Basics of Complexity Analysis: The RAM Model and the Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
February 23, 2023

Outline

■ Informal analysis of two Pingala algorithms
■ The random-access machine model

- Measure of complexity
- Characterizing functions with their asymptotic behavior
- Big-O, omega, and theta notations

Slow vs. Fast Pingala

■ We informally characterized our two Pingala algorithms

Slow vs. Fast Pingala

■ We informally characterized our two Pingala algorithms

- Pingala (n) is exponential in n
- Pingala-Inc (n) is linear in n

Slow vs. Fast Pingala

- We informally characterized our two Pingala algorithms
- Pingala (n) is exponential in n
- Pingala-Inc (n) is linear in n

■ How do we characterize the complexity of algorithms?

- in general

Slow vs. Fast Pingala

■ We informally characterized our two Pingala algorithms

- Pingala (n) is exponential in n
- Pingala-Inc (n) is linear in n

■ How do we characterize the complexity of algorithms?

- in general
- in a way that is specific to the algorithms
- but independent of implementation details

Slow vs. Fast Pingala

A Model of the Computer

- An informal model of the random-access machine (RAM)
- An informal model of the random-access machine (RAM)
- Basic types in the RAM model

A Model of the Computer

- An informal model of the random-access machine (RAM)
- Basic types in the RAM model
- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

A Model of the Computer

- An informal model of the random-access machine (RAM)
- Basic types in the RAM model
- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)
- Basic steps in the RAM model

A Model of the Computer

■ An informal model of the random-access machine (RAM)
■ Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)
- Basic steps in the RAM model
- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

A Model of the Computer

■ An informal model of the random-access machine (RAM)

- Basic types in the RAM model
- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)
- Basic steps in the RAM model
- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

■ A basic step in the RAM model takes a constant time

Analysis in the RAM Model

```
Pingala-Inc( \(n\) )
1 if \(n \leq 2\)
        return \(n\)
    pprev = 1
        prev \(=2\)
5 for \(i=3\) to \(n\)
        P = prev + pprev
        pprev = prev
        prev \(=P\)
    return \(P\)
```


Analysis in the RAM Model

Analysis in the RAM Model

PingALA-INC (n)	cost	times $(n>2)$	
1	if $n \leq 2$	c_{1}	1
2	return n	c_{2}	0
3	pprev $=1$	c_{3}	1
4	prev $=2$	c_{4}	1
5	for $i=3$ to n	c_{5}	$n-1$
6	$P=$ prev + pprev	c_{6}	$n-2$
7	pprev $=$ prev	c_{7}	$n-2$
8	prev $=P$	c_{8}	$n-2$
9	return P	c_{9}	1

$$
T(n)=c_{1}+c_{3}+c_{4}+c_{9}+(n-1) c_{5}+(n-2)\left(c_{6}+c_{7}+c_{8}\right)
$$

Analysis in the RAM Model

PingALA-INC (n)	cost	times $(n>2)$	
1	if $n \leq 2$	c_{1}	1
2	return n	c_{2}	0
3	pprev $=1$	c_{3}	1
4	prev $=2$	c_{4}	1
5	for $i=3$ to n	c_{5}	$n-1$
6	$P=$ prev + pprev	c_{6}	$n-2$
7	pprev $=$ prev	c_{7}	$n-2$
8	prev $=P$	c_{8}	$n-2$
9	return P	c_{9}	1

$T(n)=n C_{1}+C_{2} \quad \Rightarrow T(n)$ is a linear function of n

Complexity as a Function of the Size of the Input

- We measure the complexity of an algorithm as a function of the size of the input
- size measured in bits

Complexity as a Function of the Size of the Input

- We measure the complexity of an algorithm as a function of the size of the input
- size measured in bits
- did we do that for PingaLA-Inc?

Complexity as a Function of the Size of the Input

- We measure the complexity of an algorithm as a function of the size of the input
- size measured in bits
- did we do that for PingaLA-Inc?

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, and a value x, output TRUE if A contains x, or FALSE otherwise

Complexity as a Function of the Size of the Input

■ We measure the complexity of an algorithm as a function of the size of the input

- size measured in bits
- did we do that for PingaLA-Inc?

