Basics of Complexity Analysis: The RAM Model and the Growth of Functions

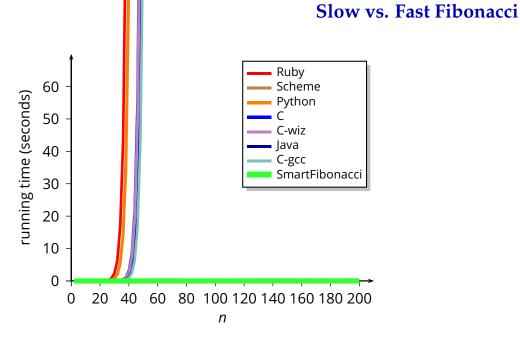
Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

February 23, 2017

Outline

- Informal analysis of two Fibonacci algorithms
- The random-access machine model
- Measure of complexity
- Characterizing functions with their asymptotic behavior
- Big-O, omega, and theta notations

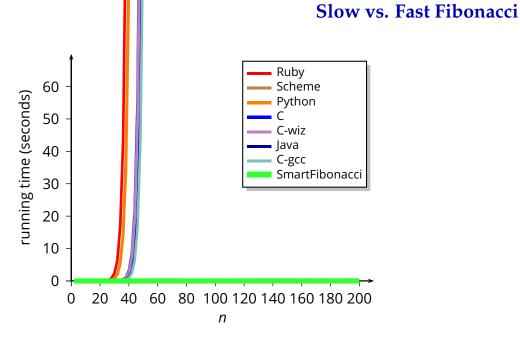


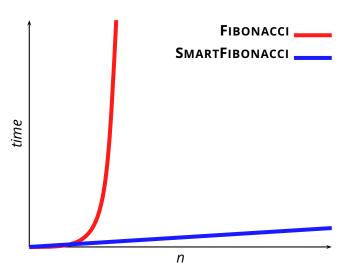
■ We informally characterized our two Fibonacci algorithms

- We informally characterized our two Fibonacci algorithms
 - ► FIBONACCI is **exponential** in *n*
 - ► **SMARTFIBONACCI** is (almost) *linear* in *n*

- We informally characterized our two Fibonacci algorithms
 - ► FIBONACCI is **exponential** in *n*
 - ► **SMARTFIBONACCI** is (almost) *linear* in *n*
- How do we characterize the complexity of algorithms?
 - in general

- We informally characterized our two Fibonacci algorithms
 - ► FIBONACCI is **exponential** in *n*
 - ► **SMARTFIBONACCI** is (almost) *linear* in *n*
- How do we characterize the complexity of algorithms?
 - in general
 - in a way that is specific to the algorithms
 - but independent of implementation details





■ An informal model of the *random-access machine (RAM)*

- An informal model of the *random-access machine (RAM)*
- **Basic types** in the RAM model

- An informal model of the *random-access machine (RAM)*
- *Basic types* in the RAM model
 - integer and floating-point numbers
 - ▶ limited size of each "word" of data (e.g., 64 bits)

- An informal model of the *random-access machine (RAM)*
- *Basic types* in the RAM model
 - integer and floating-point numbers
 - ▶ limited size of each "word" of data (e.g., 64 bits)
- *Basic steps* in the RAM model

- An informal model of the *random-access machine (RAM)*
- *Basic types* in the RAM model
 - integer and floating-point numbers
 - ▶ limited size of each "word" of data (e.g., 64 bits)
- *Basic steps* in the RAM model
 - operations involving basic types
 - ▶ load/store: assignment, use of a variable
 - arithmetic operations: addition, multiplication, division, etc.
 - branch operations: conditional branch, jump
 - subroutine call

- An informal model of the *random-access machine (RAM)*
- *Basic types* in the RAM model
 - integer and floating-point numbers
 - limited size of each "word" of data (e.g., 64 bits)
- *Basic steps* in the RAM model
 - operations involving basic types
 - load/store: assignment, use of a variable
 - arithmetic operations: addition, multiplication, division, etc.
 - branch operations: conditional branch, jump
 - subroutine call
- A *basic step* in the RAM model takes a *constant time*

```
SMARTFIBONACCI(n)
    if n == 0
         return 0
   elseif n == 1
         return 1
    else pprev = 0
 6
        prev = 1
         for i = 2 to n
 8
9
             f = prev + pprev
              pprev = prev
10
              prev = f
    return f
```

```
SMARTFIBONACCI(n)
    if n == 0
         return 0
   elseif n == 1
         return 1
    else pprev = 0
 6
        prev = 1
         for i = 2 to n
 8
9
             f = prev + pprev
             pprev = prev
10
              prev = f
    return f
```

cost times (n > 1)

