
Algorithms and Data Structures
Course Introduction

Antonio Carzaniga

Faculty of Informatics

Università della Svizzera italiana

February 21, 2017



General Information

On-line course information

I on iCorsi: ‘INFO.ALGO17’ https://www2.icorsi.ch/course/view.php?id=5726
I and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
I last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo16s/

Announcements

I you are responsible for reading the announcements page or the messages sentthrough iCorsi
Office hours

I Antonio Carzaniga: by appointment
I Enrique Fynn: by appointment
I Seyed Ali Bahreinian: by appointment



General Information

On-line course information

I on iCorsi: ‘INFO.ALGO17’ https://www2.icorsi.ch/course/view.php?id=5726
I and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
I last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo16s/

Announcements

I you are responsible for reading the announcements page or the messages sentthrough iCorsi

Office hours

I Antonio Carzaniga: by appointment
I Enrique Fynn: by appointment
I Seyed Ali Bahreinian: by appointment



General Information

On-line course information

I on iCorsi: ‘INFO.ALGO17’ https://www2.icorsi.ch/course/view.php?id=5726
I and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
I last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo16s/

Announcements

I you are responsible for reading the announcements page or the messages sentthrough iCorsi
Office hours

I Antonio Carzaniga: by appointment
I Enrique Fynn: by appointment
I Seyed Ali Bahreinian: by appointment



Textbook

Introduction to Algorithms
Third Edition

Thomas H. Cormen

Charles E. Leiserson

Ronald L. Rivest

Clifford Stein

The MIT Press



Evaluation

+30% projects
I 3–5 assignments

I grades added together, thus resulting in a weighted average

+30%midterm exam

+40% final exam

±10% instructor’s discretionary evaluation

I participation

I extra credits

I trajectory

I . . .

−100% plagiarism penalties



Evaluation

+30% projects
I 3–5 assignments

I grades added together, thus resulting in a weighted average

+30%midterm exam

+40% final exam

±10% instructor’s discretionary evaluation

I participation

I extra credits

I trajectory

I . . .

−100% plagiarism penalties



Plagiarism

A student should never take someone else’s material and present it as his or herown. Doing so means committing plagiarism.
“material”means ideas, words, code, suggestions, corrections on one’s work,

etc.

Using someone else’s material may be appropriate

I e.g., software libraries

I always clearly identify the external material, and acknowledge its source. Failingto do so means committing plagiarism.
I the work will be evaluated based on its added value

Plagiarism on an assignment or an exam will result in

I failing that assignment or that exam

I loosing one or more points in the final note!
Penalties may be escalated in accordance with the regulations of the Faculty of

Informatics



Plagiarism

A student should never take someone else’s material and present it as his or herown. Doing so means committing plagiarism.

“material”means ideas, words, code, suggestions, corrections on one’s work,

etc.

Using someone else’s material may be appropriate

I e.g., software libraries

I always clearly identify the external material, and acknowledge its source. Failingto do so means committing plagiarism.
I the work will be evaluated based on its added value

Plagiarism on an assignment or an exam will result in

I failing that assignment or that exam

I loosing one or more points in the final note!
Penalties may be escalated in accordance with the regulations of the Faculty of

Informatics



Plagiarism

A student should never take someone else’s material and present it as his or herown. Doing so means committing plagiarism.
“material”means ideas, words, code, suggestions, corrections on one’s work,

etc.

Using someone else’s material may be appropriate

I e.g., software libraries

I always clearly identify the external material, and acknowledge its source. Failingto do so means committing plagiarism.
I the work will be evaluated based on its added value

Plagiarism on an assignment or an exam will result in

I failing that assignment or that exam

I loosing one or more points in the final note!
Penalties may be escalated in accordance with the regulations of the Faculty of

Informatics



Plagiarism

A student should never take someone else’s material and present it as his or herown. Doing so means committing plagiarism.
“material”means ideas, words, code, suggestions, corrections on one’s work,

etc.

Using someone else’s material may be appropriate

I e.g., software libraries

I always clearly identify the external material, and acknowledge its source. Failingto do so means committing plagiarism.
I the work will be evaluated based on its added value

Plagiarism on an assignment or an exam will result in

I failing that assignment or that exam

I loosing one or more points in the final note!
Penalties may be escalated in accordance with the regulations of the Faculty of

Informatics



Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise



Deadlines

Deadlines are firm.

Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise



Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise



Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise



Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0

I The proof of Corollary 1 is left as an exercise



Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise



Now let’s move on to the real

interesting and fun stuff. . .



Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz,

circa 1450 (already known in China, circa 1200 CE)



Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz,

circa 1450 (already known in China, circa 1200 CE)



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct

I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Algorithms are

the essence
of computer programs



Example

A sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170–ca. 1250)

son of Guglielmo “Bonaccio”

a.k.a. Leonardo Fibonacci



Example

A sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170–ca. 1250)

son of Guglielmo “Bonaccio”

a.k.a. Leonardo Fibonacci



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

Racket

(define (F n)
(cond
((= n 0) 0)
((= n 1) 1)
(else (+ (F (- n 1)) (F (- n 2))))))



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

Java

public class Fibonacci {
public static int F(int n) {
if (n == 0) {
return 0;

} else if (n == 1) {
return 1;

} else {
return F(n-1) + F(n-2);

} }
}



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

C or C++

int F(int n) {
if (n == 0) {
return 0;

} else if (n == 1) {
return 1;

} else {
return F(n-1) + F(n-2);

}
}



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

Ruby

def F(n)
case n
when 0
return 0

when 1
return 1

else
return F(n-1) + F(n-2)

end
end



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

Python

def F(n):
if n == 0:
return 0

elif n == 1:
return 1

else:
return F(n-1) + F(n-2)



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

very concise C/C++ (or Java)

int F(int n) { return (n<2)?n:F(n-1)+F(n-2); }



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

“pseudo-code”

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)



Questions on Our First Algorithm

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

1. Is the algorithm correct?
I for every valid input, does it terminate?

I if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?



Questions on Our First Algorithm

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

1. Is the algorithm correct?
I for every valid input, does it terminate?

I if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?



Questions on Our First Algorithm

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

1. Is the algorithm correct?
I for every valid input, does it terminate?

I if so, does it do the right thing?

2. How much time does it take to complete?

3. Can we do better?



Questions on Our First Algorithm

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

1. Is the algorithm correct?
I for every valid input, does it terminate?

I if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?



Correctness

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

The algorithm is clearly correct

I assuming n ≥ 0



Correctness

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

The algorithm is clearly correct

I assuming n ≥ 0



Performance

How long does it take?

Let’s try it out. . .



Performance

How long does it take?

Let’s try it out. . .



Results

20 25 30 35 40 45 50
0

20

40

60

n

r
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s
)

Ruby

Scheme

Python

C

C-wiz

Java

C-gcc



Comments

Different implementations perform differently

I it is better to let the compiler do the optimization

I simple language tricks don’t seem to pay off

However, the differences are not substantial

I all implementations sooner or later seem to hit a wall. . .
Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

I it is better to let the compiler do the optimization

I simple language tricks don’t seem to pay off

However, the differences are not substantial

I all implementations sooner or later seem to hit a wall. . .
Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

I it is better to let the compiler do the optimization

I simple language tricks don’t seem to pay off

However, the differences are not substantial

I all implementations sooner or later seem to hit a wall. . .

Conclusion: the problem is with the algorithm



Comments

Different implementations perform differently

I it is better to let the compiler do the optimization

I simple language tricks don’t seem to pay off

However, the differences are not substantial

I all implementations sooner or later seem to hit a wall. . .
Conclusion: the problem is with the algorithm



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3

T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3

⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2

≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2
This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4)

≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2
This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6))

≥ . . . ≥ 2
n
2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . .

≥ 2
n
2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n

Can we do better?



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?



A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!

SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



Results

20 40 60 80 100 120 140 160 180 200
0

20

40

60

n

r
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s
)

Ruby

Scheme

Python

C

C-wiz

Java

C-gcc

(Python) SmartFibonacci



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1) = 6n
The complexity of SMARTFIBONACCI(n) is linear in n



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) =

6 + 6(n − 1) = 6n
The complexity of SMARTFIBONACCI(n) is linear in n



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1)

= 6n
The complexity of SMARTFIBONACCI(n) is linear in n



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1) = 6n

The complexity of SMARTFIBONACCI(n) is linear in n



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1) = 6n
The complexity of SMARTFIBONACCI(n) is linear in n