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, and a value x, output true if A contains x, or FALSE otherwise
$\operatorname{Find}(A, x)$
1
for $i=1$ to length (A)
2 \quad if $A[i]==x \quad$ return TRUE

Complexity as a Function of the Size of the Input

■ We measure the complexity of an algorithm as a function of the size of the input

- size measured in bits
- did we do that for PingaLA-Inc?

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, and a value x, output true if A contains x, or FALSE otherwise

```
\(\operatorname{Find}(A, x)\)
1 for \(i=1\) to length \((A)\)
2 if \(A[i]=x\)
return TRUE
4 return FALSE
```

$$
T(n)=C n
$$

Worst-Case Complexity

- In general we measure the complexity of an algorithm in the worst case

Worst-Case Complexity

- In general we measure the complexity of an algorithm in the worst case

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, output TRUE if A contains two equal values $a_{i}=a_{j}($ with $i \neq j)$

Worst-Case Complexity

- In general we measure the complexity of an algorithm in the worst case

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, output TRUE if A contains two equal values $a_{i}=a_{j}($ with $i \neq j)$

```
FindEquals(A)
1 for i=1 to length(A) - 1
for j = i+1 to length(A)
    if }A[i]==A[j
        return TRUE
    return FALSE
```


Worst-Case Complexity

■ In general we measure the complexity of an algorithm in the worst case

■ Example: given a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, output TRUE if A contains two equal values $a_{i}=a_{j}($ with $i \neq j)$

```
FindEquals(A)
for i=1 to length(A) - 1
for j = i+1 to length(A)
if if }[i]==A[j
4 return TRUE
5 return FALSE
\[
T(n)=C \frac{n(n-1)}{2}
\]
```


Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$
x=0 \text { vs. } y+z
$$

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$
x=0 \quad \text { vs. } y+z
$$

- We do not care about the specific costs of each basic step
- these costs are likely to vary significantly with languages, implementations, and processors
- so, we assume $c_{1}=c_{2}=c_{3}=\cdots=c_{i}$

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$
x=0 \text { vs. } y+z
$$

- We do not care about the specific costs of each basic step
- these costs are likely to vary significantly with languages, implementations, and processors
- so, we assume $c_{1}=c_{2}=c_{3}=\cdots=c_{i}$
- we also ignore the specific value c_{i}, and in fact we ignore every constant cost factor

Order of Growth

■ We care only about the order of growth or rate of growth of $T(n)$

Order of Growth

■ We care only about the order of growth or rate of growth of $T(n)$

- so we ignore lower-order terms
E.g., in

$$
T(n)=a n^{2}+b n+c
$$

we only consider the n^{2} term and say that $T(n)$ is a quadratic function in n

Order of Growth

■ We care only about the order of growth or rate of growth of $T(n)$

- so we ignore lower-order terms
E.g., in

$$
T(n)=a n^{2}+b n+c
$$

we only consider the n^{2} term and say that $T(n)$ is a quadratic function in n We write

$$
T(n)=\Theta\left(n^{2}\right)
$$

and say that " $T(n)$ is theta of n-squared"

Don Knuth's A-notation

■ Let $A(c)$ indicate a quantity that is absolutely at most c

Don Knuth's A-notation

- Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$
- Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots$

■ Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes a set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$
- Calculating with the A notation
- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$

■ Calculating with the A notation

- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$
- $(10+A(2))(20+A(1))=$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$

■ Calculating with the A notation

- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$
- $(10+A(2))(20+A(1))=200+A(52)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c
Example: $x=A(2)$ means that $|x| \leq 2$
■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes a set of values
- $x=A(y)$ really means $x \in A(y)$

■ Calculating with the A notation

- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$
- $(10+A(2))(20+A(1))=200+A(52)=200+A(100)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$

■ Calculating with the A notation

- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$
- $(10+A(2))(20+A(1))=200+A(52)=200+A(100)$
- $A(n-1)=A\left(n^{2}\right)$

■ Let $A(c)$ indicate a quantity that is absolutely at most c Example: $x=A(2)$ means that $|x| \leq 2$

■ When $x=A(y)$ we say that " x is absolutely at most y "

