
Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 30, 2023

Outline

Basic complexity classes

Polynomial reductions

NP-completeness

Polynomial Time

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n!

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n Yes

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n Yes

T (n) = 5

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n Yes

T (n) = 5 Yes

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n Yes

T (n) = 5 Yes

T (n) = n−7 · 2n/7

Polynomial Time

A polynomial-time algorithm is one whose worst-case running time T (n), on an input of
size n bits, is O(nk) for some constant k

Examples: algorithm A has a running time T (n); is A a polynomial-timealgorithm?

T (n) polynomial-time?

T (n) = n2 Yes

T (n) = n3 − 2n2 − 5 Yes

T (n) =
√
n! No

T (n) = n7 + 7n No

T (n) = n7 + 7−n Yes

T (n) = 5 Yes

T (n) = n−7 · 2n/7 No

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)
HEAPSORT

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)
HEAPSORT O(n log n)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)
HEAPSORT O(n log n)
EDIT-DISTANCE

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)
HEAPSORT O(n log n)
EDIT-DISTANCE O(n2)

Examples of Polynomial-Time Algorithms

Algorithm worst-case running time

FIND (sequential) O(n)
BINARY-SEARCH O(log n)
TREE-MINIMUM O(n)
RB-INSERT O(log n)
INORDER-TREE-WALK O(n)
INSERTION-SORT O(n2)
HEAPSORT O(n log n)
EDIT-DISTANCE O(n2)
. . .

Polynomial vs. Super-Polynomial: Examples

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)
all complete tours

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)
all complete tours super-polynomial: Θ(n!)

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)
all complete tours super-polynomial: Θ(n!)
all cuts

Polynomial vs. Super-Polynomial: Examples

You have n objects

all pairs polynomial: Θ(n2)
all triples polynomial: Θ(n3)
all k-tuples for a fixed k polynomial: Θ(nk)
all subsets super-polynomial: Θ(2n)
all permutations super-polynomial: Θ(n!)

You have a graph over n vertexes

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)
all complete tours super-polynomial: Θ(n!)
all cuts super-polynomial: Θ(2n)

polynomial ≡ good

super-polynomial ≡ bad

Problems

Problems

A problem Q is a binary relation between a set I of instances and a set S of solutions

I S

Problems

A problem Q is a binary relation between a set I of instances and a set S of solutions

I S

A concrete problem Q is one where I and S are the set of binary strings {0, 1}∗
◮ for all practical purposes, instances and solutions can be encoded as binary strings (i.e.,
mapped into {0, 1}∗)

◮ we consider only sensible encodings. . .

Decision Problems

Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
1100 −→ 0
1101 −→ 1
. . .

Decision Problems

A decision problem Q is one where the set of solutions is S = {0, 1}

Example:
1 −→ 0
10 −→ 1
11 −→ 1
100 −→ 0
101 −→ 1
110 −→ 0
111 −→ 1
1000 −→ 0
1001 −→ 0
1010 −→ 0
1011 −→ 1
1100 −→ 0
1101 −→ 1
. . .

Primality Testing

Decision vs. Optimization: Example

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance solution

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance solution

◮ input: a graph G, a source vertex (a), and a destination vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance solution

◮ input: a graph G, a source vertex (a), and a destination vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Shortest path as a decision problem

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z, 10 −→ 1

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance solution

◮ input: a graph G, a source vertex (a), and a destination vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Shortest path as a decision problem

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z, 10 −→ 1

instance

Decision vs. Optimization: Example

Shortest path in a graph

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z −→ a, c, . . . , z

instance solution

◮ input: a graph G, a source vertex (a), and a destination vertex (z)
◮ output: a sequence of vertexes a, c, . . . , z

Shortest path as a decision problem

G = (V = {a, b, c, . . .}, E = {(a, c), . . .}), a, z, 10 −→ 1

instance solution

◮ input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
◮ output: 1 if there is a path of (at most) the given length

Decision vs. Optimization

Decision vs. Optimization

We focus on decision problems only

Decision vs. Optimization

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision problem

◮ having a solution to the optimization gives an immediate solution to the decision problem

Decision vs. Optimization

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision problem

◮ having a solution to the optimization gives an immediate solution to the decision problem

An optimization problem is not much harder than the corresponding decision problem

Decision vs. Optimization

We focus on decision problems only

An optimization problem is at least as hard as its corresponding decision problem

◮ having a solution to the optimization gives an immediate solution to the decision problem

An optimization problem is not much harder than the corresponding decision problem

◮ having a solution to the decision problem does not give an immediate solution to the
optimization problem

◮ but we can typically use the decision problem as a subroutine in some kind of (binary)
search to solve the corresponding optimization problem

The Complexity Class P

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .
◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!

