Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

April 18, 2023

Outline

- Binary search trees
- Randomized binary search trees

- A *binary search tree* implements a *dynamic set*
 - over a totally ordered domain

- A binary search tree implements a dynamic set
 - over a totally ordered domain
- Interface
 - ▶ **TREE-INSERT**(T, k) adds a key k to the dictionary D
 - ▶ **TREE-DELETE**(T, k) removes key k from D
 - ▶ **TREE-SEARCH**(T, x) tells whether *D* contains a key *k*

- A binary search tree implements a dynamic set
 - over a totally ordered domain
- Interface
 - ▶ **TREE-INSERT**(T, k) adds a key k to the dictionary D
 - ▶ **TREE-DELETE**(T, k) removes key k from D
 - ▶ **TREE-SEARCH**(T, x) tells whether *D* contains a key *k*
 - ► tree-walk: In-order-Tree-Walk(T), etc.

- A *binary search tree* implements a *dynamic set*
 - over a totally ordered domain

Interface

- ▶ **TREE-INSERT**(T, k) adds a key k to the dictionary D
- ▶ **TREE-DELETE**(T, k) removes key k from D
- ▶ **TREE-SEARCH**(T, x) tells whether *D* contains a key *k*
- ▶ tree-walk: In-order-Tree-Walk(T), etc.
- **TREE-MINIMUM**(T) finds the smallest element in the tree
- **TREE-MAXIMUM**(T) finds the largest element in the tree

- A *binary search tree* implements a *dynamic set*
 - over a totally ordered domain

Interface

- ▶ **TREE-INSERT**(T, k) adds a key k to the dictionary D
- ▶ **TREE-DELETE**(T, k) removes key k from D
- ▶ **TREE-SEARCH**(T, x) tells whether *D* contains a key *k*
- ▶ tree-walk: In-order-Tree-Walk(T), etc.
- **TREE-MINIMUM**(T) finds the smallest element in the tree
- **TREE-MAXIMUM**(T) finds the largest element in the tree
- iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor and predecessor, respectively, of an element x

- Implementation
 - T represents the tree, which consists of a set of **nodes**

- Implementation
 - T represents the tree, which consists of a set of **nodes**
 - T.root is the root node of tree T
 - or sometimes T refers directly to the root node

■ Implementation

- T represents the tree, which consists of a set of **nodes**
- T.root is the root node of tree T
- or sometimes T refers directly to the root node

Node x

- x. parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x

■ Binary-search-tree property

- ► for all nodes *x*, *y*, and *z*
- ▶ $y \in left\text{-subtree}(x) \Rightarrow y.key \leq x.key$
- ▶ $z \in right\text{-subtree}(x) \Rightarrow z.key \ge x.key$

In-Order Tree Walk

■ We want to go through the set of keys *in order*

In-Order Tree Walk

■ We want to go through the set of keys *in order*

2 4 5 9 12 13 15 17 18 19

In-Order Tree Walk (2)

■ A recursive algorithm

In-Order Tree Walk (2)

■ A recursive algorithm

```
 \begin{array}{lll} \textbf{INORDER-TREE-WALK}(x) \\ 1 & \textbf{if} \ x \neq \text{NIL} \\ 2 & \textbf{INORDER-TREE-WALK}(x.left) \\ 3 & \textbf{print} \ x.key \\ 4 & \textbf{INORDER-TREE-WALK}(x.right) \end{array}
```

In-Order Tree Walk (2)

A recursive algorithm

```
INORDER-TREE-WALK(x)

1 if x \neq \text{NIL}

2 INORDER-TREE-WALK(x. left)

3 print x. key

4 INORDER-TREE-WALK(x. right)
```

And then we need a "starter" procedure

```
 \begin{split} & \textbf{INORDER-TREE-WALK-START}(T) \\ & \textbf{1} & \textbf{INORDER-TREE-WALK}(T.root) \end{split}
```


Pre-Order Tree Walk

```
PREORDER-TREE-WALK(x)

1 if x ≠ NIL

2 print x. key

3 PREORDER-TREE-WALK(x. left)

4 PREORDER-TREE-WALK(x. right)
```

Pre-Order Tree Walk

```
PREORDER-TREE-WALK(x)

1 if x ≠ NIL

2 print x. key

3 PREORDER-TREE-WALK(x.left)

4 PREORDER-TREE-WALK(x.right)
```


Pre-Order Tree Walk

```
PREORDER-TREE-WALK(x)

1 if x ≠ NIL

2 print x. key

3 PREORDER-TREE-WALK(x. left)

4 PREORDER-TREE-WALK(x. right)
```


Post-Order Tree Walk

POSTORDER-TREE-WALK(x) 1 if x ≠ NIL 2 POSTORDER-TREE-WALK(x.left) 3 POSTORDER-TREE-WALK(x.right) 4 print x.key

