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Problems

m Aproblem Qs a binary relation between a set / of instances and a set S of solutions

m A concrete problem Q is one where / and S are the set of binary strings {0, 1}*

> for all practical purposes, instances and solutions can be encoded as binary strings (i.e.,
mapped into {0, 1}*)
> we consider only sensible encodings...
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m Adecision problem Q is one where the set of solutions is S = {0, 1}

Example:

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101

A A A

HOMH,OOOHKHKH OK OKF +=O

Primality Testing |
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Decision vs. Optimization: Example

m Shortest path in a graph
IG =V =A{ab,c...},E= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

> input: a graph G, a source vertex (a), and a destination vertex (z)
> output: a sequence of vertexesa, ¢, ...,z

m Shortest path as a decision problem
IG =V =A{ab,c..},E={(a,0),...}),a,z 10|—>|£

instance I solution I

> input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
> output: 1if thereis a path of (at most) the given length
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Decision vs. Optimization

m We focus on decision problems only

m An optimization problem is at least as hard as its corresponding decision problem

> having a solution to the optimization gives an immediate solution to the decision problem

m An optimization problem is not much harder than the corresponding decision problem
> having a solution to the decision problem does not give an immediate solution to the
optimization problem

> but we can typically use the decision problem as a subroutine in some kind of (binary)
search to solve the corresponding optimization problem
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m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

> shortest path (decision variant)—Dijkstra’s algorithm
> primality—a relatively recent theoretical result...
> in2002: Agrawal, Kayal, and Saxena from IIT Kanpur
> Neeraj Kayal and Nitin Saxena were Bachelor students!
> parsing a Java program
> ...
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Verifying is Easy

m Example: Vertex cover (decision variant)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

K =6?
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Polynomial-Time Verification

m We might not know how to solve a problem in polynomial-time

problem instance wp ? e «» yes/no (solution)

m But we might know how to verify a given solution in polynomial-time

problem instance e o|y-time

: « o« » valid/invalid
“certificate” for a “yes” solution algorithm /

m Examples

> longest path (decision variant)
> knapsack (decision variant)
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m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

m NP does not mean non-polynomial!

> it means “non-deterministic polynomial”

m polynomial-time solvable = polynomial-time verifiable

PCNP
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The Big Open Question

?
m polynomial-time verifiable = polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

m Most theoretical computing scientists believe that P # NP

Finding a solution to a problem is believed to be inherently more difficult
than verifying a given solution (or a proof of a solution)

... but nobody has been able to prove that this is the case!
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m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z)—)0

m SAT € NP?

> yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

m SAT € P?

» we don’t know
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m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

m VC € NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

m VC e P? Wedon’'t know
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m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q |

?

e o3 solution

poly-time
algorithm

instance of Q'

l

- solution

> aninstance g of Q is transformed into an instance g’ of Q' through a polynomial-time

algorithm

> the solution to g is 1if and only if the solutionto ¢’ is 1
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Reduction (2)

m Solution by polynomial-time reductions to a solvable problem

instance of Q
|

L]

poly-time
algorithm Ag

I—) A - 50[UtiON

> if Ais polynomial-time, then of Ag is also polynomial time
> thereforeifQ’ € P,thenQ e P
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Example: 2-CNF-SAT

2-CNF-SAT problem
Input:

> fisaBoolean formula of n (Boolean) variables x1, x3, ..., X,

» fisin conjunctive normal form (CNF),sof = C; ACa A -+- A Cy

> every clause C; of f contains exactly two literals (a variable or its negation)
Output: 1 iff f is satisfiable

> thereis an assignment of variables that satisfies f

Example:
(Xl Vv ﬁX3) A (ﬂX2 VX3) A (ﬁXl Vv —lX3) A (X]_ \/Xz)
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2-CNF-SAT to Implicative Form

m Consider each clause C;

(avb)=(-a=b)=(-b=>a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

m Example:
(x1V3) A (X2 V X3)

is equivalent to

(~x1 = —x3) A (X3 = X1) A (2 = X3) A (—X3 = —x2)
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2-CNF-SAT to Graph Reachability

(X1 Vx3) N (X2 VX3) A (mx1 V —x3) A (X1 V Xp)

un
| (=x1 = =x3) A (X3 = x1) I’\ (X2 = X3) A (=X3 = —X2)A
(X1 = ~x3) A (X3 = ~x1) A (2x1 = X) A (—xe = X1)

)
) ©,




2-CNF-SAT to Graph Reachability

(=Xx1 V =x3) A (X1 V X2)

(X1 V —x3) /1 (=x2 V X3)
I

(=x1 = —X3) A (X3 = Xx1) A (X2 = X3) A (X3 = ﬁxzw\
(1= =x3) A (3 = —x1) A (X1 = X2) A (X2 = x1)
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2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 Vx3) A (=x1 V —x3) N\ (X1 V X)

U

(ﬂXl = ﬂX3) A (X3 = Xl) A (Xz = X3) A\ (ﬂX3 = ﬂXz)/\

(00 = =) A 0 = ) (v =) A (7 = x)

X1 X3

X1 X3




2-CNF-SAT to Graph Reachability

(1 V ~%5) A (42 V x3) A (1 V x3)
un
(=x1= 3) A (X3 = x1) A 2 = X3) A (2X3 = XA
(1= x3) A (6 = ) A (1 = ) A (o = ) |

X1 / X3
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2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 V X3) A (=x1 V —x3) A (X1 V X)

un
(ﬁXl = ﬂX3) A (X3 = X]_) A\ (X2 = X3) A (ﬂX3 = ﬂXz)/\
(X1 = —x3) A (X3 = =x1) A (X1 = X2) A (=X = x1)

X1 X3

not satisfiable
if and only if
Xi ™~ X~ X

for some i
X1 X3

depth-first search
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m 2-CNF-SAT e P

Reduction of 2-CNF-SAT

e o3 solution

instance of 2-CNF-SAT == ?
poly-time
algorithm
instance of “reachability” e DFS

l

- solution
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NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

m Aproblem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to Q'
m Aproblem Q" is NP-complete if Q' € NP and Q’ is NP-hard
m If Q" is NP-hard and polynomial-time reducible to Q”, then Q" is NP-hard

m If Q" is NP-hard and polynomial-time solvable, then P = NP
> most researchers believe that there is no such Q’
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The First NP-Complete Problem

m |s there any NP-complete problem?

polynomial-time

. - SAT
reduction

any problem Q € NP e

m Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since
SAT € NP, also NP-complete

m Many other problems were then proved NP-complete through polynomial reductions

> e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)
> therefore, Vertex Cover is also NP-complete

m If a problem is NP-Hard (or NP-Complete) you should not feel so bad for not finding an
efficient solution algorithm