1 if $n == 0$ c_1 1 c_2 0 c_3 1
3 elseif $n == 1$ c_3 1
4 return 1 c ₄ 0
5 else $pprev = 0$ c_5 1
6 $prev = 1$ c_6 1
7 for $i = 2$ to n c_7 n
$8 f = prev + pprev c_8 n-1$
9 $pprev = prev$ c_9 $n-1$
10
11 return <i>f</i>

$$T(n) = c_1 + c_3 + c_5 + c_6 + c_{11} + nc_7 + (n-1)(c_8 + c_9 + c_{10})$$

SMARTFIBONACCI(n)		cost	times $(n > 1)$
1	if <i>n</i> == 0	<i>C</i> ₁	1
2	return 0	<i>c</i> ₂	0
3	elseif n == 1	c 3	1
4	return 1	C 4	0
5	else $pprev = 0$	c ₅	1
6	prev = 1	<i>c</i> ₆	1
7	for $i = 2$ to n	c 7	n
8	f = prev + pprev	c 8	<i>n</i> − 1
9	pprev = prev	C 9	<i>n</i> − 1
10	prev = f	<i>c</i> ₁₀	<i>n</i> − 1
11	return f	c ₁₁	1

- In general we measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits

- In general we measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - ▶ did we do that for **SMARTFIBONACCI**?

- In general we measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for SMARTFIBONACCI?
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, and a value x, output TRUE if A contains x

- In general we measure the complexity of an algorithm *as a function of the size* of the input
 - size measured in bits
 - did we do that for SMARTFIBONACCI?
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, and a value x, output TRUE if A contains x

- In general we measure the complexity of an algorithm *as a function of the size* of the input
 - size measured in bits
 - did we do that for SMARTFIBONACCI?
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, and a value x, output TRUE if A contains x

$$T(n) = Cn$$

■ In general we measure the complexity of an algorithm *in the worst case*

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, output TRUE if A contains two equal values $a_i = a_i$ (with $i \neq j$)

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, output TRUE if A contains two equal values $a_i = a_j$ (with $i \neq j$)

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$, output TRUE if A contains two equal values $a_i = a_i$ (with $i \neq j$)

$$T(n) = C \frac{n(n-1)}{2}$$

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

- We do not care about the specific costs of each basic step
 - these costs are likely to vary significantly with languages, implementations, and processors
 - ▶ so, we assume $c_1 = c_2 = c_3 = \cdots = c_i$

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

- We do not care about the specific costs of each basic step
 - these costs are likely to vary significantly with languages, implementations, and processors
 - ▶ so, we assume $c_1 = c_2 = c_3 = \cdots = c_i$
 - \blacktriangleright we also ignore the specific *value* c_i , and in fact *we ignore every constant cost factor*

Order of Growth

■ We care only about the **order of growth** or rate of growth of T(n)

Order of Growth

- We care only about the **order of growth** or rate of growth of T(n)
 - so we ignore lower-order terms

E.g., in

$$T(n) = an^2 + bn + c$$

we only consider the n^2 term and say that T(n) is a quadratic function in n

Order of Growth

- We care only about the **order of growth** or rate of growth of T(n)
 - so we ignore lower-order terms

E.g., in

$$T(n) = an^2 + bn + c$$

we only consider the n^2 term and say that T(n) is a quadratic function in n. We write

$$T(n) = \Theta(n^2)$$

and say that "T(n) is theta of n-squared"

Don Knuth's A-notation

Let A(c) indicate a quantity that is **absolutely at most** c

Don Knuth's A-notation

Let A(c) indicate a quantity that is **absolutely at most** c

Example: x = A(2) means that $|x| \le 2$

- Let A(c) indicate a quantity that is **absolutely at most** c
 - **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► *A*(*y*) denotes *a set of values*
 - ► x = A(y) really means $x \in A(y)$

- Let A(c) indicate a quantity that is **absolutely at most** c
 - **Example:** x = A(2) means that $|x| \le 2$
- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ► x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

Examples:

 $\pi = 3.14159265...$

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► *A*(*y*) denotes *a set of values*
 - X = A(y) really means $x \in A(y)$
- Caluclating with the A notation

Examples:

