Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

May 30, 2023

Outline

m Basic complexity classes
m Polynomial reductions

m NP-completeness

Polynomial Time

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?

T(n) = n?

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?

T(n) = n? Yes

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?

T(n) = n? Yes
T(n)=n3>-2n%*-5

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?

T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes

T(n) = Vn!

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes

T(n) = Vn! No

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No

T(n)=n"+7"

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No

T(n)=n"+7" No

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No

T(n)=n"+77"

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No

T(n)=n"+77" Yes

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No
T(n)=n"+77" Yes

T(n)=5

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No
T(n)=n"+77" Yes

T(n)=5 Yes

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No
T(n)=n"+77" Yes
T(n)=5 Yes

T(n)=n"T.2"7

Polynomial Time

m A polynomial-time algorithm is one whose worst-case running time T(n), on an input of
size n bits, is O(n¥) for some constant k

m Examples: algorithm A has a running time T(n); is A a polynomial-time algorithm?

T(n) polynomial-time?
T(n) = n? Yes
T(n)=n3>-2n%*-5 Yes
T(n) = Vn! No
T(n)=n"+7" No
T(n)=n"+77" Yes
T(n)=5 Yes

T(n)=n"T.2"7 No

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) 0(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) 0(n)
BINARY-SEARCH

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) 0(n)
BINARY-SEARCH O(logn)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)

TREE-MINIMUM

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)

TREE-MINIMUM 0O(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)

RB-INSERT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)

RB-INSERT O(logn)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)

INORDER-TREE-WALK

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)

INORDER-TREE-WALK 0(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)

INSERTION-SORT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)

INSERTION-SORT 0(n?)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)
INSERTION-SORT 0(n?)

HEAPSORT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)
INSERTION-SORT 0(n?)

HEAPSORT O(nlogn)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)
INSERTION-SORT 0(n?)
HEAPSORT O(nlogn)

EDIT-DISTANCE

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)
INSERTION-SORT 0(n?)
HEAPSORT O(nlogn)

EDIT-DISTANCE 0(n?)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time
FIND (sequential) 0(n)
BINARY-SEARCH O(logn)
TREE-MINIMUM 0O(n)
RB-INSERT O(logn)
INORDER-TREE-WALK 0(n)
INSERTION-SORT 0(n?)
HEAPSORT O(nlogn)

EDIT-DISTANCE 0(n?)

Polynomial vs. Super-Polynomial: Examples

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets super-polynomial: ©(2")

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets super-polynomial: ©(2")
all permutations

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)

all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)

all trees

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)

all trees super-polynomial: ©(n"?)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)
all trees super-polynomial: ©(n"~?)
all complete tours

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)
all trees super-polynomial: ©(n"?)
all complete tours super-polynomial: ©(n!)

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)
all trees super-polynomial: ©(n"?)
all complete tours super-polynomial: ©(n!)
all cuts

Polynomial vs. Super-Polynomial: Examples

m You have n objects
all pairs polynomial: ©(n?)
all triples polynomial: ©(n?)
all k-tuples for a fixed k polynomial: ©(n*)
all subsets super-polynomial: ©(2")
all permutations super-polynomial: ©(n!)

m You have a graph over n vertexes
all edges polynomial: ©(n?)
all trees super-polynomial: ©(n"?)
all complete tours super-polynomial: ©(n!)
all cuts super-polynomial: ©(2")

polynomial = good

super-polynomial = bad

Problems

Problems

m Aproblem Qs a binary relation between a set / of instances and a set S of solutions

Problems

m Aproblem Qs a binary relation between a set / of instances and a set S of solutions

m A concrete problem Q is one where / and S are the set of binary strings {0, 1}*

> for all practical purposes, instances and solutions can be encoded as binary strings (i.e.,
mapped into {0, 1}*)
> we consider only sensible encodings...