- warning: this does not mean that x equals $A(y)$!
- $A(y)$ denotes \boldsymbol{a} set of values
- $x=A(y)$ really means $x \in A(y)$

■ Calculating with the A notation

- $\pi=3.14159265 \ldots=3.14+A(0.005)$
- $A(3)+A(4)=A(7)$
- $x=A(3) \Rightarrow x=A(4)$, but $x=A(4) \Rightarrow x=A(3)$
- $A(2) A(7)=A(14)$
- $(10+A(2))(20+A(1))=200+A(52)=200+A(100)$
- $A(n-1)=A\left(n^{2}\right)$ for all n

From A to O

From A to O

- If $f(n)$ is such that $f(n)=k A(g(n))$ for all n sufficiently large and for some constant $k>0$, then we say that

$$
f(n)=O(g(n))
$$

- read " $f(n)$ is big-oh of $g(n)$ " or simply " $f(n)$ is oh of $g(n)$ "

From A to O

- If $f(n)$ is such that $f(n)=k A(g(n))$ for all n sufficiently large and for some constant $k>0$, then we say that

$$
f(n)=O(g(n))
$$

- read " $f(n)$ is big-oh of $g(n)$ " or simply " $f(n)$ is oh of $g(n)$ "

Examples:

- $3 n+2=O(n)$

■ If $f(n)$ is such that $f(n)=k A(g(n))$ for all n sufficiently large and for some constant $k>0$, then we say that

$$
f(n)=O(g(n))
$$

- read " $f(n)$ is big-oh of $g(n)$ " or simply " $f(n)$ is oh of $g(n)$ "

Examples:

- $3 n+2=O(n)$
- $2 \sqrt{n}+\log n=O\left(n^{2}\right)$
- If $f(n)$ is such that $f(n)=k A(g(n))$ for all n sufficiently large and for some constant $k>0$, then we say that

$$
f(n)=O(g(n))
$$

- read " $f(n)$ is big-oh of $g(n)$ " or simply " $f(n)$ is oh of $g(n)$ "

Examples:

- $3 n+2=O(n)$
- $2 \sqrt{n}+\log n=O\left(n^{2}\right)$
- let $T_{P I}(n)$ be the computational complexity of PingALA-INC (the efficient algorithm); then
- If $f(n)$ is such that $f(n)=k A(g(n))$ for all n sufficiently large and for some constant $k>0$, then we say that

$$
f(n)=O(g(n))
$$

- read " $f(n)$ is big-oh of $g(n)$ " or simply " $f(n)$ is oh of $g(n)$ "

Examples:

- $3 n+2=O(n)$
- $2 \sqrt{n}+\log n=O\left(n^{2}\right)$
- let $T_{P l}(n)$ be the computational complexity of PINGALA-INC (the efficient algorithm); then

$$
T_{P l}(n)=O(n)
$$

From O to Ω and Θ

■ If $f(n)=O(g(n))$ then we can also say that $g(n)$ asymptotically dominates $f(n)$, which we can also write as

$$
g(n)=\Omega(f(n))
$$

- which we read as " $g(n)$ is big-omega of $f(n)$ " of simply " $g(n)$ is omega of $f(n)$ "
- If $f(n)=O(g(n))$ then we can also say that $g(n)$ asymptotically dominates $f(n)$, which we can also write as

$$
g(n)=\Omega(f(n))
$$

- which we read as " $g(n)$ is big-omega of $f(n)$ " of simply " $g(n)$ is omega of $f(n)$ "

Examples:

- $3 n+2=\Omega(\log n)$
- If $f(n)=O(g(n))$ then we can also say that $g(n)$ asymptotically dominates $f(n)$, which we can also write as

$$
g(n)=\Omega(f(n))
$$

- which we read as " $g(n)$ is big-omega of $f(n)$ " of simply " $g(n)$ is omega of $f(n)$ "

Examples:

- $3 n+2=\Omega(\log n)$
- let $T_{P}(n)$ be the computational complexity of PINGALA (the inefficient algorithm); then

$$
T_{P}(n)=\Omega\left((1.4)^{n}\right)
$$

■ If $f(n)=O(g(n))$ then we can also say that $g(n)$ asymptotically dominates $f(n)$, which we can also write as

$$
g(n)=\Omega(f(n))
$$

- which we read as " $g(n)$ is big-omega of $f(n)$ " of simply " $g(n)$ is omega of $f(n)$ "

