Elementary Data Structures and Hash Tables

Antonio Carzaniga
Faculty of Informatics
Università della Svizzera italiana

March 21, 2017

■ Common concepts and notation
■ Stacks
■ Queues

■ Linked lists

■ Trees

- Direct-access tables

■ Hash tables

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

■ A data structure stores data and possibly meta-data

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

■ A data structure stores data and possibly meta-data

- e.g., a heap needs an array A to store the keys, plus a variable A. heap-size to remember how many elements are in the heap

■ The ubiquitous "last-in first-out" container (LIFO)

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty(S) returns true if and only if S is empty
- Push (S, x) pushes the value x onto the stack S
- Pop(S) extracts and returns the value on the top of the stack S

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty(S) returns true if and only if S is empty
- Push (S, x) pushes the value x onto the stack S
- Pop(S) extracts and returns the value on the top of the stack S
- Implementation
- using an array
- using a linked list
- ...

A Stack Implementation

■ Array-based implementation

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

```
StaCk-Empty(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE
```


A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S.top is the current position of the top element of S

```
StACK-Empty(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE
```

```
Push(S,x)
S.top = S.top + 1
2 S[S.top] = x
```

Pop(S)
1 if Stack-Empty (S) error "underflow"
else S.top $=$ S.top -1
return $S[S$. top + 1]

■ The ubiquitous "first-in first-out" container (FIFO)

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue(Q) extracts the element at the head of queue Q

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue(Q) extracts the element at the head of queue Q

■ Implementation

- Q is an array of fixed length Q. length
- i.e., Q holds at most Q.length elements
- enqueueing more than Q elements causes an "overflow" error
- Q.head is the position of the "head" of the queue
- Q.tail is the first empty position at the tail of the queue

```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
    Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
        error "overflow"
    else Q[Q.tail] = x
        if Q.tail < Q.length
        Q.tail = Q.tail + 1
        else Q.tail = 1
        if Q.tail == Q.head
        Q.queue-full = TRUE
        Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
6 else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
9 Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
9 Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
6 else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
    Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
6 else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
    Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
    Q.queue-empty = FALSE
```



```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
3 else Q[Q.tail] = x
if Q.tail < Q.length
5 Q.tail = Q.tail +1
else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = TRUE
    Q.queue-empty = FALSE
```



```
Dequeue(Q)
    1 if Q.queue-empty
    2 error "underflow"
    3 else \(x=Q[Q . h e a d]\)
    4 if \(Q\). head \(<Q\).length
    \(5 \quad\) Q.head \(=\) Q.head +1
    6 else \(Q\). head \(=1\)
    7 if Q.tail == Q.head
    \(8 \quad\) Q.queue-empty \(=\) TRUE
\(9 \quad\) Q.queue-full \(=\) FALSE
10
    return \(x\)
```



```
Dequeue(Q)
    1 if Q.queue-empty
    2 error "underflow"
    3 else \(x=Q[Q . h e a d]\)
    4 if \(Q\). head \(<Q\).length
    \(5 \quad\) Q.head \(=\) Q.head +1
    6 else Q.head = 1
    7 if Q.tail == Q.head
    \(8 \quad\) Q.queue-empty \(=\) TRUE
\(9 \quad\) Q.queue-full \(=\) FALSE
10
    return \(x\)
```



```
Dequeue(Q)
    1 if Q.queue-empty
    2 error "underflow"
    3 else \(x=Q[Q . h e a d]\)
    4 if Q.head \(<\) Q.length
    \(5 \quad\) Q.head \(=\) Q.head +1
    6 else Q.head \(=1\)
    7 if Q.tail == Q.head
    \(8 \quad\) Q.queue-empty \(=\) TRUE
\(9 \quad\) Q.queue-full \(=\) FALSE
10
    return \(x\)
```



```
Dequeue(Q)
    1 if Q.queue-empty
    2 error "underflow"
    3 else \(x=Q[Q . h e a d]\)
    4 if \(Q\).head \(<\) Q.length
    \(5 \quad\) Q.head \(=\) Q.head +1
    6 else Q.head = 1
    7 if Q.tail == Q.head
    \(8 \quad\) Q.queue-empty \(=\) TRUE
\(9 \quad\) Q.queue-full \(=\) FALSE
10
    return \(x\)
```



```
Dequeue(Q)
    1 if Q.queue-empty
    2 error "underflow"
    3 else \(x=Q[Q . h e a d]\)
    4 if \(Q\).head \(<\) Q.length
    \(5 \quad\) Q.head \(=\) Q.head +1
    6 else Q.head \(=1\)
    7
    8
9
10
        if Q.tail == Q.head
        Q.queue-empty \(=\) TRUE
        Q.queue-full \(=\) FALSE
        return \(x\)
```

Q.head

- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete((L, x) removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete(L, x) removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Implementation
- a doubly-linked list
- each element x has two "links" x.prev and x. next to the previous and next elements, respectively
- each element x holds a key x.key
- it is convenient to have a dummy "sentinel" element L.nil

Linked List With a "Sentinel"

```
LIst-Init(L)
1 L.nil.prev = L.nil
2 L.nil.next = L.nil
```


List-Insert (L, x)

1 x.next $=$ L.nil.next
2 L.nil.next.prev $=x$
L.nil.next $=x$
x.prev $=$ L.nil

List-Search (L, k)

```
x = L.nil.next
```

while $x \neq$ L.nil $\wedge x$.key $\neq k$
$x=x . n e x t$
return x

Trees

■ Structure

- fixed branching
- unbounded branching

■ Structure

- fixed branching
- unbounded branching
- Implementation
- for each node $x \neq$ T.root, x.parent is x 's parent node
- fixed branching:
e.g., x.left-child and x.right-child in a binary tree
- unbounded branching:
x. left-child is x's first (leftmost) child x.right-sibling is x closest sibling to the right