 $\pi = 3.14159265... = 3.14 + A(0.005)$

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes **a set of values**
 - ► x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) =

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - X = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - **warning:** this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- π = 3.14159265 . . . = 3.14 + A(0.005)
- A(3) + A(4) = A(7)
- $\rightarrow x = A(3) \Rightarrow x = A(4)$

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $\rightarrow x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - **warning:** this does not mean that x equals A(y)!
 - ► A(y) denotes **a set of values**
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- π = 3.14159265 . . . = 3.14 + A(0.005)
- A(3) + A(4) = A(7)
- $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) =

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes **a set of values**
 - X = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- π = 3.14159265 . . . = 3.14 + A(0.005)
- A(3) + A(4) = A(7)
- $x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - **warning:** this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $\rightarrow x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)
- (10 + A(2))(20 + A(1)) =

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $\rightarrow x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)
- (10 + A(2))(20 + A(1)) = 200 + A(52)

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - ▶ x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $\rightarrow x = A(3) \Rightarrow x = A(4)$, but $x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)
- (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

Let A(c) indicate a quantity that is **absolutely at most** c

Example: x = A(2) means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $x = A(3) \Rightarrow x = A(4), \text{ but } x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)
- (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
- $A(n-1) = A(n^2)$

■ Let A(c) indicate a quantity that is **absolutely at most** c

Example:
$$x = A(2)$$
 means that $|x| \le 2$

- When x = A(y) we say that "x is absolutely at most y"
 - warning: this does not mean that x equals A(y)!
 - ► A(y) denotes a set of values
 - x = A(y) really means $x \in A(y)$
- Caluclating with the A notation

- $\pi = 3.14159265... = 3.14 + A(0.005)$
- A(3) + A(4) = A(7)
- $x = A(3) \Rightarrow x = A(4), \text{ but } x = A(4) \Rightarrow x = A(3)$
- A(2)A(7) = A(14)
- (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
- ► $A(n-1) = A(n^2)$ for all n

$$f(n) = O(g(n))$$

read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

$$f(n) = O(g(n))$$

► read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

Examples:

▶ 3n + 2 = O(n)

$$f(n) = O(g(n))$$

► read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

- ► 3n + 2 = O(n)
- $2\sqrt{n} + \log n = O(n^2)$

$$f(n) = O(g(n))$$

read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

- \rightarrow 3n + 2 = O(n)
- $2\sqrt{n} + \log n = O(n^2)$
- ▶ let $T_{SF}(n)$ be the computational complexity of **SMARTFIBONACCI** (the efficient algorithm); then

$$f(n) = O(g(n))$$

read "f(n) is big-oh of g(n)" or simply "f(n) is oh of g(n)"

- ▶ 3n + 2 = O(n)
- $2\sqrt{n} + \log n = O(n^2)$
- ▶ let $T_{SF}(n)$ be the computational complexity of **SMARTFIBONACCI** (the efficient algorithm); then

$$T_{SF}(n) = O(n)$$

From O to Ω and Θ

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n), which we can also write as

$$g(n) = \Omega(f(n))$$

▶ which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)"

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n), which we can also write as

$$g(n) = \Omega(f(n))$$

▶ which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)"

Examples:

 $> 3n + 2 = \Omega(\log n)$

From O to Ω and Θ

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n), which we can also write as

$$g(n) = \Omega(f(n))$$

▶ which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)"

- $3n + 2 = \Omega(\log n)$
- ▶ let $T_F(n)$ be the computational complexity of **FIBONACCI** (the inefficient algorithm); then

$$T_F(n) = \Omega((1.4)^n)$$

■ If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n), which we can also write as

$$g(n) = \Omega(f(n))$$

• which we read as "f(n) is big-omega of g(n)" of simply "f(n) is omega of g(n)"

Examples:

- $3n + 2 = \Omega(\log n)$
- ▶ let $T_F(n)$ be the computational complexity of **FIBONACCI** (the inefficient algorithm); then

$$T_F(n) = \Omega((1.4)^n)$$

■ When f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ we also write

$$f(n) = \Theta(g(n))$$

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to n What is the asymptotic behavior of $\pi(n)$?