Examples:

- $3 n+2=\Omega(\log n)$
- let $T_{P}(n)$ be the computational complexity of PINGALA (the inefficient algorithm); then

$$
T_{P}(n)=\Omega\left((1.4)^{n}\right)
$$

- When $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$ we also write

$$
f(n)=\Theta(g(n))
$$

Characterizing Unknown Functions

\square The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Characterizing Unknown Functions

- The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of primes less than or equal to n What is the asymptotic behavior of $\pi(n)$?

Characterizing Unknown Functions

■ The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of p rimes less than or equal to n What is the asymptotic behavior of $\pi(n)$?

$$
-\pi(n)=O(n)
$$

Characterizing Unknown Functions

■ The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of p rimes less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- $\pi(n)=O(n)$
- $\pi(n)=\Omega(1)$
trivial upper bound
trivial lower bound

Characterizing Unknown Functions

■ The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of primes less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- $\pi(n)=O(n)$
- $\pi(n)=\Omega(1)$
- $\pi(n)=\Theta(n / \log n)$
trivial upper bound
trivial lower bound
non-trivial tight bound

Characterizing Unknown Functions

■ The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of primes less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- $\pi(n)=O(n)$
- $\pi(n)=\Omega(1)$
- $\pi(n)=\Theta(n / \log n)$
trivial upper bound
trivial lower bound
non-trivial tight bound

In fact, the fundamental prime number theorem says that

$$
\lim _{n \rightarrow \infty} \frac{\pi(n) \ln n}{n}=1
$$

Θ-Notation

Θ-Notation

- Given a function $g(n)$, we define the family of functions $\Theta(g(n))$

■ Given a function $g(n)$, we define the family of functions $\Theta(g(n))$

- Given a function $g(n)$, we define the family of functions $\Theta(g(n))$

- Given a function $g(n)$, we define the family of functions $\Theta(g(n))$

$$
\begin{aligned}
\Theta(g(n))=\{f(n) & : \exists c_{1}>0, \exists c_{2}>0, \exists n_{0}>0 \\
& \left.: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

■ Given a function $g(n)$, we define the family of functions $\Theta(g(n))$

Examples

- $T(n)=n^{2}+10 n+100$

Examples

■ $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$

Examples

■ $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$

■ $T(n)=n+10 \log n$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$

Examples

■ $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$

- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n}$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7}$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$
- $T(n)=\frac{10+n}{n^{2}}$

Examples

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$
- $T(n)=\frac{10+n}{n^{2}} \quad \Rightarrow T(n)=\Theta\left(\frac{1}{n}\right)$
- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$
- $T(n)=\frac{10+n}{n^{2}} \quad \Rightarrow T(n)=\Theta\left(\frac{1}{n}\right)$

■ $T(n)=$ complexity of PINGALA-INC

- $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- $T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
- $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
- $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$
- $T(n)=\frac{10+n}{n^{2}} \quad \Rightarrow T(n)=\Theta\left(\frac{1}{n}\right)$
- $T(n)=$ complexity of PINGALA-INC $\quad \Rightarrow T(n)=\Theta(n)$

■ $T(n)=n^{2}+10 n+100 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
$\square T(n)=n+10 \log n \quad \Rightarrow T(n)=\Theta(n)$
■ $T(n)=n \log n+n \sqrt{n} \quad \Rightarrow T(n)=\Theta(n \sqrt{n})$
■ $T(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow T(n)=\Theta\left(2^{\frac{n}{6}}\right)$
■ $T(n)=\frac{10+n}{n^{2}} \Rightarrow T(n)=\Theta\left(\frac{1}{n}\right)$
■ $T(n)=$ complexity of PINGALA-INC $\Rightarrow T(n)=\Theta(n)$
■ We characterize the behavior of $T(n)$ in the limit

