Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

April 11, 2017

Outline

■ Red-black trees

Summary on Binary Search Trees

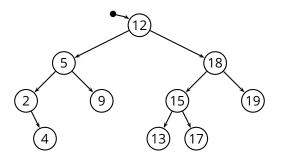
- Binary search trees
 - embody the divide-and-conquer search strategy
 - **SEARCH**, **INSERT**, **MIN**, and **MAX** are O(h), where h is the **height of the tree**
 - ▶ in general, $h(n) = \Omega(\log n)$ and h(n) = O(n)
 - randomization can be used to make the worst-case scenario h(n) = n highly unlikely

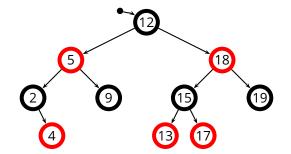
Summary on Binary Search Trees

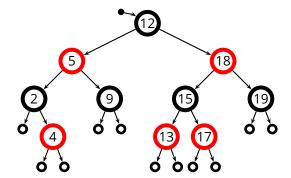
- Binary search trees
 - embody the divide-and-conquer search strategy
 - **SEARCH**, INSERT, MIN, and MAX are O(h), where h is the **height of the tree**
 - ▶ in general, $h(n) = \Omega(\log n)$ and h(n) = O(n)
 - randomization can be used to make the worst-case scenario h(n) = n highly unlikely

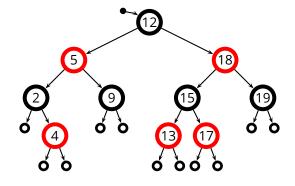
Problem

- worst-case scenario is unlikely but still possible
- simply bad cases are even more probable

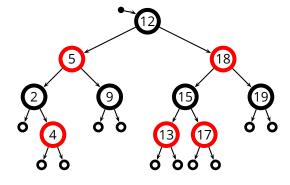




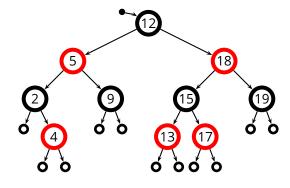




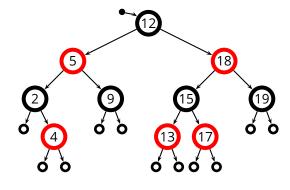
■ Red-black-tree property



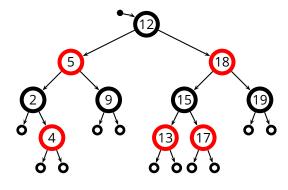
- *Red-black-tree property*
 - 1. every node is either **red** or **black**



- Red-black-tree property
 - 1. every node is either **red** or **black**
 - 2. the root is **black**

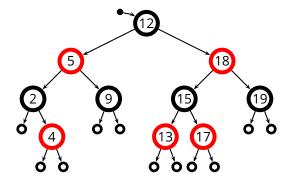


- Red-black-tree property
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**



■ Red-black-tree property

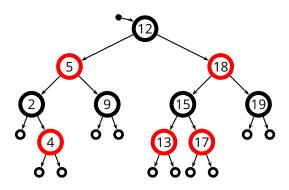
- 1. every node is either **red** or **black**
- 2. the root is **black**
- 3. every (NIL) leaf is **black**
- 4. if a node is **red**, then both its children are **black**



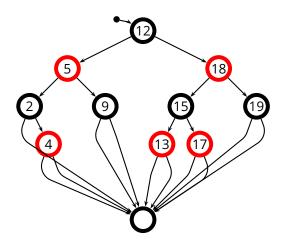
■ *Red-black-tree property*

- 1. every node is either **red** or **black**
- 2. the root is **black**
- 3. every (NIL) leaf is black
- 4. if a node is **red**, then both its children are **black**
- 5. for every node x, each path from x to its descendant leaves has the same number of **black** nodes bh(x) (the *black-height* of x)

■ Implementation

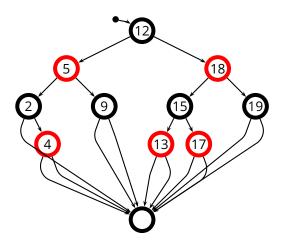


■ Implementation



• we use a common "sentinel" node to represent leaf nodes

■ *Implementation*



- we use a common "sentinel" node to represent leaf nodes
- the sentinel is also the parent of the root node

- Implementation
 - ► *T* represents the tree, which consists of a set of *nodes*

- Implementation
 - ► *T* represents the tree, which consists of a set of *nodes*
 - ▶ *T.root* is the root node of tree *T*