The Complexity Class P

A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time
algorithm A that solves it

The complexity class P is the set of all concrete
decision problems that are polynomial-time solvable

Examples

◮ shortest path (decision variant)—Dijkstra’s algorithm

◮ primality—a relatively recent theoretical result. . .
◮ in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
◮ Neeraj Kayal and Nitin Saxena were Bachelor students!

◮ parsing a Java program

◮ . . .

Verifying is Easy

Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

Verifying is Easy

Example: Vertex cover (decision variant)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 6?

a b c d

e f g h

i j k ℓ

Polynomial-Time Verification

Polynomial-Time Verification

Wemight not know how to solve a problem in polynomial-time

problem instance ? yes/no (solution)

Polynomial-Time Verification

Wemight not know how to solve a problem in polynomial-time

problem instance ? yes/no (solution)

But wemight know how to verify a given solution in polynomial-time

problem instance poly-time
algorithm“certificate” for a “yes” solution

valid/invalid

Polynomial-Time Verification

Wemight not know how to solve a problem in polynomial-time

problem instance ? yes/no (solution)

But wemight know how to verify a given solution in polynomial-time

problem instance poly-time
algorithm“certificate” for a “yes” solution

valid/invalid

Examples

◮ longest path (decision variant)

◮ knapsack (decision variant)

The Complexity Class NP

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

◮ it means “non-deterministic polynomial”

The Complexity Class NP

A concrete decision problem Q is polynomial-time verifiable if
◮ there is a polynomial-time algorithm A
◮ for each instance x ∈ I that has a “yes” solution (Q(x) = 1)
◮ there is a certificate y of polynomial-size |y | = O(|x |c), for some constant c
◮ such that A(x, y) = 1

A(x, y) verifies in polynomial time that y proves that Q(x) = 1

The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable

NP does not mean non-polynomial!

◮ it means “non-deterministic polynomial”

polynomial-time solvable =⇒ polynomial-time verifiable

P ⊆ NP

The Big Open Question

The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

Most theoretical computing scientists believe that P , NP

The Big Open Question

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Or are there problems for which there is a polynomial-time verification algorithm but
there are no polynomial-time algorithms to find solutions?

P = NP?

Most theoretical computing scientists believe that P , NP

Finding a solution to a problem is believed to be inherently more difficult

than verifying a given solution (or a proof of a solution)

. . .but nobody has been able to prove that this is the case!

Example: SAT

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y)

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z)

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

SAT ∈ P?

Example: SAT

Satisfiability problem (SAT)

◮ Input: a Boolean formula of n (Boolean) variables x1, x2, . . . , xn

◮ Output: 1 iff there is an assignment of variables that satisfies the formula

Examples

◮ ¬x ∧ (¬y ∨ ¬z) ∧ ¬z ∧ (x ∨ y) −→ 1 (x = 0, y = 1, z = 0)
◮ (x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬x) ∧ (¬x ∨ ¬y ∨ ¬z) −→ 0

SAT ∈ NP?
◮ yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the
formula is satisfiable

SAT ∈ P?
◮ we don’t know

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

VC ∈ NP?

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

VC ∈ NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

VC ∈ NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

VC ∈ P?