Decision Problems

Decision Problems

m Adecision problem Q is one where the set of solutions is S = {0, 1}

Decision Problems

m Adecision problem Q is one where the set of solutions is S = {0, 1}

Example:

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101

A A A

HF O OO0k, OKOK M O

Decision Problems

m Adecision problem Q is one where the set of solutions is S = {0, 1}

Example:

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101

A A A

HOMH,OOOHKHKH OK OKF +=O

Primality Testing |

Decision vs. Optimization: Example

Decision vs. Optimization: Example

m Shortest pathin a graph

G=WV=A{ab,c,...},E={(a,0,...}),a,z— a,c,...,z

Decision vs. Optimization: Example

m Shortest path in a graph

IG: (V=A{ab,c,...}LLE= {(a,c),...}),a,z|—>a,c,...,z

instance I

Decision vs. Optimization: Example

m Shortest path in a graph

IG: (V=A{ab,c,...}LLE= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

Decision vs. Optimization: Example

m Shortest path in a graph
IG =V =A{ab,c...},E= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

> input: a graph G, a source vertex (a), and a destination vertex (z)
> output: a sequence of vertexesa, ¢, ...,z

Decision vs. Optimization: Example

m Shortest path in a graph
IG =V =A{ab,c...},E= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

> input: a graph G, a source vertex (a), and a destination vertex (z)
> output: a sequence of vertexesa, ¢, ...,z

m Shortest path as a decision problem

G=V=A{ab,c..},E={(a0),...}),0,210—1

Decision vs. Optimization: Example

m Shortest path in a graph
IG =V =A{ab,c...},E= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

> input: a graph G, a source vertex (a), and a destination vertex (z)
> output: a sequence of vertexesa, ¢, ...,z

m Shortest path as a decision problem
IG =V =A{ab,c..},E={(a,0),...}),a,z 10|—> 1

instance I

Decision vs. Optimization: Example

m Shortest path in a graph
IG =V =A{ab,c...},E= {(a,c),...}),a,zl—>|a,c,...,zI

instance I solution I

> input: a graph G, a source vertex (a), and a destination vertex (z)
> output: a sequence of vertexesa, ¢, ...,z

m Shortest path as a decision problem
IG =V =A{ab,c..},E={(a,0),...}),a,z 10|—>|£

instance I solution I

> input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
> output: 1if thereis a path of (at most) the given length

Decision vs. Optimization

Decision vs. Optimization

m We focus on decision problems only

Decision vs. Optimization

m We focus on decision problems only

m An optimization problem is at least as hard as its corresponding decision problem

> having a solution to the optimization gives an immediate solution to the decision problem

Decision vs. Optimization

m We focus on decision problems only

m An optimization problem is at least as hard as its corresponding decision problem

> having a solution to the optimization gives an immediate solution to the decision problem

m An optimization problem is not much harder than the corresponding decision problem

Decision vs. Optimization

m We focus on decision problems only

m An optimization problem is at least as hard as its corresponding decision problem

> having a solution to the optimization gives an immediate solution to the decision problem

m An optimization problem is not much harder than the corresponding decision problem
> having a solution to the decision problem does not give an immediate solution to the
optimization problem

> but we can typically use the decision problem as a subroutine in some kind of (binary)
search to solve the corresponding optimization problem

The Complexity Class P

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

» shortest path (decision variant)

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

> shortest path (decision variant)—Dijkstra’s algorithm

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

> shortest path (decision variant)—Dijkstra’s algorithm
> primality

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

> shortest path (decision variant)—Dijkstra’s algorithm

> primality—a relatively recent theoretical result...

> in2002: Agrawal, Kayal, and Saxena from IIT Kanpur
> Neeraj Kayal and Nitin Saxena were Bachelor students!

The Complexity Class P

m A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

m Examples

> shortest path (decision variant)—Dijkstra’s algorithm
> primality—a relatively recent theoretical result...
> in2002: Agrawal, Kayal, and Saxena from IIT Kanpur
> Neeraj Kayal and Nitin Saxena were Bachelor students!
> parsing a Java program
> ...

Verifying is Easy

Verifying is Easy

m Example: Vertex cover (decision variant)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

Verifying is Easy

m Example: Vertex cover (decision variant)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

K=17

Verifying is Easy

m Example: Vertex cover (decision variant)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

Verifying is Easy

m Example: Vertex cover (decision variant)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

K =6?