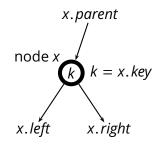
- Implementation
 - ► *T* represents the tree, which consists of a set of *nodes*
 - ► *T.root* is the root node of tree *T*
 - ► T. nil is the "sentinel" node of tree T

■ Implementation

- ► *T* represents the tree, which consists of a set of *nodes*
- ▶ *T.root* is the root node of tree *T*
- ▶ T. nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x.left is the left child of node x
- x.right is the right child of node x

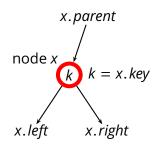


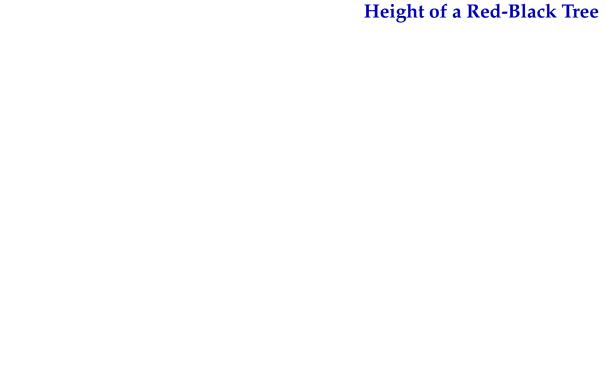
■ Implementation

- ► *T* represents the tree, which consists of a set of *nodes*
- T.root is the root node of tree T
- T. nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x.left is the left child of node x
- x.right is the right child of node x
- ▶ $x.color \in \{RED, BLACK\}$ is the color of node x





Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
 - 1.2 **induction step:** consider y_1 , y_2 , and x such that y_1 . $parent = y_2$. parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} 1$ and $size(y_2) \ge 2^{bh(y_2)} 1$; prove that $size(x) \ge 2^{bh(x)} 1$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
 - 1.2 **induction step:** consider y_1 , y_2 , and x such that y_1 . $parent = y_2$. parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} 1$ and $size(y_2) \ge 2^{bh(y_2)} 1$; prove that $size(x) \ge 2^{bh(x)} 1$ **proof:**

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

Proof:

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
 - 1.2 **induction step:** consider y_1 , y_2 , and x such that y_1 . parent = y_2 . parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$: prove that $size(x) > 2^{bh(x)} - 1$

proof:

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$

since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

Proof:

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
 - 1.2 **induction step:** consider y_1 , y_2 , and x such that y_1 . $parent = y_2$. parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} 1$ and $size(y_2) \ge 2^{bh(y_2)} 1$; prove that $size(x) \ge 2^{bh(x)} 1$ **proof:**

 $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$ since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

 $size(x) \ge (2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

- 1. prove that $\forall x : size(x) \ge 2^{bh(x)} 1$ by induction:
 - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
 - 1.2 **induction step:** consider y_1 , y_2 , and x such that y_1 . $parent = y_2$. parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} 1$ and $size(y_2) \ge 2^{bh(y_2)} 1$; prove that $size(x) \ge 2^{bh(x)} 1$ **proof:**

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$

since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

$$size(x) \ge (2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1 = 2^{bh(x)} - 1$$

1. $size(x) \ge 2^{bh(x)} - 1$

1.
$$312e(x) \geq 2$$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from *x* to a leaf node, at least half the nodes are black

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$, therefore

$$h \le 2\log(n+1)$$

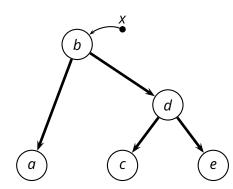
- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$, therefore

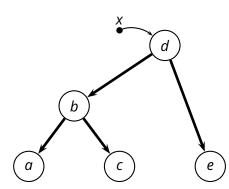
$$h \le 2\log(n+1)$$

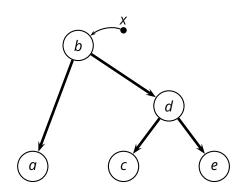
- A red-black tree works as a binary search tree for search, etc.
- So, the complexity of those operations is T(n) = O(h), that is

$$T(n) = O(\log n)$$

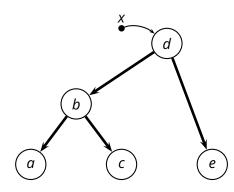
which is also the worst-case complexity







x = RIGHT-ROTATE(x)