- The Θ-notation is an asymptotic notation

O-Notation

O-Notation

- Given a function $g(n)$, we define the family of functions $O(g(n))$

O-Notation

- Given a function $g(n)$, we define the family of functions $O(g(n))$

- Given a function $g(n)$, we define the family of functions $O(g(n))$

- Given a function $g(n)$, we define the family of functions $O(g(n))$

$$
\begin{aligned}
O(g(n))=\{f(n) & : \exists c>0, \exists n_{0}>0 \\
& \left.: 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

- Given a function $g(n)$, we define the family of functions $O(g(n))$

Examples

- $f(n)=n^{2}+10 n+100$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right)$

Examples

$\square f(n)=n^{2}+10 n+100 \quad \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

Examples

$\square f(n)=n^{2}+10 n+100 \quad \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$
- $f(n)=n \log n+n \sqrt{n}$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$
- $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$
■ $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$
■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7}$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$
■ $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$
■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$

■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$
- $f(n)=\frac{10+n}{n^{2}}$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$

■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$
- $f(n)=\frac{10+n}{n^{2}} \quad \Rightarrow f(n)=O(1)$

■ $f(n)=n^{2}+10 n+100 \quad \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$
■ $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$
■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$

■ $f(n)=\frac{10+n}{n^{2}} \quad \Rightarrow f(n)=O(1)$
■ $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$

- $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$

■ $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$

- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$

■ $f(n)=\frac{10+n}{n^{2}} \quad \Rightarrow f(n)=O(1)$
■ $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$

- $f(n)=\Theta(g(n)) \wedge g(n)=O(h(n)) \Rightarrow f(n)=O(h(n))$

Examples

■ $f(n)=n^{2}+10 n+100 \Rightarrow f(n)=O\left(n^{2}\right) \quad \Rightarrow f(n)=O\left(n^{3}\right)$
■ $f(n)=n+10 \log n \quad \Rightarrow f(n)=O\left(2^{n}\right)$

- $f(n)=n \log n+n \sqrt{n} \quad \Rightarrow f(n)=O\left(n^{2}\right)$
- $f(n)=2^{\frac{n}{6}}+n^{7} \quad \Rightarrow f(n)=O\left((1.5)^{n}\right)$
- $f(n)=\frac{10+n}{n^{2}} \quad \Rightarrow f(n)=O(1)$

■ $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$
■ $f(n)=\Theta(g(n)) \wedge g(n)=O(h(n)) \Rightarrow f(n)=O(h(n))$

- $f(n)=O(g(n)) \wedge g(n)=\Theta(h(n)) \Rightarrow f(n)=O(h(n))$

Examples

- $n^{2}-10 n+100=O(n \log n)$?

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right)$?

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right)$? NO

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad$ NO
- $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right)$?

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad$ NO

■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad N O$

■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES

- $f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right)$?

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad$ NO

■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES

- $f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ?$ YES

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO

■ $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad N O$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES

- $f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ?$ YES
- $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right)$?

Examples

- $n^{2}-10 n+100=O(n \log n)$? NO

■ $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad N O$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES

- $f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ?$ YES

■ $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right) ? \quad N O$

■ $n^{2}-10 n+100=O(n \log n) ? \quad N O$
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES
$\square f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ? \quad$ YES
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $\sqrt{n}=O\left(\log ^{2} n\right)$?

■ $n^{2}-10 n+100=O(n \log n) ? \quad \mathrm{NO}$
■ $f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES
$\square f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ? \quad$ YES
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $\sqrt{n}=O\left(\log ^{2} n\right) ? \quad \mathrm{NO}$

■ $n^{2}-10 n+100=O(n \log n) ? \quad N O$
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES
$\square f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ? \quad$ YES
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $\sqrt{n}=O\left(\log ^{2} n\right) ? \quad \mathrm{NO}$

- $n^{2}+(1.5)^{n}=O\left(2^{\frac{n}{2}}\right)$?