Post-Order Tree Walk

POSTORDER-TREE-WALK(x) 1 if x ≠ NIL 2 POSTORDER-TREE-WALK(x.left)

3 POSTORDER-TREE-WALK(x.right)

4 print x. key

Post-Order Tree Walk

```
POSTORDER-TREE-WALK(x)

1 if x \neq \text{NIL}

2 POSTORDER-TREE-WALK(x. left)
```

3 **POSTORDER-TREE-WALK**(x.right)

4 print x. key

Reverse-Order Tree Walk

```
REVERSE-ORDER-TREE-WALK(x)

1 if x ≠ NIL

2 REVERSE-ORDER-TREE-WALK(x.right)

3 print x.key

4 REVERSE-ORDER-TREE-WALK(x.left)
```

Reverse-Order Tree Walk

```
REVERSE-ORDER-TREE-WALK(x)

1 if x ≠ NIL

2 REVERSE-ORDER-TREE-WALK(x.right)

3 print x.key

4 REVERSE-ORDER-TREE-WALK(x.left)
```


Reverse-Order Tree Walk

```
REVERSE-ORDER-TREE-WALK(x)

1 if x \neq \text{NIL}

2 REVERSE-ORDER-TREE-WALK(x.right)

3 print x.key

4 REVERSE-ORDER-TREE-WALK(x.left)
```


Complexity of Tree Walks

■ The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

Complexity of Tree Walks

■ The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

Complexity of Tree Walks

■ The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	Θ(n)

We could prove this using the substitution method

Complexity of Tree Walks

■ The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	Θ(n)

We could prove this using the substitution method

■ Can we do better?

Complexity of Tree Walks

■ The general recurrence is

$$T(n) = T(n_L) + T(n-n_L-1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
Postorder-Tree-Walk	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

- Can we do better? No!
 - the length of the output is $\Theta(n)$

Minimum and Maximum Keys

- Recall the *binary-search-tree property*
 - ► for all nodes *x*, *y*, and *z*
 - ▶ $y \in left\text{-subtree}(x) \Rightarrow y.key \leq x.key$
 - $ightharpoonup z \in right\text{-subtree}(x) \Rightarrow z.key \geq x.key$

Minimum and Maximum Keys

- Recall the *binary-search-tree property*
 - ► for all nodes x, y, and z
 - ▶ $y \in left\text{-subtree}(x) \Rightarrow y.key \leq x.key$
 - $ightharpoonup z \in right\text{-subtree}(x) \Rightarrow z. key \geq x. key$
- So, the minimum key is in all the way to the left
 - similarly, the maximum key is all the way to the right

TREE-MINIMUM(x) 1 while x. left \neq NIL 2 x = x. left 3 return x

```
TREE-MAXIMUM(x)

1 while x.right \neq NIL

2 x = x.right

3 return x
```


■ Given a node x, find the node containing the next key value

■ Given a node x, find the node containing the next key value

■ Given a node x, find the node containing the next key value

■ Given a node x, find the node containing the next key value

■ Given a node x, find the node containing the next key value

- The successor of x is the *minimum* of the *right* subtree of x, if that exists
- Otherwise it is the *first ancestor a* of *x* such that *x* falls in the *left* subtree of *a*

```
TREE-SUCCESSOR(x)

1 if x. right \neq NIL

2 return TREE-MINIMUM(x. right)

3 y = x. parent

4 while y \neq NIL and x = y. right

5 x = y

6 y = y. parent

7 return y
```

```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x. right \neq \text{NIL}

2 return TREE-MINIMUM(x. right)

3 y = x. parent

4 while y \neq \text{NIL} and x = y. right

5 x = y

6 y = y. parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x. right \neq \text{NIL}

2 return TREE-MINIMUM(x. right)

3 y = x. parent

4 while y \neq \text{NIL} and x = y. right

5 x = y

6 y = y. parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq \text{NIL}

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq \text{NIL} and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```



```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq NIL and x = y.right

5 x = y

6 y = y.parent

7 return y
```


Search

■ *Binary search* (thus the name of the tree)

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x.left, k)

5 else return TREE-SEARCH(x.right, k)
```

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x. left, k)

5 else return TREE-SEARCH(x. right, k)
```

Is this correct?

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x.left, k)

5 else return TREE-SEARCH(x.right, k)
```

■ Is this correct? Yes, thanks to the *binary-search-tree property*

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x.left, k)

5 else return TREE-SEARCH(x.right, k)
```

- Is this correct? Yes, thanks to the *binary-search-tree property*
- Complexity?

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x. left, k)

5 else return TREE-SEARCH(x. right, k)
```

- Is this correct? Yes, thanks to the *binary-search-tree property*
- Complexity?