- x = RIGHT-ROTATE(x)
- x = Left-Rotate(x)

RB-INSERT(T, z) works as in a binary search tree

- **RB-INSERT**(T, z) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*

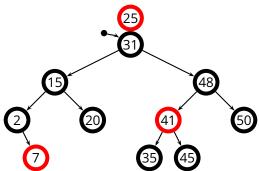
- **RB-INSERT**(T, z) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**
 - 4. if a node is **red**, then both its children are **black**
 - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

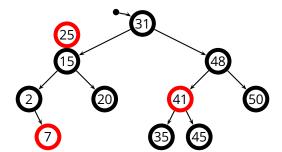
- **RB-INSERT**(T, z) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**
 - 4. if a node is **red**, then both its children are **black**
 - 5. for every node x, each path from x to its descendant leaves has the same number of **black** nodes bh(x) (the *black-height* of x)
- General strategy

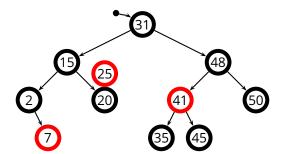
- **RB-INSERT**(T, z) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is black
 - 4. if a node is **red**, then both its children are **black**
 - 5. for every node x, each path from x to its descendant leaves has the same number of **black** nodes bh(x) (the *black-height* of x)
- General strategy
 - 1. insert z as in a binary search tree
 - 2. color z red so as to preserve property 5
 - 3. fix the tree to correct possible violations of property 4

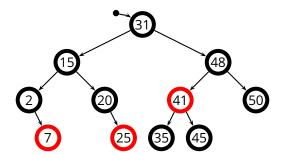
RB-INSERT

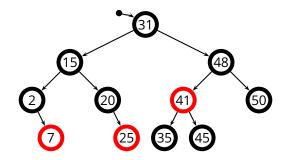
```
RB-INSERT(T, z)
 1 y = T.nil
 2 x = T.root
 3 while x \neq T.nil
         y = x
        if z. key < x. key
 6
7
              x = x.left
         else x = x.right
    z.parent = y
    if y == T.nil
10
         T.root = z
    else if z. key < y. key
12
             y.left = z
         else y.right = z
   z.left = z.right = T.nil
15 z.color = RED
   RB-INSERT-FIXUP(T, z)
```



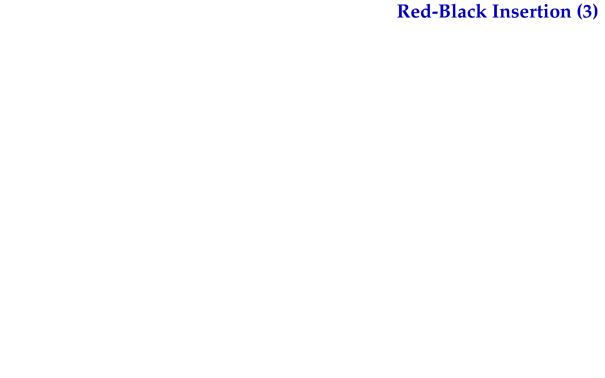


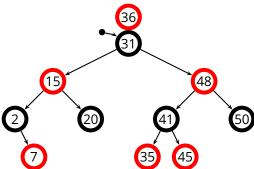


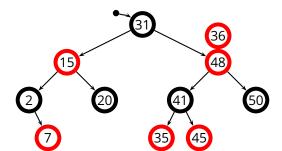


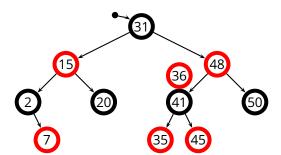


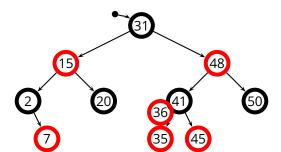
■ z's father is **black**, so no fixup needed

