
Algorithms and Data Structures — Università della Svizzera italiana
A. Carzaniga, A. Fattaholmanan, I. Mantas, M. Bezdrighin

Graded Assignment n. 1
March 11, 2018

Graded Assignment 1

Due date: March 21, 2018 at 20:00

This is an individual assignment. You may discuss it with others, but your formulations,
your code, and all the required material must be written on your own. In any case, you must
acknowledge the sources used and clearly mention any help received from colleagues.

Exercise 1. (30% grade)
Answer the following questions on the big-Oh notation.

Question 1: Order the following functions according to their asymptotic growth.

n2 + 100n+ 10 4 log n2 (log n)n 2n 10n
√
n 1010

10

n! log12 n (1 + 2 + 4 + . . .+ 2n)

n∑
k=1

1

k
22

n

n log n nn

log log n 2logn log3
3 n n4 + 10n5 log log

n

2
9999! n

√
n

Functions that have the same order of growth can be listed in any order. You may find it useful to look
up Stirling’s approximation of the factorial function.

Question 2: Given a degree-3 polynomial p(n) = a0 + a1n+ a2n
2 + a3n

3, with a3 > 0 and n ∈ N, prove
that p(n) = Θ(n3). Note that you should use the formal definition of the Θ notation. (Hint: To prove
that p(n) = O(n3), find a constant c such that p(n) ≤ cn3 starting from some value n0. Similarly you
can prove Ω(n3) bound.)

Question 3: Given any ε > 0, prove that ln(n) = O(nε). In other words, no matter how small we choose
ε, the function ln(n) still grows slower than nε. (Hint: L’Hôpital’s rule)

Exercise 2. (20% grade)
Consider the following Python function which takes as input an array of numbers A and outputs a single
number:

def calc(A):

n = len(A)

res = 0

for i in range(0,n):

for j in range(i+1,n):

res += A[j] - A[i]

return res

Question 1: What does the function compute? What is the time complexity of the algorithm, as a
function of the size of the list n? Justify your answer.

Question 2: Rewrite the given function such that it has the same functionality as the original one, but
its complexity is O(n). By same functionality we mean that they produce the same result for all possible
lists. You can test your code using the online judge system (http://domjudge.inf.usi.ch:8000/).



Exercise 3. (30% grade)
Consider the insertion-sort algorithm.

Question 1: What is the time complexity in the worst case? Give an example of a list of size n where
this is achieved. Consider the following array for some given n and k < n:

[k + 1, k + 2, k + 3, . . . , n, 1, 2, 3, . . . , k]

How many swaps will the algorithm perform?

Question 2: Complete the following table with the state of the array a after the completion of each
iteration of the algorithm, for all different values of i from 2 to 6.

Step a1 a2 a3 a4 a5 a6
Initial 3 8 1 2 6 4
i = 2
i = 3
i = 4
i = 5
i = 6

Question 3: For some list of numbers a of size n, let I(a) denote the number of pairs (i, j), 1 ≤ i < j ≤ n
such that ai > aj . For example, I([3, 2, 5, 2, 1]) = 7. Prove that the number of swaps the insertion-sort
algorithm performs on some list a is equal to I(a). (Hint: consider what happens to I(a) when insertion-
sort performs a swap.)

Exercise 4. (20% grade)
In this exercise we will be packing n-dimensional boxes. Given two lists of integers of size n: a1, . . . , an
and b1, . . . , bn which represent the sizes of two n-dimensional boxes, we say that the first box can be
packed into the second one if there exists some permutation p : {1, . . . , n} → {1, . . . , n}, such that we
have:

a1 < bp(1), a2 < bp(2), . . . , an < bp(n)

That is, we can rearrange the sequence b (which in turn corresponds to rotating the box in n dimensional
space), such that all the corresponding dimensions of a are less than the corresponding dimensions of b.
For example we can pack [1, 3, 2] into [2, 3, 4] by transforming [2, 3, 4] → [2, 4, 3], but there is no way to
pack [2, 3, 5] into [3, 3, 6]. Implement a python function can_pack(a,b) that given the lists a and b of
size n, returns true if the first box can be packed into the second one, and false otherwise. You may also
implement other helper functions if needed. The running time of your solution must be O(n2). You can
test your solution using the online judge system.

Exercise 5. (extra) (5% grade)
Consider the following sorting algorithm:

A← array of n distinct numbers
while A is not sorted do
A← random permutation of A

end while

What is the the expected running time of the above algorithm? Justify your answer.

2


