Analysis of Insertion Sort

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

March 7, 2023

Outline

m Sorting
m Insertion Sort

m Analysis

Sorting

m Input: a sequence A = (a1,03,...,0,)

Sorting

m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

Sorting

m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

> (by,b,..., bn) is sorted

by <b,<---< by

Sorting

m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

> (by,b,..., bn) is sorted

by <b,<---< by

m Typically, Aisimplemented as an array

m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

> (by,b,..., bn) is sorted

by <b,<---< by

m Typically, Aisimplemented as an array

A=16|8(3]|2|7|6|11{5]|9(4

Sorting

m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

> (by,b,..., bn) is sorted

by <b,<---< by

m Typically, Aisimplemented as an array

A=12|3(4|5|6|6|7|8]|9]|11

in-place sort

Sorting

Insertion Sort

m Idea: it is like sorting a hand of cards

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

a=|s RNRRRRN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A= 6] 8 RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

- [FRTEER

Insertion Sort

m Idea: it is like sorting a hand of cards

> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

)
- [FRTEER

Insertion Sort

m Idea: it is like sorting a hand of cards

> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—
A=13]6] 8 RABRAN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=[3]6] 5|2 RBRERNROR

Insertion Sort

m Idea: it is like sorting a hand of cards

> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—
A=[3]6]2 |3 BTN

Insertion Sort

m Idea: it is like sorting a hand of cards

> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—
A=13]2] 6|38 RBRRNRR

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=[2]3]6 |38 RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=1{2{3]6 8|7 RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—
A=1{2]3]6 7|8 RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=1{2{3]6[7]5]6 RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

i
A={2]3]6[7]6]s RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—
A={2]3]6[6]7]s RN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=|2]3]6]6]7]8 11NN

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=[2(3|6|6[7|8]115 R

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=12(3|6|6[7|8|5 11N

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=12(3|6|6[7|5|8 11N

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=12(3|6|6[5|7|8 11N

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=12(3|6|5[6|7|8 11N

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

A=12(3|5|6[6|7|8 11N

m Idea: it is like sorting a hand of cards

> scan the sequence left to right

> pick the value at the current position g;

> insertitinits correct position in the sequence (a1, as,

subsequence (a1, a, ... q))

1119

)

Insertion Sort

...@j-1) so as to maintain a sorted

m Idea: it is like sorting a hand of cards

> scan the sequence left to right

> pick the value at the current position g;

> insertitinits correct position in the sequence (a1, as,

subsequence (a1, a, ... q))

!

)

Insertion Sort

...@j-1) so as to maintain a sorted

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

!

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

—

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

Insertion Sort

m Idea: it is like sorting a hand of cards
> scan the sequence left to right
> pick the value at the current position g;

> insertitin its correct position in the sequence (a1, ay, . . . aj_1) so as to maintain a sorted
subsequence (a1, a, ... q))

INSERTION-SORT (A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Insertion Sort (2)

Insertion Sort (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

B IS INSERTION-SORT correct?
m What is the time complexity of INSERTION-SORT?

m Can we do better?

Complexity of INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Complexity of INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Outer loop (lines 1-5) runs exactly n — 1 times (with n = length(A))

m What about the inner loop (lines 3-5)?

> best, worst, and average case?

Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case:

Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case: the inner loop is never executed

» what case is this?

Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case: the inner loop is never executed

» what case is this?

m Worst case:

Complexity of INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case: the inner loop is never executed

» what case is this?

m Worst case: the inner loop is executed exactly j — 1 times for every iteration of the outer
loop

» what case is this?

Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed exactly j — 1 times, so

T =) (-1)
j=2

Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed exactly j — 1 times, so

T =) (-1)
j=2

T(n) is the arithmetic series Y.]_1 k, so

T(n) = ©(n?)

Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed exactly j — 1 times, so

T =) (-1)
j=2

T(n) is the arithmetic series Y.]_1 k, so

T(n) = ©(n?)

m Best-caseis T(n) = ©(n)

Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed exactly j — 1 times, so

T =) (-1)
j=2

T(n) is the arithmetic series Y.]_1 k, so

T(n) = ©(n*)

m Best-caseis T(n) = ©(n)

m Average-caseis T(n) = ©(n?)

Correctness

Correctness

m Does INSERTION-SORT terminate for all valid inputs?

Correctness

m Does INSERTION-SORT terminate for all valid inputs?

m If so, does it satisfy the conditions of the sorting problem?

> A contains a permutation of the initial value of A

> Aissorted: A[1] < A[2] < --- < A[length(A)]

Correctness

m Does INSERTION-SORT terminate for all valid inputs?

m If so, does it satisfy the conditions of the sorting problem?

> A contains a permutation of the initial value of A

> Aissorted: A[1] < A[2] < --- < A[length(A)]

m We want a formal proof of correctness

> does not seem straightforward...

The Logic of Algorithmic Steps

The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

1 / must return a value greater thann
2 m=n*n+1

3 returnm

The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

1 / must return a value greater thann
2 m=n*n+1

3 returnm

Example 2: (branching)

SORTTWO(A)

1/ must sort (in-place) an array of 2 elements
2 ifA[1] > A[2]

3 t = A[1]
4 Al1] = A[2]
5 Al2] =t

The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[l] > A[2]
if A[2] > A[3]
return A[1]
else return A[3]
elseif A[3] > A[2]
return A[3]
else return A[2]

w

0 ~N o b

The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[l] > A[2]
if A[2] > A[3]
return A[1]
else return A[3]
elseif A[3] > A[2]
return A[3]
else return A[2]

w

0 ~N o b

Is this algorithm correct?

The Logic of Algorithmic Steps

Example 3: (nested branching)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[l] > A[2]
if A[2] > A[3]
return A[1]
else return A[3]
elseif A[3] > A[2]
return A[3]
else return A[2]

w

0 ~N o b

Is this algorithm correct?

Why?

The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[1] > A[2]
3 if A[1] > A[3]
return A[1]
else return A[3]
elseif A[2] > A[3]
return A[2]
else return A[3]

0 N o b

The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[1] > A[2]
3 if A[1] > A[3]
return A[1]
else return A[3]
elseif A[2] > A[3]
return A[2]
else return A[3]

0 N o b

Is this algorithm correct?

The Logic of Algorithmic Steps

Example 4: (second variant)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[1] > A[2]
3 if A[1] > A[3]
return A[1]
else return A[3]
elseif A[2] > A[3]
return A[2]
else return A[3]

0 N o b

Is this algorithm correct?

Prove it!

The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(q, b, ¢)

1 / find the maximum among 3 values
2 ifa>banda>c

3 return a
4 ifb>c
5 return b

6 elsereturnc

The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(q, b, ¢)

1 / find the maximum among 3 values
2 ifa>banda>c

3 return a
4 ifb>c
5 return b

6 elsereturnc

Is this algorithm correct?

The Logic of Algorithmic Steps

Example 5: (third variant)

MAXTHREE(q, b, ¢)

1 / find the maximum among 3 values
2 ifa>banda>c

3 return a
4 ifb>c
5 return b

6 elsereturnc

Is this algorithm correct?

Prove it!

Main Idea

Main Idea

m Every execution path defines a condition on the input values: we call it path condition

Main Idea

m Every execution path defines a condition on the input values: we call it path condition

m The path condition of every path must imply the correctness condition

Main Idea

m Every execution path defines a condition on the input values: we call it path condition

m The path condition of every path must imply the correctness condition

An algorithm must be correct for every possible execution path

Main Idea

m Every execution path defines a condition on the input values: we call it path condition

m The path condition of every path must imply the correctness condition

An algorithm must be correct for every possible execution path

Problem: what happens when we have loops?

