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m Input: a sequence A = (a1,03,...,0,)

Output: a sequence (b1, by, ..., by) such that

> (by,b,..., bn) is a permutation of {a;,a,, ..., an)

> (by,b,..., bn) is sorted

by <b,<---< by

m Typically, Aisimplemented as an array

A=12|3(4|5|6|6|7|8]|9]|11

in-place sort

Sorting
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INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Outer loop (lines 1-5) runs exactly n — 1 times (with n = length(A))

m What about the inner loop (lines 3-5)?

> best, worst, and average case?
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INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Best case: the inner loop is never executed

» what case is this?

m Worst case: the inner loop is executed exactly j — 1 times for every iteration of the outer
loop

» what case is this?
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Complexity of INSERTION-SORT (3)

m The worst-case complexity is when the inner loop is executed exactly j — 1 times, so

T =) (-1)
j=2

T(n) is the arithmetic series Y.]_1 k, so

T(n) = ©(n*)

m Best-caseis T(n) = ©(n)

m Average-caseis T(n) = ©(n?)
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Correctness

m Does INSERTION-SORT terminate for all valid inputs?

m If so, does it satisfy the conditions of the sorting problem?

> A contains a permutation of the initial value of A

> Aissorted: A[1] < A[2] < --- < A[length(A)]

m We want a formal proof of correctness

> does not seem straightforward...
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Example 1: (straight-line program)

BIGGER(n)

1 / must return a value greater thann
2 m=n*n+1

3 returnm

Example 2: (branching)

SORTTWO(A)

1/ must sort (in-place) an array of 2 elements
2 ifA[1] > A[2]

3 t = A[1]
4 Al1] = A[2]
5 Al2] =t
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Example 3: (nested branching)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[l] > A[2]
if A[2] > A[3]
return A[1]
else return A[3]
elseif A[3] > A[2]
return A[3]
else return A[2]

w

0 ~N o b

Is this algorithm correct?

Why?
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Example 4: (second variant)

MAXTHREE(A)

1/ find the maximum value in an array of 3 elements
2 ifA[1] > A[2]
3 if A[1] > A[3]
return A[1]
else return A[3]
elseif A[2] > A[3]
return A[2]
else return A[3]

0 N o b

Is this algorithm correct?

Prove it!
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Example 5: (third variant)

MAXTHREE(q, b, ¢)

1 / find the maximum among 3 values
2 ifa>banda>c

3 return a
4 ifb>c
5 return b

6 elsereturnc

Is this algorithm correct?

Prove it!
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Main Idea

m Every execution path defines a condition on the input values: we call it path condition

m The path condition of every path must imply the correctness condition

An algorithm must be correct for every possible execution path

Problem: what happens when we have loops?
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Loop Invariants

m We formulate a loop-invariant condition C

» C must remain true through the loop

> Cisrelevant to the problem definition: we use C at the end of the loop to prove the
correctness of the result

m Then, we only need to prove that the algorithm terminates
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Loop Invariants (2)

m Formulation: this is where we try to be smart

> the invariant must reflect the structure of the algorithm

> it must be the basis to prove the correctness of the solution

m Proof of validity (i.e., that Cis indeed a loop invariant): typical proof by induction

> initialization: we must prove that
the invariant C is true before entering the loop

> maintenance: we must prove that
if Cis true at the beginning of a cycle then it remains true after one cycle



Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1




Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m The mainideaistoinsert A[i] inA[1..i— 1] so as to maintain a sorted subsequence
All..i]



Loop Invariant for INSERTION-SORT

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1
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Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Initialization: j = 2,s0 A[1..j — 1] is the single element A[1]
> A[1] contains the original elementin A[1]

> A[1] is trivially sorted
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INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Maintenance: informally, if A[1. ./ — 1] is a permutation of the original A[1../ - 1] and
A[1..i- 1] issorted (invariant), then if we enter the inner loop:

> shifts the subarray A[k .. i — 1] by one position to the right

> inserts key, which was originally in A[/] at its proper position1 < k < i— 1, in sorted order
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Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A)
1 fori = 2tolength(A)

2 j=i

3 whilej > 1and A[j — 1] > A[j]
4 swap A[j] and A[j — 1]

5 j=j-1

m Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that

> A[1l..i-1]isapermutation of the original A[1.../—1]
> A[1l..i-1]issorted
Given the termination condition, A[1../— 1] isthe whole A

So INSERTION-SORT is correct!
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Summary

m You are given a problem P and an algorithm A

» P formally defines a correctness condition
> assume, for simplicity, that A consists of one loop

1. Formulate aninvariant C

2. Initialization (for all valid inputs)

> prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)
> prove that if C holds right before the first instruction of the loop, then it holds also at the end

of the loop
4. Termination (for all valid inputs)

> prove that the loop terminates, with some exit condition X

5. Provethat X A C = P, which meansthatAis correct



Exercise: Analyze Selection-Sort

SELECTION-SORT(A)
1 n = length(A)
2 fori=1ton-1

3 smallest = i

4 forj=i+1ton

5 if A[j] < A[smallest]
6 smallest = j

7 swap A[i] and A[smallest]
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