Complexity

Complexity
$\underline{\underline{\text { Algorithm Complexity }}}$

Algorithm Complexity

Stack-Емрту

Complexity

Algorithm	Complexity
STACK-EMPTY	$O(1)$
PUSH	

Algorithm	Complexity
STACK-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
ENQueue	$O(1)$
Dequeue	$O(1)$
LISt-Insert	

Algorithm	Complexity
STACK-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
LISt-Insert	$O(1)$
List-Delete	

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
LISt-Insert	$O(1)$
List-Delete	$O(1)$
List-SeArch	

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
LISt-InSERT	$O(1)$
LISt-DeLete	$O(1)$
LISt-SEARCH	$\Theta(n)$

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- Implementation
- many (concrete) data structures

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set

■ Interface (generic interface)

- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- Implementation
- many (concrete) data structures
- hash tables

Direct-Address Table

■ A direct-address table implements a dictionary

■ A direct-address table implements a dictionary

- The universe of keys is $U=\{1,2, \ldots, M\}$

■ A direct-address table implements a dictionary

- The universe of keys is $U=\{1,2, \ldots, M\}$
- Implementation
- an array T of size M
- each key has its own position in T
- A direct-address table implements a dictionary
- The universe of keys is $U=\{1,2, \ldots, M\}$
- Implementation
- an array T of size M
- each key has its own position in T

Direct-Address-Insert (T, k)
1 T[k] = TRUE

Direct-Address-Delete (T, k)
$1 T[k]=$ FALSE

> Direct-Address-Search (T, k)
> 1 return $T[k]$

Direct-Address Table (2)

- Complexity

Direct-Address Table (2)

■ Complexity
All direct-address table operations are $O(1)$!

■ Complexity
All direct-address table operations are $O(1)$!
So why isn't every set implemented with a direct-address table?

■ Complexity
All direct-address table operations are $O(1)$!
So why isn't every set implemented with a direct-address table?

- The space complexity is $\Theta(|U|)$
- $|U|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than $|U|$
- i.e., a direct-address table usually wastes a lot of space

■ Complexity
All direct-address table operations are $O(1)$!
So why isn't every set implemented with a direct-address table?

- The space complexity is $\Theta(|U|)$
- $|U|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than |U|
- i.e., a direct-address table usually wastes a lot of space
- Can we have the benefits of a direct-address table but with a table of reasonable size?

Hash Table

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

$\operatorname{Hash}-\operatorname{Insert}(T, k)$	$\operatorname{Hash}-\operatorname{Delete}(T, k)$
1	$T[h(k)]=\operatorname{TrUe}$

> HASH-SEARCH (T, k)
> $1 \quad$ return $T[h(k)]$

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

$\operatorname{Hash}-\operatorname{Insert}(T, k)$	$\operatorname{Hash}-\operatorname{Delete}(T, k)$
1	$T[h(k)]=\operatorname{TrUe}$

> HASH-SEARCH (T, k)
> $1 \quad$ return $T[h(k)]$

Are these algorithms correct?

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

$\operatorname{Hash}-\operatorname{Insert}(T, k)$	$\operatorname{Hash}-\operatorname{Delete}(T, k)$
1	$T[h(k)]=\operatorname{TrUe}$

> HASH-SEARCH (T, k)
> $1 \quad$ return $T[h(k)]$

Are these algorithms correct? No!

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash-Insert (T, k)	Hash-Delete (T, k)
1	$T[h(k)]=$ True

> HASH-SEARCH (T, k)
> $1 \quad$ return $T[h(k)]$

Are these algorithms correct? No!
What if two distinct keys $k_{1} \neq k_{2}$ collide? (I.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$)

Hash Table

Hash Table

Hash Table

Hash Table

Hash Table

Hash Table

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$.length)

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)

- We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
$■$ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We further assume that $h(k)$ can be computed in $O(1)$ time

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

■ We further assume that $h(k)$ can be computed in $O(1)$ time
■ Therefore, the complexity of Chained-HAsh-SeArch is

$$
\Theta(1+\alpha)
$$

Open-Address Hash Table

Hash-Insert (T, k)
$1 j=h(k)$
2 for $i=1$ to T.length
3 if $T[j]==$ NIL $T[j]=k$ return j
elseif $j<T$.length
$j=j+1$
else $j=1$
9 error "overflow"

Open-Addressing (2)

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

■ When a collision occurs, we simply find another free cell in T

- Idea: instead of using linked lists, we can store all the elements in the table
- this implies $\alpha \leq 1$

■ When a collision occurs, we simply find another free cell in T
■ A sequential "probe" may not be optimal

- can you figure out why?

```
Hash-Insert \((T, k)\)
1 for \(i=1\) to \(T\).length
\(2 j=h(k, i)\)
3 if \(T[j]==\) NIL
\(4 \quad T[j]=k\)
5 return \(j\)
6 error "overflow"
```

```
Hash-Insert \((T, k)\)
1 for \(i=1\) to \(T\).length
\(2 j=h(k, i)\)
3 if \(T[j]==\) NIL
\(4 \quad T[j]=k\)
5 return \(j\)
6 error "overflow"
```

■ Notice that $h(k, \cdot)$ must be a permutation

- i.e., $h(k, 1), h(k, 2), \ldots, h(k,|T|)$ must cover the entire table T