$$T(n) = \Theta(depth \ of \ the \ tree)$$

```
TREE-SEARCH(x, k)

1 if x = \text{NIL or } k = x. key

2 return x

3 if k < x. key

4 return TREE-SEARCH(x. left, k)

5 else return TREE-SEARCH(x. right, k)
```

- Is this correct? Yes, thanks to the *binary-search-tree property*
- Complexity?

$$T(n) = \Theta(depth of the tree)$$

$$T(n) = O(n)$$

Search (2)

■ Iterative *binary search*

Search (2)

■ Iterative *binary search*

Insertion

Insertion

Idea

- ▶ in order to insert *x*, we *search* for *x* (more precisely *x.key*)
- if we don't find it, we add it where the search stopped

```
TREE-INSERT(T, z)
    y = NIL
   x = T.root
    while x \neq NIL
 4
         y = x
      if z. key < x. key
 5
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
         else y.right = z
13
```

```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```



```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```



```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```



```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```



```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```



```
Tree-Insert(T, z)
    y = NIL
    x = T.root
    while x \neq NIL
         y = x
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
    z.parent = y
    if y = NIL
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
13
         else y.right = z
```


TREE-INSERT
$$(T, z)$$

1 $y = \text{NIL}$

2 $x = T.root$

3 while $x \neq \text{NIL}$

4 $y = x$

5 if $z.key < x.key$

6 $x = x.left$

7 else $x = x.right$

8 $z.parent = y$

9 if $y = \text{NIL}$

10 $T.root = z$

11 else if $z.key < y.key$

12 $y.left = z$

13 else $y.right = z$

 $T(n) = \Theta(h)$

1. z has no children

- 1. z has no children
 - ▶ simply remove *z*

- 1. z has no children
 - ► simply remove *z*

- 1. z has no children
 - ▶ simply remove *z*
- 2. z has one child

- 1. z has no children
 - ▶ simply remove *z*
- 2. z has one child
 - remove *z*

- 1. z has no children
 - ▶ simply remove *z*
- 2. z has one child
 - remove *z*
 - connect z. parent to z. right

- 1. z has no children
 - ▶ simply remove *z*
- 2. z has one child
 - remove z
 - connect z. parent to z. right

- 1. z has no children
 - ▶ simply remove *z*
- 2. z has one child
 - remove z
 - connect z. parent to z. right
- 3. z has two children

- 1. z has no children
 - ► simply remove *z*
- 2. z has one child
 - remove z
 - connect z.parent to z.right
- 3. z has two children
 - replace z with
 y = TREE-SUCCESSOR(z)
 - remove *y* (1 child!)

- 1. z has no children
 - ► simply remove *z*
- 2. z has one child
 - remove z
 - connect z. parent to z. right
- 3. z has two children
 - ▶ replace z with
 y = TREE-SUCCESSOR(z)
 - remove *y* (1 child!)
 - connect y.parent to y.right

Deletion (2)

```
TREE-DELETE(T, z)
    if z.left = NIL or z.right = NIL
         y = z
    else y = TREE-SUCCESSOR(z)
    if y.left ≠ NIL
        x = y.left
    else x = y. right
    if x \neq NIL
         x.parent = y.parent
    if y.parent == NIL
10
         T.root = x
    else if y = y.parent.left
12
              y.parent.left = x
         else y.parent.right = x
13
    if y \neq z
14
15
        z.key = y.key
16
         copy any other data from y into z
```

■ Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree

- Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order

- Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- h = O(n) in some particular cases

- Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree
- \blacksquare $h = O(\log n)$ in the average case
 - ▶ i.e., with a random insertion order
- h = O(n) in some particular cases
 - ► i.e., with ordered sequences

- Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- \blacksquare h = O(n) in some particular cases
 - ► i.e., with ordered sequences
 - the problem is that the "worst" case is not that uncommon

- Insertion, search, and deletion operations have complexity $\Theta(h)$, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- \blacksquare h = O(n) in some particular cases
 - ► i.e., with ordered sequences
 - the problem is that the "worst" case is not that uncommon
- *Idea*: use randomization to turn all cases into the average case

Randomized Insertion

■ *Idea* 1: insert every sequence as a random sequence

Randomized Insertion

- *Idea 1:* insert every sequence as a random sequence
 - i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A

Randomized Insertion

- *Idea 1:* insert every sequence as a random sequence
 - i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A
 - problem: A is not necessarily known in advance

- *Idea 1:* insert every sequence as a random sequence
 - i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A
 - problem: A is not necessarily known in advance
- *Idea 2:* we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures
 - tail insertion: this is what TREE-INSERT does

- *Idea 1:* insert every sequence as a random sequence
 - i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A
 - problem: A is not necessarily known in advance
- Idea 2: we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures
 - tail insertion: this is what TREE-INSERT does
 - head insertion: for this we need a new procedure TREE-ROOT-INSERT
 - ▶ inserts *n* in *T* as if *n* was inserted as the first element

```
TREE-RANDOMIZED-INSERT1(T, z)

1  r = \text{uniformly random value from } \{1, \dots, t. \text{ size} + 1\}

2  if r = 1

3  TREE-ROOT-INSERT(T, z)

4  else TREE-INSERT(T, z)
```

```
TREE-RANDOMIZED-INSERT1(T, z)

1  r = \text{uniformly random value from } \{1, \dots, t. \text{size} + 1\}

2  if r = 1

3  TREE-ROOT-INSERT(T, z)

4  else TREE-INSERT(T, z)
```

- Does this really simulate a random permutation?
 - i.e., with all permutations being equally likely?