■ $n^{2}-10 n+100=O(n \log n) ? \quad N O$
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $f(n)=\Theta\left(2^{n}\right) \Rightarrow f(n)=O\left(n^{2} 2^{n}\right) ? \quad$ YES
$\square f(n)=\Theta\left(n^{2} 2^{n}\right) \Rightarrow f(n)=O\left(2^{n+2 \log _{2} n}\right) ? \quad$ YES
$\square f(n)=O\left(2^{n}\right) \Rightarrow f(n)=\Theta\left(n^{2}\right) ? \quad \mathrm{NO}$
■ $\sqrt{n}=O\left(\log ^{2} n\right) ? \quad \mathrm{NO}$
$■ n^{2}+(1.5)^{n}=O\left(2^{\frac{n}{2}}\right) ? \quad \mathrm{NO}$

Example

■ So, what is the complexity of FindEqUALs?

FindEquaLs (A)
1 for $i=1$ to length $(A)-1$ 2 for $j=i+1$ to length (A) 3 if $A[i]==A[j]$ 4 return TRUE 5 return FALSE

■ So, what is the complexity of FindEqUALs?
FindEquals (A)

1	for $i=1$ to length $(A)-1$
2	for $j=i+1$ to length (A)
3	if $A[i]==A[j]$
4	return TRUE
5	return FALSE

$$
T(n)=\Theta\left(n^{2}\right)
$$

- $n=$ length (A) is the size of the input
- we measure the worst-case complexity

Ω-Notation

Ω-Notation

- Given a function $g(n)$, we define the family of functions $\Omega(g(n))$
- Given a function $g(n)$, we define the family of functions $\Omega(g(n))$

■ Given a function $g(n)$, we define the family of functions $\Omega(g(n))$

■ Given a function $g(n)$, we define the family of functions $\Omega(g(n))$

$$
\begin{aligned}
\Omega(g(n))=\{f(n) & : \exists c>0, \exists n_{0}>0 \\
& \left.: 0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

■ Given a function $g(n)$, we define the family of functions $\Omega(g(n))$

Θ, O, and Ω as Relations

- Theorem: for any two functions $f(n)$ and $g(n)$, $f(n)=\Omega(g(n)) \wedge f(n)=O(g(n)) \Leftrightarrow f(n)=\Theta(g(n))$

Θ, O, and Ω as Relations

- Theorem: for any two functions $f(n)$ and $g(n)$, $f(n)=\Omega(g(n)) \wedge f(n)=O(g(n)) \Leftrightarrow f(n)=\Theta(g(n))$

■ The Θ-notation, Ω-notation, and O-notation can be viewed as the "asymptotic" $=, \geq$, and \leq relations for functions, respectively

Θ, O, and Ω as Relations

- Theorem: for any two functions $f(n)$ and $g(n)$, $f(n)=\Omega(g(n)) \wedge f(n)=O(g(n)) \Leftrightarrow f(n)=\Theta(g(n))$
- The Θ-notation, Ω-notation, and O-notation can be viewed as the "asymptotic" $=, \geq$, and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$
f \geq g \wedge f \leq g \Leftrightarrow f=g
$$

Θ, O, and Ω as Relations

- Theorem: for any two functions $f(n)$ and $g(n)$, $f(n)=\Omega(g(n)) \wedge f(n)=O(g(n)) \Leftrightarrow f(n)=\Theta(g(n))$
- The Θ-notation, Ω-notation, and O-notation can be viewed as the "asymptotic" $=, \geq$, and \leq relations for functions, respectively

■ The above theorem can be interpreted as saying

$$
f \geq g \wedge f \leq g \Leftrightarrow f=g
$$

- When $f(n)=O(g(n))$ we say that $g(n)$ is an upper bound for $f(n)$, and that $g(n)$ dominates $f(n)$

Θ, O, and Ω as Relations

- Theorem: for any two functions $f(n)$ and $g(n)$, $f(n)=\Omega(g(n)) \wedge f(n)=O(g(n)) \Leftrightarrow f(n)=\Theta(g(n))$

■ The Θ-notation, Ω-notation, and O-notation can be viewed as the "asymptotic" $=, \geq$, and \leq relations for functions, respectively

- The above theorem can be interpreted as saying

$$
f \geq g \wedge f \leq g \Leftrightarrow f=g
$$

- When $f(n)=O(g(n))$ we say that $g(n)$ is an upper bound for $f(n)$, and that $g(n)$ dominates $f(n)$
- When $f(n)=\Omega(g(n))$ we say that $g(n)$ is a lower bound for $f(n)$