Example: Vertex Cover

Vertex cover (VC)

◮ Input: A graph G = (V, E) and a number K
◮ Output: 1, if there is set S of at most k vertices such that for every edge e = (u, v) ∈ E, u ∈ S or
v ∈ S (or both); 0 otherwise

K = 7

a b c d

e f g h

i j k ℓ

VC ∈ NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

VC ∈ P? We don’t know

Reduction

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

We do that with polynomial-time reductions

instance of Q ? solution

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

◮ an instance q of Q is transformed into an instance q′ of Q′ through a polynomial-time
algorithm

Reduction

In our theory of complexity, we want to argue that problem Q′ is just as hard as problem Q

We do that with polynomial-time reductions

instance of Q ? solution

instance of Q′ A solution

poly-time
algorithm

=

◮ an instance q of Q is transformed into an instance q′ of Q′ through a polynomial-time
algorithm

◮ the solution to q is 1 if and only if the solution to q′ is 1

Reduction (2)

Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

◮ if A is polynomial-time, then of AQ is also polynomial time

Reduction (2)

Solution by polynomial-time reductions to a solvable problem

instance of Q

A solution

poly-time
algorithm

AQ

◮ if A is polynomial-time, then of AQ is also polynomial time

◮ therefore ifQ′ ∈ P, then Q ∈ P

Example: 2-CNF-SAT

Example: 2-CNF-SAT

2-CNF-SAT problem

Input:

◮ f is a Boolean formula of n (Boolean) variables x1, x2, . . . , xn
◮ f is in conjunctive normal form (CNF), so f = C1 ∧ C2 ∧ · · · ∧ Ck
◮ every clause Ci of f contains exactly two literals (a variable or its negation)

Output: 1 iff f is satisfiable

◮ there is an assignment of variables that satisfies f

Example:

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)

2-CNF-SAT to Implicative Form

2-CNF-SAT to Implicative Form

Consider each clause Ci

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b⇒ a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

Example:

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

2-CNF-SAT to Implicative Form

Consider each clause Ci

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b⇒ a)

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

Example:

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

is equivalent to

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

not satisfiable

if and only if
xi { ¬xi { xi
for some i

2-CNF-SAT to Graph Reachability

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2)
⇓⇑

(¬x1 ⇒ ¬x3) ∧ (x3 ⇒ x1) ∧ (x2 ⇒ x3) ∧ (¬x3 ⇒ ¬x2)∧
(x1 ⇒ ¬x3) ∧ (x3 ⇒ ¬x1) ∧ (¬x1 ⇒ x2) ∧ (¬x2 ⇒ x1)

x1

x2

x3

¬x1

¬x2

¬x3

not satisfiable

if and only if
xi { ¬xi { xi
for some i

depth-first search

Reduction of 2-CNF-SAT

Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability”

Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability” DFS solution

Reduction of 2-CNF-SAT

2-CNF-SAT ∈ P

instance of 2-CNF-SAT ? solution

poly-time
algorithm

instance of “reachability” DFS solution

=

NP-Completeness

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′ ofQ′

◮ the solution to q is 1 if and only if the solution to q′ is 1

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′ ofQ′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to Q′

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′ ofQ′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′ ofQ′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is NP-hard

NP-Completeness

A problem Q is polynomial-time reducible to another problem Q′ if there is a
polynomial-time reduction

◮ a polynomial-time algorithm transforms every instance q of Q into an instance q′ ofQ′

◮ the solution to q is 1 if and only if the solution to q′ is 1

A problem Q′ is NP-hard if all problems Q ∈ NP are polynomial-time reducible to Q′

A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is NP-hard

If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is NP-hard

If Q′ is NP-hard and polynomial-time solvable, then P = NP
◮ most researchers believe that there is no such Q′

The First NP-Complete Problem

The First NP-Complete Problem

Is there any NP-complete problem?

any problemQ ∈ NP polynomial-time
reduction

??

The First NP-Complete Problem

Is there any NP-complete problem?

any problemQ ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT)was the first problem that was proved NP-hard and, since
SAT ∈ NP, also NP-complete

The First NP-Complete Problem

Is there any NP-complete problem?

any problemQ ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT)was the first problem that was proved NP-hard and, since
SAT ∈ NP, also NP-complete

Many other problems were then proved NP-complete through polynomial reductions

◮ e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)

◮ therefore, Vertex Cover is also NP-complete

The First NP-Complete Problem

Is there any NP-complete problem?

any problemQ ∈ NP polynomial-time
reduction

SAT

Circuit satisfiability (SAT)was the first problem that was proved NP-hard and, since
SAT ∈ NP, also NP-complete

Many other problems were then proved NP-complete through polynomial reductions

◮ e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)

◮ therefore, Vertex Cover is also NP-complete

If a problem is NP-Hard (or NP-Complete) you should not feel so bad for not finding an
efficient solution algorithm