```
TREE-RANDOMIZED-INSERT1(T, z)

1  r = uniformly random value from \{1, \ldots, t. size + 1\}

2  if r = 1

3  TREE-ROOT-INSERT(T, z)

4  else TREE-INSERT(T, z)
```

- Does this really simulate a random permutation?
 - i.e., with all permutations being equally likely?
 - no, clearly the last element can only go to the top or to the bottom

```
TREE-RANDOMIZED-INSERT1(T, z)

1  r = \text{uniformly random value from } \{1, \dots, t. \text{size} + 1\}

2  if r = 1

3  TREE-ROOT-INSERT(T, z)

4  else TREE-INSERT(T, z)
```

- Does this really simulate a random permutation?
 - i.e., with all permutations being equally likely?
 - no, clearly the last element can only go to the top or to the bottom
- It is true that any node has the same probability of being inserted at the top

```
TREE-RANDOMIZED-INSERT1(T, z)

1  r = \text{uniformly random value from } \{1, \dots, t. \text{size} + 1\}

2  if r = 1

3  TREE-ROOT-INSERT(T, z)

4  else TREE-INSERT(T, z)
```

- Does this really simulate a random permutation?
 - i.e., with all permutations being equally likely?
 - no, clearly the last element can only go to the top or to the bottom
- It is true that any node has the same probability of being inserted at the top
 - this suggests a recursive application of this same procedure


```
TREE-RANDOMIZED-INSERT(t, z)
 1 if t = NIL
         return z
 3 r = \text{uniformly random value from } \{1, \dots, t. \text{ size} + 1\}
                            /\!\!/ \Pr[r=1] = 1/(t.size+1)
 4 if r = 1
       z.size = t.size + 1
         return Tree-Root-Insert(t, z)
    if z. key < t. key
         t.left = Tree-Randomized-Insert(t.left, z)
    else t.right = Tree-Randomized-Insert(t.right, z)
    t.size = t.size + 1
10
11
    return t
```

```
TREE-RANDOMIZED-INSERT(t, z)
 1 if t = NIL
         return 7
 3 r = \text{uniformly random value from } \{1, \dots, t. \text{ size} + 1\}
                            /\!\!/ \Pr[r=1] = 1/(t.size+1)
 4 if r = 1
        z.size = t.size + 1
         return Tree-Root-Insert(t, z)
    if z. key < t. key
         t.left = Tree-Randomized-Insert(t.left, z)
    else t.right = Tree-Randomized-Insert(t.right, z)
    t.size = t.size + 1
10
11
    return t
```

■ Looks like this one really simulates a random permutation...

x = RIGHT-ROTATE(x)

- x = RIGHT-ROTATE(x)
- x = Left-Rotate(x)

RIGHT-ROTATE(X)

- 1 l = x.left
- 2 x.left = l.right
- 3 l.right = x
- 4 return l

LEFT-ROTATE(x)

- 1 r = x.right
- 2 x.right = r.left
- 3 r.left = x
 - return r

1. Recursively insert z at the root of the appropriate subtree (right)

1. Recursively insert *z* at the root of the appropriate subtree (right)

- 1. Recursively insert z at the root of the appropriate subtree (right)
- 2. Rotate *x* with *z* (left-rotate)

- 1. Recursively insert z at the root of the appropriate subtree (right)
- 2. Rotate x with z (left-rotate)

Root Insertion (2)

```
TREE-ROOT-INSERT(x, z)

1  if x = NIL

2  return z

3  if z. key < x. key

4  x. left = TREE-ROOT-INSERT(x. left, z)

5  return RIGHT-ROTATE(x)

6  else x. right = TREE-ROOT-INSERT(x. right, z)

7  return LEFT-ROTATE(x)
```

■ General strategies to deal with complexity in the worst case

- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable

- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable
 - amortized maintenance: e.g., balancing a BST or resizing a hash table
 - relatively expensive but "amortized" operations

- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable
 - amortized maintenance: e.g., balancing a BST or resizing a hash table
 - relatively expensive but "amortized" operations
 - optimized data structures: a self-balanced data structure
 - guaranteed $O(\log n)$ complexity bounds