Analysis of Insertion Sort

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
February 28, 2017

- Sorting

■ Insertion Sort

- Analysis

Sorting

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: a sequence $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ such that

- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is a permutation of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: a sequence $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ such that

- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is a permutation of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is sorted

$$
b_{1} \leq b_{2} \leq \cdots \leq b_{n}
$$

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: a sequence $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ such that

- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is a permutation of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is sorted

$$
b_{1} \leq b_{2} \leq \cdots \leq b_{n}
$$

■ Typically, A is implemented as an array

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: a sequence $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ such that

- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is a permutation of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is sorted

$$
b_{1} \leq b_{2} \leq \cdots \leq b_{n}
$$

■ Typically, A is implemented as an array

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 3 & 2 & 7 & 6 & 11 & 5 & 9 & 4 \\
\hline
\end{array}
$$

■ Input: a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: a sequence $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ such that

- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is a permutation of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is sorted

$$
b_{1} \leq b_{2} \leq \cdots \leq b_{n}
$$

■ Typically, A is implemented as an array

Insertion Sort

■ Idea: it is like sorting a hand of cards

Insertion Sort

- Idea: it is like sorting a hand of cards
- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

Insertion Sort

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 3 & 2 & 7 & 6 & 11 & 5 & 9 & 4 \\
\hline
\end{array}
$$

Insertion Sort

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{aligned}
& \downarrow \\
& \hline 6
\end{aligned} s
$$

Insertion Sort

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|c|c|c|c|c|c|c|c|c|c|ccc}
\hline 6 & 8 & \downarrow \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l}
\hline 6 & 8 & 3 & \downarrow \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l}
3 & 6 & 8 & 2 & \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 8 & 7 & 6 & \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 7 & 8 & 6 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l}
\hline 2 & 3 & 6 & 7 & 6 & 8 & 5 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

Insertion Sort

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l}
\hline 2 & 3 & 6 & 6 & 7 & 8 & 11 & \downarrow \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 6 & 7 & 8 & 5 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l}
\hline 2 & 3 & 6 & 6 & 7 & 5 & 8 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l}
\hline 2 & 3 & 6 & 6 & 5 & 7 & 8 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
\left.A=\right)
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 8 & 11 & 9
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
\left.A=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 8 & 9 & 11
\end{array} \right\rvert\,
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 8 & 9 & 11 & 4 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 8 & 9 & 4 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 8 & 4 & 9 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 7 & 4 & 8 & 9 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 6 & 4 & 7 & 8 & 9 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 6 & 4 & 6 & 7 & 8 & 9 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 4 & 6 & 6 & 7 & 8 & 9 & 11 \\
\hline
\end{array}
$$

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=
$$

Insertion Sort

■ Idea: it is like sorting a hand of cards

- scan the sequence left to right
- pick the value at the current position a_{j}
- insert it in its correct position in the sequence $\left\langle a_{1}, a_{2}, \ldots a_{j-1}\right\rangle$ so as to maintain a sorted subsequence $\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 4 & 5 & 6 & 6 & 7 & 8 & 9 & 11 \\
\hline
\end{array}
$$

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to \(\operatorname{length}(A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ IS INSERTION-SORT correct?

■ What is the time complexity of INSERTION-SORT?

■ Can we do better?

Complexity of INSERTION-SORT

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```


Complexity of INSERTION-SORT

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Outer loop (lines 1-5) runs exactly $n-1$ times (with $n=$ length (A))
■ What about the inner loop (lines 3-5)?

- best, worst, and average case?

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```

■ Best case:

Complexity of INSERTION-SORT (2)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Best case: the inner loop is never executed

- what case is this?

Complexity of INSERTION-SORT (2)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Best case: the inner loop is never executed

- what case is this?

■ Worst case:

Complexity of INSERTION-SORT (2)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Best case: the inner loop is never executed

- what case is this?

■ Worst case: the inner loop is executed exactly j - 1 times for every iteration of the outer loop

- what case is this?