Polynomial-Time Verification

Polynomial-Time Verification

m We might not know how to solve a problem in polynomial-time

problem instance wp ? e «» yes/no (solution)

Polynomial-Time Verification

m We might not know how to solve a problem in polynomial-time

problem instance ey

?

e ¢ » yes/no (solution)

m But we might know how to verify a given solution in polynomial-time

problem instance i

“certificate” for a “yes” solution

poly-time
algorithm

e o » valid/invalid

Polynomial-Time Verification

m We might not know how to solve a problem in polynomial-time

problem instance wp ? e «» yes/no (solution)

m But we might know how to verify a given solution in polynomial-time

problem instance e o|y-time

: « o« » valid/invalid
“certificate” for a “yes” solution algorithm /

m Examples

> longest path (decision variant)
> knapsack (decision variant)

The Complexity Class NP

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A

» for each instance x € I that has a “yes” solution (Q(x) = 1)

> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

m NP does not mean non-polynomial!

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

m NP does not mean non-polynomial!

> it means “non-deterministic polynomial”

The Complexity Class NP

m A concrete decision problem Q is polynomial-time verifiable if

> thereis a polynomial-time algorithm A
» for each instance x € I that has a “yes” solution (Q(x) = 1)
> thereis a certificate y of polynomial-size |y| = O(|x|%), for some constant ¢
> suchthatA(x,y) =1
A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

m NP does not mean non-polynomial!

> it means “non-deterministic polynomial”

m polynomial-time solvable = polynomial-time verifiable

PCNP

The Big Open Question

The Big Open Question

m polynomial-time verifiable :?> polynomial-time solvable

The Big Open Question

m polynomial-time verifiable :?> polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

The Big Open Question

m polynomial-time verifiable :?> polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

The Big Open Question

?
m polynomial-time verifiable = polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

m Most theoretical computing scientists believe that P # NP

The Big Open Question

?
m polynomial-time verifiable = polynomial-time solvable

m Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

m Most theoretical computing scientists believe that P # NP

Finding a solution to a problem is believed to be inherently more difficult
than verifying a given solution (or a proof of a solution)

... but nobody has been able to prove that this is the case!

Example: SAT

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples

> —|X/\(—|yV—|Z)/\—|Z/\(XVy)

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples

> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> XVYV2OAKXV-aYy)AYV=2)A(ZV-x)A(=xVayV=z)

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z)—)0

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z)—)0

m SAT € NP?

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z)—)0

m SAT € NP?

> yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)
> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z) — 0
m SAT € NP?
> yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the

formula is satisfiable

m SAT € P?

Example: SAT

m Satisfiability problem (SAT)

» Input: a Boolean formula of n (Boolean) variables x1, x, ..., Xy

> Output: 1iff there is an assignment of variables that satisfies the formula

m Examples
> xA(myV-2)A-ZA(xVYy)—1 (x=0,y=1,z=0)

> (XVyVZ)A(XV—!y)/\(yV—|Z)/\(ZV—|X)/\(—|XV—|yV—|Z)—)0

m SAT € NP?

> yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

m SAT € P?

» we don’t know

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

m VC € NP?

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

m VC € NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

m VC € NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

mVCeP?

Example: Vertex Cover

m Vertex cover (VC)
> Input: Agraph G = (V, E) and a number K

> Output: 1, if there is set S of at most k vertices such that for every edge e = (u,v) € E,u € Sor
v € S (or both); 0 otherwise

m VC € NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

m VC e P? Wedon’'t know

Reduction

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q | ? e o3 solution

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q |

?

e o » solution

instance of Q'

- solution

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q |

?

e o » solution

poly-time
algorithm

instance of Q'

- solution

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q |

?

e o » solution

poly-time
algorithm

instance of Q'

- solution

> aninstance g of Q is transformed into an instance g’ of Q' through a polynomial-time

algorithm

Reduction

m In our theory of complexity, we want to argue that problem Q’ is just as hard as problem Q

m We do that with polynomial-time reductions

instance of Q |

?