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to n What is the asymptotic behavior of $\pi(n)$?

$$\blacktriangleright \pi(n) = O(n)$$

trivial *upper bound*

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- \blacktriangleright $\pi(n) = O(n)$
- $\rightarrow \pi(n) = \Omega(1)$

trivial *upper bound*

trivial *lower bound*

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- \blacktriangleright $\pi(n) = O(n)$
- \blacktriangleright $\pi(n) = \Omega(1)$
- $\pi(n) = \Theta(n/\log n)$

trivial *upper bound*

trivial *lower bound*

non-trivial *tight bound*

■ The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to n What is the asymptotic behavior of $\pi(n)$?

- $\rightarrow \pi(n) = O(n)$
- \blacktriangleright $\pi(n) = \Omega(1)$
- $\pi(n) = \Theta(n/\log n)$

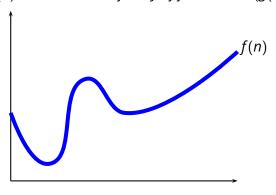
trivial *upper bound*

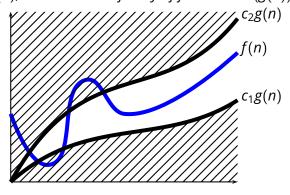
trivial *lower bound*

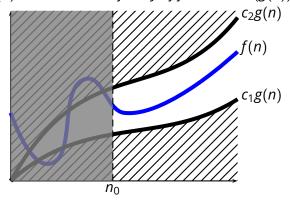
non-trivial tight bound

In fact, the fundamental prime number theorem says that

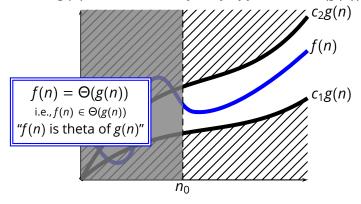
$$\lim_{n\to\infty}\frac{\pi(n)\ln n}{n}=1$$







$$\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$



$$\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$

$$T(n) = n^2 + 10n + 100$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n}$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \quad \Rightarrow T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \quad \Rightarrow T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \quad \Rightarrow T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \quad \Rightarrow T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2}$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$$

$$T(n) = \text{complexity of } SMARTFIBONACCI$$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$$

■
$$T(n) = \text{complexity of SMARTFIBONACCI}$$
 $\Rightarrow T(n) = \Theta(n)$

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \implies T(n) = \Theta(n \sqrt{n})$$

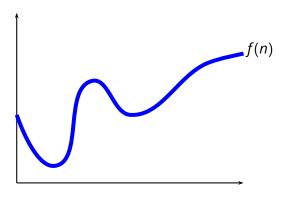
$$T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$$

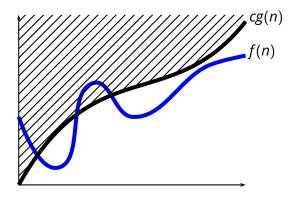
■
$$T(n) = \text{complexity of SMARTFIBONACCI}$$
 $\Rightarrow T(n) = \Theta(n)$

- We characterize the behavior of T(n) in the limit
- The Θ -notation is an *asymptotic notation*

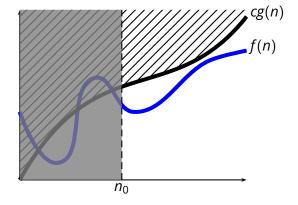
O-Notation



O-Notation

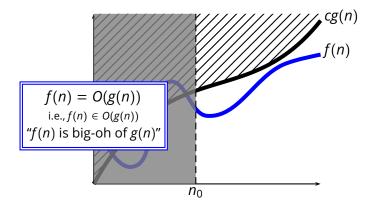


O-Notation



$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0$$

 $: 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$



$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0$$

: $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

$$f(n) = n^2 + 10n + 100$$

$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = n + 10 \log n \Rightarrow f(n) = O(2^n)$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

$$f(n) = 2^{\frac{n}{6}} + n^7$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n \sqrt{n} \implies f(n) = O(n^2)$$

$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2}$$

$$f(n) = 2^{\frac{n}{6}} + n^7$$
 $\Rightarrow f(n) = O((1.5)^n)$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = 2^{\frac{n}{6}} + n^7$$
 $\Rightarrow f(n) = O((1.5)^n)$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = 2^{\frac{n}{6}} + n^7$$
 $\Rightarrow f(n) = O((1.5)^n)$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

■
$$f(n) = n^2 + 10n + 100$$
 $\Rightarrow f(n) = O(n^2)$ $\Rightarrow f(n) = O(n^3)$

$$f(n) = 2^{\frac{n}{6}} + n^7$$
 $\Rightarrow f(n) = O((1.5)^n)$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

 $n^2 - 10n + 100 = O(n \log n)$?