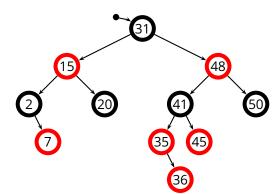


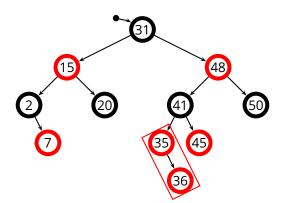


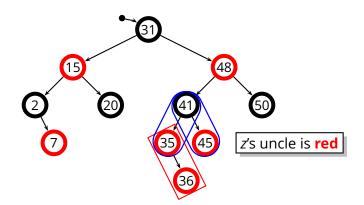


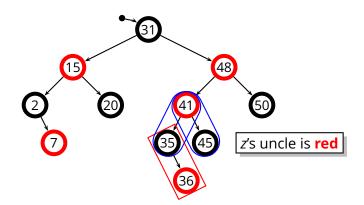


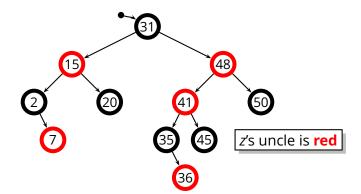


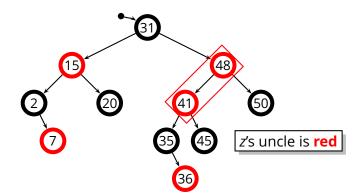


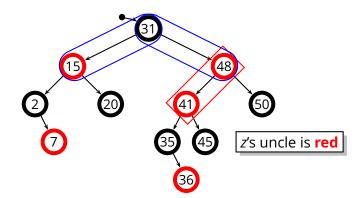


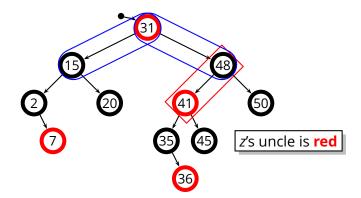


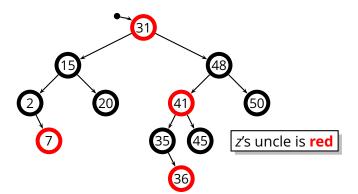


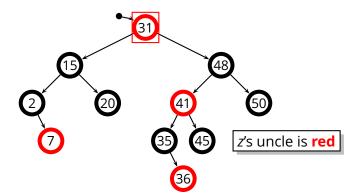


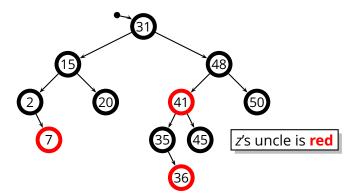


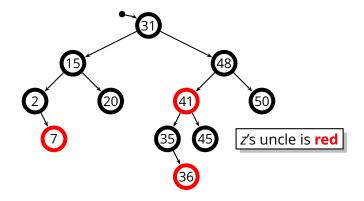




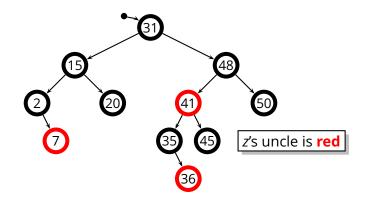




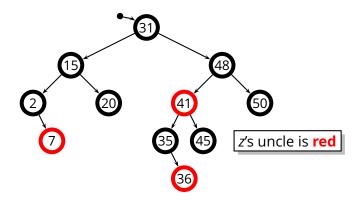




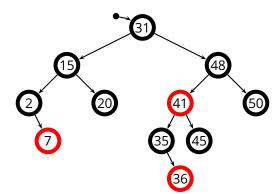
■ A **black** node can become **red** and transfer its **black** color to its two children

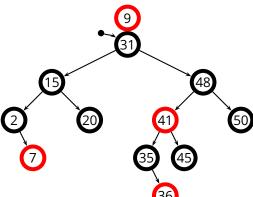


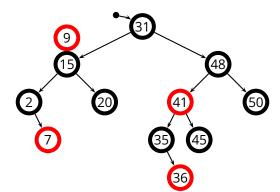
- A **black** node can become **red** and transfer its **black** color to its two children
- This may cause other **red-red** conflicts, so we iterate...

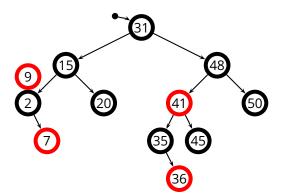


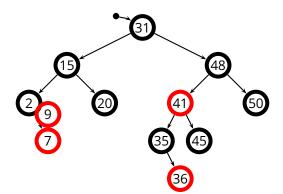
- A black node can become red and transfer its black color to its two children
- This may cause other **red**-**red** conflicts, so we iterate...
- The root can change to **black** without causing conflicts