Complexity of INSERTION-SORT (3)

■ The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$
T(n)=\sum_{j=2}^{n}(j-1)
$$

Complexity of INSERTION-SORT (3)

■ The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$
T(n)=\sum_{j=2}^{n}(j-1)
$$

$T(n)$ is the arithmetic series $\sum_{k=1}^{n-1} k$, so

$$
\begin{gathered}
T(n)=\frac{n(n-1)}{2} \\
T(n)=\Theta\left(n^{2}\right)
\end{gathered}
$$

Complexity of INSERTION-SORT (3)

■ The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$
T(n)=\sum_{j=2}^{n}(j-1)
$$

$T(n)$ is the arithmetic series $\sum_{k=1}^{n-1} k$, so

$$
\begin{gathered}
T(n)=\frac{n(n-1)}{2} \\
T(n)=\Theta\left(n^{2}\right)
\end{gathered}
$$

■ Best-case is $T(n)=\Theta(n)$

Complexity of INSERTION-SORT (3)

■ The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$
T(n)=\sum_{j=2}^{n}(j-1)
$$

$T(n)$ is the arithmetic series $\sum_{k=1}^{n-1} k$, so

$$
\begin{gathered}
T(n)=\frac{n(n-1)}{2} \\
T(n)=\Theta\left(n^{2}\right)
\end{gathered}
$$

■ Best-case is $T(n)=\Theta(n)$
■ Average-case is $T(n)=\Theta\left(n^{2}\right)$

Correctness

■ Does Insertion-Sort terminate for all valid inputs?

■ Does Insertion-Sort terminate for all valid inputs?
■ If so, does it satisfy the conditions of the sorting problem?

- A contains a permutation of the initial value of A
- A is sorted: $A[1] \leq A[2] \leq \cdots \leq A[$ length $(A)]$

■ Does Insertion-Sort terminate for all valid inputs?
■ If so, does it satisfy the conditions of the sorting problem?

- A contains a permutation of the initial value of A
- A is sorted: $A[1] \leq A[2] \leq \cdots \leq A[$ length $(A)]$

■ We want a formal proof of correctness

- does not seem straightforward...

The Logic of Algorithmic Steps

Example 1: (straight-line program)

```
Bigger(n)
1 // must return a value greater than n
2 m=n*n+1
3 return m
```

Example 1: (straight-line program)

```
BigGer(n)
1 // must return a value greater than n
2 m=n*n+1
3 return m
```

Example 2: (branching)

SortTwo (A)
1 // must sort (in-place) an array of 2 elements
2 if $A[1]>A[2]$
$3 \quad t=A[1]$
$4 \quad A[1]=A[2]$
$5 \quad A[2]=t$

Loop Invariants

- We formulate a loop-invariant condition C
- C must remain true through a loop

■ We formulate a loop-invariant condition C

- C must remain true through a loop
- C is relevant to the problem definition: we use C at the end of a loop to prove the correctness of the result
- We formulate a loop-invariant condition C
- C must remain true through a loop
- C is relevant to the problem definition: we use C at the end of a loop to prove the correctness of the result

■ Then, we only need to prove that the algorithm terminates

Loop Invariants (2)

Loop Invariants (2)

- Formulation: this is where we try to be smart
- the invariant must reflect the structure of the algorithm
- it must be the basis to prove the correctness of the solution

Loop Invariants (2)

■ Formulation: this is where we try to be smart

- the invariant must reflect the structure of the algorithm
- it must be the basis to prove the correctness of the solution

■ Proof of validity (i.e., that C is indeed a loop invariant): typical proof by induction

- initialization: we must prove that the invariant C is true before entering the loop
- maintenance: we must prove that if C is true at the beginning of a cycle then it remains true after one cycle

Loop Invariant for INSERTION-SORT

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```


Loop Invariant for INSERTION-SORT

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

- The main idea is to insert $A[i]$ in $A[1 \ldots i-1]$ so as to maintain a sorted subsequence $A[1$. . i]

Loop Invariant for INSERTION-SORT

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ The main idea is to insert $A[i]$ in $A[1 \ldots i-1]$ so as to maintain a sorted subsequence $A[1$. .i]

■ Invariant: (outer loop) the subarray $A[1 . . i-1]$ consists of the elements originally in $A[1 . . i-1]$ in sorted order

Loop Invariant for INSERTION-SORT (2)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```


Loop Invariant for INSERTION-SORT (2)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Initialization: $j=2$, so $A[1 . . j-1]$ is the single element $A[1]$