e o3 solution

poly-time
algorithm

instance of Q'

l

- solution

> aninstance g of Q is transformed into an instance g’ of Q' through a polynomial-time

algorithm

> the solution to g is 1if and only if the solutionto ¢’ is 1

Reduction (2)

Reduction (2)

m Solution by polynomial-time reductions to a solvable problem

instance of Q

poly-time
algorithm

I—) A - 50/UtioN

Reduction (2)

m Solution by polynomial-time reductions to a solvable problem

instance of Q
|

L]

poly-time
algorithm Ag

I—) A - 50[UtiON

Reduction (2)

m Solution by polynomial-time reductions to a solvable problem

instance of Q
|

L]

poly-time
algorithm Ag

I—) A - 50[UtiON

> if Ais polynomial-time, then of Ag is also polynomial time

Reduction (2)

m Solution by polynomial-time reductions to a solvable problem

instance of Q
|

L]

poly-time
algorithm Ag

I—) A - 50[UtiON

> if Ais polynomial-time, then of Ag is also polynomial time
> thereforeifQ’ € P,thenQ e P

Example: 2-CNF-SAT

Example: 2-CNF-SAT

2-CNF-SAT problem
Input:

> fisaBoolean formula of n (Boolean) variables x1, x3, ..., X,

» fisin conjunctive normal form (CNF),sof = C; ACa A -+- A Cy

> every clause C; of f contains exactly two literals (a variable or its negation)
Output: 1 iff f is satisfiable

> thereis an assignment of variables that satisfies f

Example:
(Xl Vv ﬁX3) A (ﬂX2 VX3) A (ﬁXl Vv —lX3) A (X]_ \/Xz)

2-CNF-SAT to Implicative Form

2-CNF-SAT to Implicative Form

m Consider each clause C;

(avb)=(-a=b)=(-b=>a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

m Example:
(x1V3) A (X2 V X3)

2-CNF-SAT to Implicative Form

m Consider each clause C;

(avb)=(-a=b)=(-b=>a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

m Example:
(x1V3) A (X2 V X3)

is equivalent to

(~x1 = —x3) A (X3 = X1) A (2 = X3) A (—X3 = —x2)

2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 V X3) A (=x1 V —x3) A (X1 V X)

2-CNF-SAT to Graph Reachability

(X1 V =x3) A (X2 Vx3) A (=x1 V —x3) A (X1 V x2)
un
(ﬂXl = ﬂX3) A (X3 = Xl) A\ (Xz = X3) A\ (ﬂX3 = ﬂXz)/\
(X1 = —x3) A (X3 = =x1) A (X1 = X2) A (=X = x1)

2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 V X3) A (=x1 V —x3) A (X1 V X)

un
(ﬂXl = ﬂX3) A (X3 = Xl) A\ (Xz = X3) A\ (ﬂX3 = ﬂXz)/\
(X1 = —x3) A (X3 = =x1) A (X1 = X2) A (=X = x1)

)
))

))
)

2-CNF-SAT to Graph Reachability

(X1 Vx3) N (X2 VX3) A (mx1 V —x3) A (X1 V Xp)

un
| (=x1 = =x3) A (X3 = x1) I’\ (X2 = X3) A (=X3 = —X2)A
(X1 = ~x3) A (X3 = ~x1) A (2x1 = X) A (—xe = X1)

)
) ©,

2-CNF-SAT to Graph Reachability

(=Xx1 V =x3) A (X1 V X2)

(X1 V —x3) /1 (=x2 V X3)
I

(=x1 = —X3) A (X3 = Xx1) A (X2 = X3) A (X3 = ﬁxzw\
(1= =x3) A (3 = —x1) A (X1 = X2) A (X2 = x1)

-6

@ “
o

2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 Vx3) A (=x1 V —x3) N\ (X1 V X)

U

(ﬂXl = ﬂX3) A (X3 = Xl) A (Xz = X3) A\ (ﬂX3 = ﬂXz)/\

(00 = =) A 0 =) (v =) A (7 = x)

