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I . . .

−100% plagiarism penalties
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Plagiarism

A student should never take someone else’s material and present it as his or herown. Doing so means committing plagiarism.
“material”means ideas, words, code, suggestions, corrections on one’s work,

etc.

Using someone else’s material may be appropriate

I e.g., software libraries

I always clearly identify the external material, and acknowledge its source. Failingto do so means committing plagiarism.
I the work will be evaluated based on its added value

Plagiarism on an assignment or an exam will result in

I failing that assignment or that exam

I loosing one or more points in the final note!
Penalties may be escalated in accordance with the regulations of the Faculty of

Informatics
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Deadlines

Deadlines are firm.
Exceptions may be granted

I at the instructor’s discretion

I only for documented medical conditions or other documented emergencies

Each late day will reduce the assignment’s grade by one third of the total value
of that assignment

I Corollary 1: The grade of an assignment turned in more than two days late is 0
I The proof of Corollary 1 is left as an exercise
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Now let’s move on to the real

interesting and fun stuff. . .
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Maybe More Fundamental Ideas

The decimal numbering system (India, circa 600)

Persian mathematician Khwārizm̄ı writes a book

(Baghdad, circa 830)

I methods for adding, multiplying, and dividing

numbers (and more)

I these procedures were precise, unambiguous,mechanical, efficient, and correct
I they were algorithms!

Muhammad ibn Musa

al-Khwārizm̄ı
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The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170–ca. 1250)

son of Guglielmo “Bonaccio”

a.k.a. Leonardo Fibonacci
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0 if n = 0
1 if n = 1
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Implementation on a computer:
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(define (F n)
(cond
((= n 0) 0)
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1 if n = 1
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Implementation on a computer:

Java

public class Fibonacci {
public static int F(int n) {
if (n == 0) {
return 0;

} else if (n == 1) {
return 1;

} else {
return F(n-1) + F(n-2);

} }
}
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}
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The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

Ruby

def F(n)
case n
when 0
return 0

when 1
return 1

else
return F(n-1) + F(n-2)

end
end
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def F(n):
if n == 0:
return 0
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return 1
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return F(n-1) + F(n-2)



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

very concise C/C++ (or Java)

int F(int n) { return (n<2)?n:F(n-1)+F(n-2); }



The Fibonacci Sequence

Mathematical definition: Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Implementation on a computer:

“pseudo-code”

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
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1. Is the algorithm correct?
I for every valid input, does it terminate?

I if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?
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Fn =



0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

The algorithm is clearly correct

I assuming n ≥ 0
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Comments

Different implementations perform differently

I it is better to let the compiler do the optimization

I simple language tricks don’t seem to pay off

However, the differences are not substantial

I all implementations sooner or later seem to hit a wall. . .
Conclusion: the problem is with the algorithm
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Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity

Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3

T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3

⇒ T(n) ≥ Fn



Complexity of Our First Algorithm

We need a mathematical characterization of the performance of the algorithm

We’ll call it the algorithm’s computational complexity
Let T(n) be the number of basic steps needed to compute FIBONACCI(n)
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)
T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n
T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .
Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2 n2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentially with n
Can we do better?
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A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!

SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



A Better Algorithm

Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we can build Fn from the ground up!
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



Results

20 40 60 80 100 120 140 160 180 200
0

20

40

60

n

r
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s
)

Ruby

Scheme

Python

C

C-wiz

Java

C-gcc

(Python) SmartFibonacci



Complexity of SMARTFIBONACCI
SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else prev = 0
6 pprev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1) = 6n
The complexity of SMARTFIBONACCI(n) is linear in n
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