
Algorithms and Data Structures — Università della Svizzera italiana
A. Carzaniga, A. Fattaholmanan, I. Mantas, M. Bezdrighin

Graded Assignment n. 3
April 26, 2018

Graded Assignment 3

Due date: May 10, 2018 at 20:00

This is an individual assignment. You may discuss it with others, but your formulations,
your code, and all the required material must be written on your own. In any case, you must
acknowledge the sources used and clearly mention any help received from colleagues.

Exercise 1. (50% grade)
If we insert a set of n numbers into a binary search tree (BST), the resulting tree may be horribly unbal-
anced. Indeed, inserting a sorted set of numbers into a BST, makes it more like a linked-list rather than a
tree. Therefore, the time complexity of Tree-Search(T,k), Tree-Insert(T,k) and Tree-Delete(T,k)

directly depends on the order in which the data was inserted into the given BST.
Similar to s red-black tree, a treap (tree + heap) is a binary tree designed to keep all those primitive
actions in O(log n), with high probability. In a treap, every node has both a key and a priority, such
that the in-order sequence of search keys is sorted, and a node’s priority is smaller than the priorities of
its children. In other words, a treap is simultaneously a binary search tree for the keys, and a (min-)heap
for the priorities.
As usual, each node x in the tree has a searchable key x.key. In addition, we assign a priority
x.priority, which is a random number chosen independently for each node x. Figure 1 shows an
example of a treap. We assume that all priorities are distinct and also that all keys are distinct. The
nodes of the treap are ordered so that a. the keys obey the binary-search-tree structure, b. the random
priorities obey the min-heap order property.

k: 30
p: 9

k: 9
p:18

k: 5
p: 51

k: 21
p: 21

k: 46
p: 13

Figure 1: A sample treap. Attribute k indicates the key, and p indicates random priority assigned to
each nodes.

It can be easily proved that the expected height of a Treap is O(log n). Clearly, the search algorithm is
the usual one for BST. The time for a successful search is proportional to the depth of the node which
is O(log n) with high probability.

Question 1: Implement Treap-Insert(T,k) and Treap-Delete(T,k) to insert and delete keys from a
given tree, respectively. Notice that both algorithms must preserve the BST property, as well as the heap
order property. Hint: you can use the normal binary search tree insertion (and deletion) algorithms, and
then you can perform rotations to restore the min-heap order property, if necessary.



Question 2: Implement Treap-Split(T,k) which returns a pair of treaps, T1 and T2 where all nodes in
T1 have keys greater or equal to k and T2 contains the remaining nodes. The complexity of your solution
should be O(log n).

Exercise 2. (50% grade)
Given a set of n horizontal line segments and m vertical line segments, output all pairs of horizontal and
vertical line segments that intersect.
The first line of the input consists of two numbers n and m, then the next n + m lines specify the
segments, each by a 4-tuple of integers x1, y1, x2, y2 separated by spaces representing a segment that
goes from (x1, y1) to (x2, y2). The first n segments are such that y1 = y2 (the segment is horizontal),
and the following m segments are such that x1 = x2 (segments are vertical).
The output should consist of k lines representing all the intersections between horizontal and vertical
segments. (We ignore the intersections between two horizontal segments and the intersections between
two vertical segments.) Each line should contain two numbers i, j separated by spaces, meaning that
the ith horizontal segment intersects the jth vertical segment (segments are numbered from 0). The
complexity of your algorithm must be O((n + m + k) log n).

2