- A[1] contains the original element in $A[1]$
- A[1] is trivially sorted

Loop Invariant for INSERTION-SORT (3)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```


Loop Invariant for INSERTION-SORT (3)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
\(5 \quad j=j-1\)
```

■ Maintenance: informally, if $A[1 \ldots i-1]$ is a permutation of the original $A[1 \ldots i-1]$ and $A[1 \ldots i-1]$ is sorted (invariant), then if we enter the inner loop:

- shifts the subarray $A[k$. . i-1] by one position to the right
- inserts key, which was originally in $A[i]$ at its proper position $1 \leq k \leq i-1$, in sorted order

Loop Invariant for INSERTION-SORT (4)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```


Loop Invariant for INSERTION-SORT (4)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```

- Termination: Insertion-Sort terminates with $i=$ length $(A)+1$; the invariant states that

Loop Invariant for INSERTION-SORT (4)

```
Insertion-Sort ( \(A\) )
1 for \(i=2\) to length \((A)\)
\(2 \quad j=i\)
\(3 \quad\) while \(j>1\) and \(A[j-1]>A[j]\)
\(4 \quad \operatorname{swap} A[j]\) and \(A[j-1]\)
5
    \(j=j-1\)
```

- Termination: Insertion-Sort terminates with $i=$ length $(A)+1$; the invariant states that
- $A[1 \ldots i-1]$ is a permutation of the original $A[1 \ldots i-1]$
- $A[1 . . i-1]$ is sorted

Given the termination condition, $A[1 . . i-1]$ is the whole A So Insertion-Sort is correct!

Summary

■ You are given a problem P and an algorithm A

- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

Summary

- You are given a problem P and an algorithm A
- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

1. Formulate an invariant C

Summary

- You are given a problem P and an algorithm A
- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

1. Formulate an invariant C
2. Initialization
(for all valid inputs)

- prove that C holds right before the first execution of the first instruction of the loop

Summary

- You are given a problem P and an algorithm A
- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

1. Formulate an invariant C
2. Initialization
(for all valid inputs)

- prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

- prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

Summary

- You are given a problem P and an algorithm A
- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

1. Formulate an invariant C
2. Initialization
(for all valid inputs)

- prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

- prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

4. Termination
(for all valid inputs)

- prove that the loop terminates, with some exit condition X

Summary

- You are given a problem P and an algorithm A
- Pformally defines a correctness condition
- assume, for simplicity, that A consists of one loop

1. Formulate an invariant C
2. Initialization
(for all valid inputs)

- prove that C holds right before the first execution of the first instruction of the loop

3. Management (for all valid inputs)

- prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

4. Termination (for all valid inputs)

- prove that the loop terminates, with some exit condition X

5. Prove that $X \wedge C \Rightarrow P$, which means that A is correct
```
Selection-Sort (A)
\(1 \quad n=\operatorname{length}(A)\)
2 for \(i=1\) to \(n-1\)
3 smallest \(=i\)
\(4 \quad\) for \(j=i+1\) to \(n\)
5 if \(A[j]<A[\) smallest \(]\)
smallest \(=j\)
    swap \(A[i]\) and \(A[s m a l l e s t]\)
```

```
Selection-Sort(A)
\(1 \quad n=\) length \((A)\)
2 for \(i=1\) to \(n-1\)
3 smallest \(=i\)
\(4 \quad\) for \(j=i+1\) to \(n\)
5 if \(A[j]<A[\) smallest \(]\)
\(6 \quad\) smallest \(=j\)
7 swap A[i] and A[smallest]
```

■ Correctness?

- loop invariant?
- Complexity?
- worst, best, and average case?

Exercise: Analyze Bubblesort

```
Bubblesort(A)
for i = 1 to length(A)
    for j = length(A) downto i}+
    if }A[j]<A[j-1
4
                        swap A[j] and A[j - 1]
```


Exercise: Analyze Bubblesort

```
Bubblesort(A)
for i = 1 to length(A)
for j = length(A) downto i+1
3 if }A[j]<A[j-1
4 swap A[j] and A[j - 1]
```

■ Correctness?

- loop invariant?

■ Complexity?

- worst, best, and average case?