Loop Invariants

Loop Invariants

m We formulate a loop-invariant condition C

» C must remain true through the loop

Loop Invariants

m We formulate a loop-invariant condition C

» C must remain true through the loop

> Cisrelevant to the problem definition: we use C at the end of the loop to prove the
correctness of the result

Loop Invariants

m We formulate a loop-invariant condition C

» C must remain true through the loop

> Cisrelevant to the problem definition: we use C at the end of the loop to prove the
correctness of the result

m Then, we only need to prove that the algorithm terminates

Loop Invariants (2)

Loop Invariants (2)

m Formulation: this is where we try to be smart

> the invariant must reflect the structure of the algorithm

> it must be the basis to prove the correctness of the solution

Loop Invariants (2)

m Formulation: this is where we try to be smart

> the invariant must reflect the structure of the algorithm

> it must be the basis to prove the correctness of the solution

m Proof of validity (i.e., that Cis indeed a loop invariant): typical proof by induction

> initialization: we must prove that
the invariant C is true before entering the loop

> maintenance: we must prove that
if Cis true at the beginning of a cycle then it remains true after one cycle

Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m The mainideaistoinsert A[i] inA[1..i— 1] so as to maintain a sorted subsequence
All..i]

Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m The mainideaistoinsert A[i] inA[1..i— 1] so as to maintain a sorted subsequence
All..i]

m Invariant: (outer loop) the subarray A[1..i — 1] consists of the elements originally in
A[l..i-1]insorted order

Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Initialization: j = 2,s0 A[1..j — 1] is the single element A[1]
> A[1] contains the original elementin A[1]

> A[1] is trivially sorted

Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Maintenance: informally, if A[1. ./ — 1] is a permutation of the original A[1../ - 1] and
A[1..i- 1] issorted (invariant), then if we enter the inner loop:

> shifts the subarray A[k .. i — 1] by one position to the right

> inserts key, which was originally in A[/] at its proper position1 < k < i— 1, in sorted order

Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that

Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that

> A[1l..i-1]isapermutation of the original A[1.../—1]
> A[1l..i-1]issorted
Given the termination condition, A[1../— 1] isthe whole A

So INSERTION-SORT is correct!

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

2. Initialization (for all valid inputs)

> prove that C holds right before the first execution of the first instruction of the loop

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

2. Initialization (for all valid inputs)

> prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

> prove that if C holds right before the first instruction of the loop, then it holds also at the end
of the loop

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

2. Initialization (for all valid inputs)
> prove that C holds right before the first execution of the first instruction of the loop
3. Management (for all valid inputs)
> prove that if C holds right before the first instruction of the loop, then it holds also at the end
of the loop
4. Termination (for all valid inputs)

> prove that the loop terminates, with some exit condition X

Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

2. Initialization (for all valid inputs)

> prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)
> prove that if C holds right before the first instruction of the loop, then it holds also at the end

of the loop
4. Termination (for all valid inputs)

> prove that the loop terminates, with some exit condition X

5. Provethat X A C = P, which meansthatAis correct

Exercise: Analyze Selection-Sort

SELECTION-SORT(A)
1 n = length(A)
2 fori=1ton-1

3 smallest = i

4 forj=i+1ton

5 if A[j] < A[smallest]
6 smallest = j

7 swap A[i] and A[smallest]

Exercise: Analyze Selection-Sort

SELECTION-SORT(A)
1 n = length(A)
2 fori=1ton-1

3 smallest = i

4 forj=i+1ton

5 if A[j] < A[smallest]
6 smallest = j

7 swap A[i] and A[smallest]

m Correctness?

> loop invariant?

m Complexity?

> worst, best, and average case?

BUBBLESORT(A)

1 fori = 1tolength(A)

2 forj = length(A) downto/ + 1
3 if A[j] <A[j - 1]

4 swap A[j] and A[j — 1]

Exercise: Analyze Bubblesort

Exercise: Analyze Bubblesort

BUBBLESORT(A)

1 fori = 1tolength(A)

2 forj = length(A) downto/ + 1
3 if A[j] <A[j - 1]

4 swap A[j] and A[j — 1]

m Correctness?

» loop invariant?

m Complexity?

> worst, best, and average case?

