
Algorithms and Data Structures — Università della Svizzera italiana
A. Carzaniga, A. Fattaholmanan, I. Mantas, M. Bezdrighin

Graded Assignment n. 4
May 14, 2018

Graded Assignment 4

Due date: May 21, 2018 at 20:00

This is an individual assignment. You may discuss it with others, but your formulations,
your code, and all the required material must be written on your own. In any case, you must
acknowledge the sources used and clearly mention any help received from colleagues.

Exercise 1. (50% grade)
Consider a connected graph G. An articulation point(or cut vertex) in G is any vertex v such that,
removing v (and its adjacent edges) from G results in a disconnected graph.

Write a Python function called articulation points(G) that takes a connected graph G in its adjacency-
list representation, and returns an array containing the articulation points in G.

Submit your solution within a Python program that reads a graph from the standard input, and then
outputs all its articulation points, one per line, on the standard output. The input graph G is formatted
as follows: the first line contains two numbers n and m that is the number of vertices in G and the
number of edges in G, then each of the following m lines consists of two numbers u and v, separated
by a space, and represents an undirected edge (u, v) in G. The complexity of your algorithm should be
O(n + m).

Exercise 2. (50% grade)
You’re trapped inside a maze represented as a n×m grid where every cell can be empty or blocked. You
start in the cell marked by s and would like to reach the cell marked by e, furthermore you would like
to do it in as few steps as possible. In one step, if you’re located in cell (x, y), you can go to any of the
4 following cells: (x+ 1, y), (x− 1, y), (x, y + 1), (x, y− 1) as long as the cell you go to is a valid one and
is not blocked.

The grid is given in the input as follows. The first line contains two integers n,m ≤ 1000 which represent
the number of rows and number of columns of the grid. Each of the next n lines contains m characters
where an o represents a free cell, an x represents a blocked cell, s represents the starting position and e

represents the ending position. There will be exactly one s and one e in the grid.

Output on a single line no if you can’t reach the ending cell, or a single integer - the minimum number
of steps necessary in order to reach the ending cell from the start cell. The complexity of your algorithm
should be O(n ·m).

Examples:

Input Output
3 3 3

osx

xoo

eox

Input Output
3 4 no

ooso

ooxx

oxeo