X1 X3

X1 X3

2-CNF-SAT to Graph Reachability

(1 V ~%5) A (42 V x3) A (1 V x3)
un
(=x1= 3) A (X3 = x1) A 2 = X3) A (2X3 = XA
(1= x3) A (6 =) A (1 =) A (o =) |

X1 / X3

X1 N\ X3

2-CNF-SAT to Graph Reachability

(X1 V =x3) A (X2 Vx3) A (=x1 V —x3) A (X1 V x2)
un
(ﬂXl = ﬂX3) A (X3 = Xl) A\ (Xz = X3) A\ (ﬂX3 = ﬂXz)/\
(X1 = —x3) A (X3 = =x1) A (X1 = X2) A (=X = x1)

X X
1 3 not satisfiable

if and only if
Xi ™ Xj ~ Xj

for some
=X —X3

2-CNF-SAT to Graph Reachability

(X1 V—x3) A (X2 V X3) A (=x1 V —x3) A (X1 V X)

un
(ﬁXl = ﬂX3) A (X3 = X]_) A\ (X2 = X3) A (ﬂX3 = ﬂXz)/\
(X1 = —x3) A (X3 = =x1) A (X1 = X2) A (=X = x1)

X1 X3

not satisfiable
if and only if
Xi ™~ X~ X

for some i
X1 X3

depth-first search

Reduction of 2-CNF-SAT

Reduction of 2-CNF-SAT

m 2-CNF-SAT e P

instance of 2-CNF-SAT s 7 e o3 solution

Reduction of 2-CNF-SAT

m 2-CNF-SAT e P

instance of 2-CNF-SAT i 7 e o3 solution

poly-time
algorithm

instance of “reachability”

m 2-CNF-SAT e P

Reduction of 2-CNF-SAT

e o » solution

instance of 2-CNF-SAT == ?
poly-time
algorithm
instance of “reachability” e DFS

- solution

m 2-CNF-SAT e P

Reduction of 2-CNF-SAT

e o3 solution

instance of 2-CNF-SAT == ?
poly-time
algorithm
instance of “reachability” e DFS

l

- solution

NP-Completeness

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

m Aproblem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to Q'

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

m Aproblem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to Q'

m Aproblem Q" is NP-complete if Q' € NP and Q’ is NP-hard

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

m Aproblem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to Q'
m Aproblem Q" is NP-complete if Q' € NP and Q’ is NP-hard

m If Q" is NP-hard and polynomial-time reducible to Q”, then Q" is NP-hard

NP-Completeness

m Aproblem Q is polynomial-time reducible to another problem Q’ if there is a
polynomial-time reduction

> apolynomial-time algorithm transforms every instance g of Q into an instance ¢’ of ¢’
> the solution to g is 1if and only if the solutionto ¢’ is 1

m Aproblem Q' is NP-hard if all problems Q € NP are polynomial-time reducible to Q'
m Aproblem Q" is NP-complete if Q' € NP and Q’ is NP-hard
m If Q" is NP-hard and polynomial-time reducible to Q”, then Q" is NP-hard

m If Q" is NP-hard and polynomial-time solvable, then P = NP
> most researchers believe that there is no such Q’

The First NP-Complete Problem

The First NP-Complete Problem

m |s there any NP-complete problem?

polynomial-time

any problem Q € NP e reduction

pr—- 77

The First NP-Complete Problem

m |s there any NP-complete problem?

polynomial-time

any problem Q € NP e reduction

- SAT

m Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since
SAT € NP, also NP-complete

The First NP-Complete Problem

m |s there any NP-complete problem?

polynomial-time

. - SAT
reduction

any problem Q € NP e

m Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since
SAT € NP, also NP-complete

m Many other problems were then proved NP-complete through polynomial reductions

> e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)
> therefore, Vertex Cover is also NP-complete

The First NP-Complete Problem

m |s there any NP-complete problem?

polynomial-time

. - SAT
reduction

any problem Q € NP e

m Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since
SAT € NP, also NP-complete

m Many other problems were then proved NP-complete through polynomial reductions

> e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)
> therefore, Vertex Cover is also NP-complete

m If a problem is NP-Hard (or NP-Complete) you should not feel so bad for not finding an
efficient solution algorithm

