holds right before the first instruction of the loop, then it holds also at the end
of the loop



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

2. Initialization (for all valid inputs)

◮ prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

◮ prove that if C holds right before the first instruction of the loop, then it holds also at the end
of the loop

4. Termination (for all valid inputs)

◮ prove that the loop terminates, with some exit condition X



Summary

You are given a problem P and an algorithm A

◮ P formally defines a correctness condition

◮ assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

2. Initialization (for all valid inputs)

◮ prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

◮ prove that if C holds right before the first instruction of the loop, then it holds also at the end
of the loop

4. Termination (for all valid inputs)

◮ prove that the loop terminates, with some exit condition X

5. Prove that X ∧ C ⇒ P, which means that A is correct



Exercise: Analyze Selection-Sort

SELECTION-SORT(A)

1 n = length(A)

2 for i = 1 to n − 1
3 smallest = i

4 for j = i + 1 to n
5 if A[j] < A[smallest]

6 smallest = j

7 swap A[i] and A[smallest]



Exercise: Analyze Selection-Sort

SELECTION-SORT(A)

1 n = length(A)

2 for i = 1 to n − 1
3 smallest = i

4 for j = i + 1 to n
5 if A[j] < A[smallest]

6 smallest = j

7 swap A[i] and A[smallest]

Correctness?

◮ loop invariant?

Complexity?

◮ worst, best, and average case?



Exercise: Analyze Bubblesort

BUBBLESORT(A)

1 for i = 1 to length(A)
2 for j = length(A) downto i + 1
3 if A[j] < A[j − 1]
4 swap A[j] and A[j − 1]



Exercise: Analyze Bubblesort

BUBBLESORT(A)

1 for i = 1 to length(A)
2 for j = length(A) downto i + 1
3 if A[j] < A[j − 1]
4 swap A[j] and A[j − 1]

Correctness?

◮ loop invariant?

Complexity?

◮ worst, best, and average case?