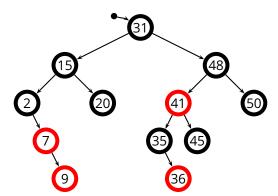


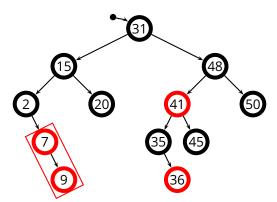


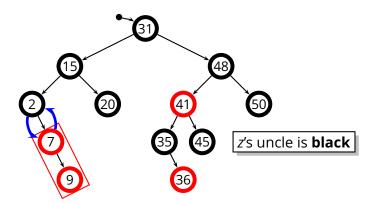


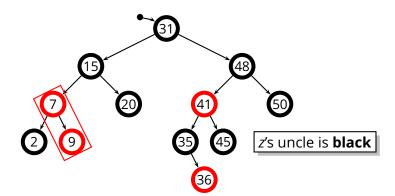


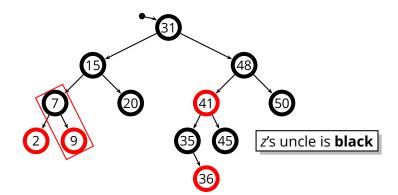


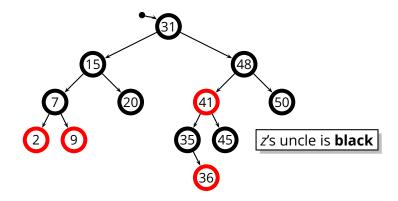




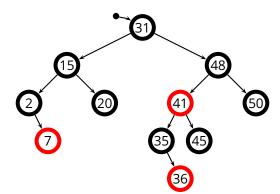


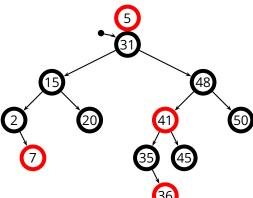


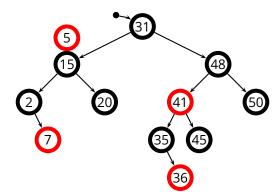


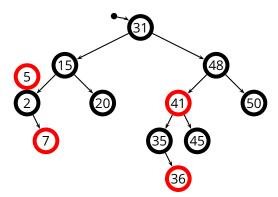


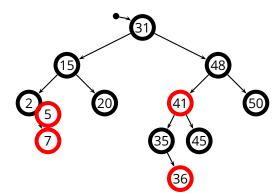
■ An *in-line* **red**-**red** conflicts can be resolved with a rotation plus a color switch

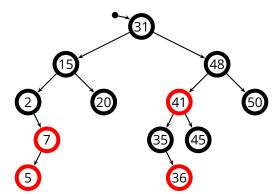


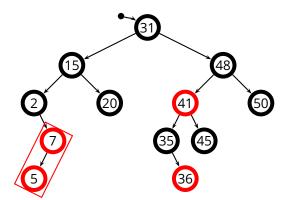


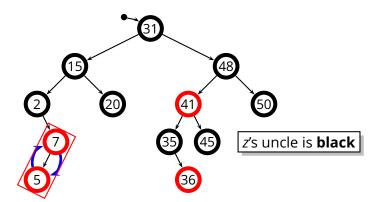


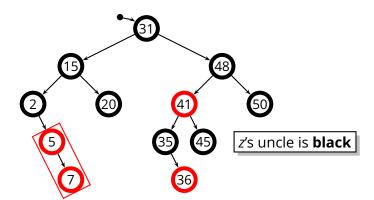


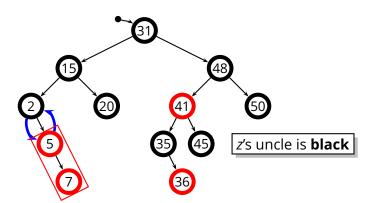


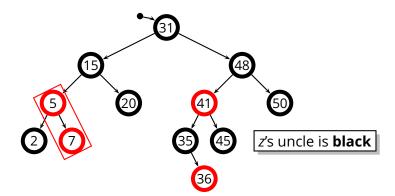


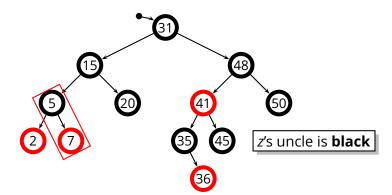


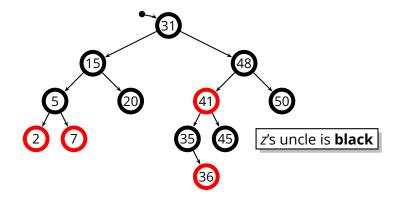












■ A zig-zag red-red conflicts can be resolved with a rotation to turn it into an in-line conflict, and then a rotation plus a color switch