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? \text{ NO}$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)?$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$\bullet$$
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)?$$
 YES

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$\bullet$$
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES

■
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)?$$
 YES

$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})?$$
 YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)?$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})?$$
 YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$$
? NO

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$\bullet$$
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES

$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})?$$
 YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? NO$$

$$\sqrt{n} = O(\log^2 n)?$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)?$$
 YES

$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})?$$
 YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)?$$
 NO

$$\sqrt{n} = O(\log^2 n)? \quad NO$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)?$$
 YES

■
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? NO$$

$$\sqrt{n} = O(\log^2 n)? \quad NO$$

$$n^2 + (1.5)^n = O(2^{\frac{n}{2}})?$$

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)? NO$$

$$\bullet$$
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$? YES

■
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? NO$$

$$\sqrt{n} = O(\log^2 n)? \quad NO$$

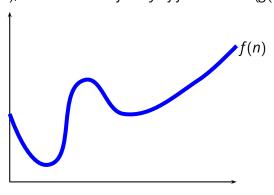
$$n^2 + (1.5)^n = O(2^{\frac{n}{2}})$$
? NO

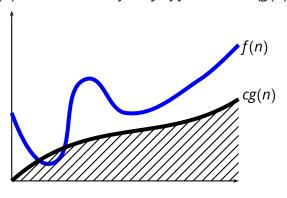
■ So, what is the complexity of **FINDEQUALS**?

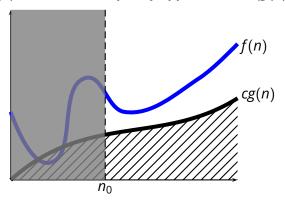
■ So, what is the complexity of **FINDEQUALS**?

$$T(n) = \Theta(n^2)$$

- ▶ n = length(A) is the size of the input
- we measure the worst-case complexity

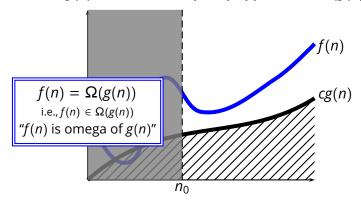






$$\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0$$

 $: 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$



$$\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0$$

 $: 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

■ *Theorem:* for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ-notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively

- *Theorem:* for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ-notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

- *Theorem:* for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ-notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

■ When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n) **dominates** f(n)

- *Theorem:* for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

- When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n) **dominates** f(n)
- When $f(n) = \Omega(g(n))$ we say that g(n) is a **lower bound** for f(n)

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

■ We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
?

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES
 $n^2 + \Omega(n) - 1 = O(n^2)$?

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES
 $n^2 + \Omega(n) - 1 = O(n^2)$? NO

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES
 $n^2 + \Omega(n) - 1 = O(n^2)$? NO
 $n^2 + O(n) - 1 = O(n^2)$?

We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES
 $n^2 + \Omega(n) - 1 = O(n^2)$? NO
 $n^2 + O(n) - 1 = O(n^2)$? YES

■ We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$?

■ We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$? YES

o-Notation

■ The upper bound defined by the *O*-notation may or may not be *asymptotically tight*

o-Notation

■ The upper bound defined by the *O*-notation may or may not be *asymptotically tight*

```
E.g., n \log n = O(n^2) is not asymptotically tight n^2 - n + 10 = O(n^2) is asymptotically tight
```

■ The upper bound defined by the *O*-notation may or may not be *asymptotically tight*

E.g., $n \log n = O(n^2) \quad \text{is not asymptotically tight}$ $n^2 - n + 10 = O(n^2) \quad \text{is asymptotically tight}$

■ We use the o-notation to denote upper bounds that are not asymtotically tight. So, given a function g(n), we define the family of functions o(g(n))

$$o(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0$$

: $0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

ω-Notation

The lower bound defined by the Ω-notation may or may not be *asymptotically tight*

ω-Notation

lacktriangle The lower bound defined by the Ω -notation may or may not be *asymptotically tight*

E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

 $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

ω-Notation

lacktriangle The lower bound defined by the Ω -notation may or may not be *asymptotically tight*

E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

$$n + 4n \log n = \Omega(n \log n)$$
 is asymptotically tight

■ We use the ω -notation to denote lower bounds that are *not* asymtotically tight. So, given a function g(n), we define the family of functions $\omega(g(n))$

$$\omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$