Θ, O, and Ω as Anonymous Functions

- We can use the Θ^{-}, O_{-}, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

Θ, O, and Ω as Anonymous Functions

- We can use the Θ^{-}, O_{-}, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

- Examples

$$
n^{2}+4 n-1=n^{2}+\Theta(n) ?
$$

Θ, O, and Ω as Anonymous Functions

- We can use the Θ^{-}, O_{-}, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ Examples

$$
n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES }
$$

Θ, O, and Ω as Anonymous Functions

- We can use the Θ^{-}, O_{-}, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ?
\end{aligned}
$$

Θ, O, and Ω as Anonymous Functions

- We can use the Θ^{-}, O_{-}, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

- Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ? \quad \mathrm{NO}
\end{aligned}
$$

Θ, O, and Ω as Anonymous Functions

- We can use the $\Theta-, O$-, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ? \quad \text { NO } \\
& n^{2}+O(n)-1=O\left(n^{2}\right) ?
\end{aligned}
$$

Θ, O, and Ω as Anonymous Functions

- We can use the $\Theta-, O$-, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ? \quad \text { NO } \\
& n^{2}+O(n)-1=O\left(n^{2}\right) ? \quad \text { YES }
\end{aligned}
$$

Θ, O, and Ω as Anonymous Functions

- We can use the $\Theta-, O$-, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

- Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ? \quad \text { NO } \\
& n^{2}+O(n)-1=O\left(n^{2}\right) ? \quad \text { YES } \\
& n \log n+\Theta(\sqrt{n})=O(n \sqrt{n}) ?
\end{aligned}
$$

Θ, O, and Ω as Anonymous Functions

- We can use the $\Theta-, O$-, and Ω-notation to represent anonymous (unknown or unsecified) functions
E.g.,

$$
f(n)=10 n^{2}+O(n)
$$

means that $f(n)$ is equal to $10 n^{2}$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ Examples

$$
\begin{aligned}
& n^{2}+4 n-1=n^{2}+\Theta(n) ? \quad \text { YES } \\
& n^{2}+\Omega(n)-1=O\left(n^{2}\right) ? \quad \text { NO } \\
& n^{2}+O(n)-1=O\left(n^{2}\right) ? \quad \text { YES }
\end{aligned}
$$

$$
n \log n+\Theta(\sqrt{n})=O(n \sqrt{n}) ? \quad \text { YES }
$$

o-Notation

- The O-notation defines an upper bound that might not be asymptotically tight
- The O-notation defines an upper bound that might not be asymptotically tight
E.g.,
$n \log n=O\left(n^{2}\right) \quad$ is not asymptotically tight
$n^{2}-n+10=O\left(n^{2}\right) \quad$ is asymptotically tight
- The O-notation defines an upper bound that might not be asymptotically tight E.g.,
$n \log n=O\left(n^{2}\right) \quad$ is not asymptotically tight
$n^{2}-n+10=O\left(n^{2}\right) \quad$ is asymptotically tight
■ We use the o-notation to denote upper bounds that are not asymtotically tight. So, given a function $g(n)$, we define the family of functions $o(g(n))$

$$
\begin{aligned}
o(g(n))=\{f(n) & : \forall c>0, \exists n_{0}>0 \\
& \left.: 0 \leq f(n)<c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

ω-Notation

■ The Ω-notation defines a lower bound that might not be asymptotically tight

■ The Ω-notation defines a lower bound that might not be asymptotically tight
E.g.,
$2^{n}=\Omega(n \log n) \quad$ is not asymptotically tight
$n+4 n \log n=\Omega(n \log n) \quad$ is asymptotically tight

■ The Ω-notation defines a lower bound that might not be asymptotically tight
E.g.,
$2^{n}=\Omega(n \log n) \quad$ is not asymptotically tight
$n+4 n \log n=\Omega(n \log n) \quad$ is asymptotically tight
\square We use the ω-notation to denote lower bounds that are not asymtotically tight. So, given a function $g(n)$, we define the family of functions $\omega(g(n))$

$$
\begin{aligned}
\omega(g(n))=\{f(n) & : \forall c>0, \exists n_{0}>0 \\
& \left.: 0 \leq c g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

$$
L
$$

