
Dynamic Programming

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 11, 2017



Outline

Examples

Dynamic programming strategy

More examples



Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a
b

c
d

e

f

g
h

i

j
k



Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a

b

c

d

e

f

g

h

i

j
k

Greedy choice: earliest finish time



Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a

b

c

d

e

f

g

h

i

j
k

Greedy choice: earliest finish time



Weighted Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5



Weighted Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Is the earliest-finish greedy choice still optimal?



Weighted Activity-Selection Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Is the earliest-finish greedy choice still optimal?

Is any greedy choice optimal?



Case 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5



Case 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Case 1: activity i is in the optimal schedule



Case 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Case 1: activity i is in the optimal schedule



Case 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5



Case 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Case 2: activity i is not in the optimal schedule



Case 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 3

b 4

c 9

d 5

e 3

f 1

g 1

h 7

i 2

j 8

k 5

Case 2: activity i is not in the optimal schedule



Bellman-Ford Algorithm



Bellman-Ford Algorithm

Given a graph G = (V, E) and a weight function w, we compute the shortest
distance Du(v), from u ∈ V to v ∈ V , using the Bellman-Ford equation



Bellman-Ford Algorithm

Given a graph G = (V, E) and a weight function w, we compute the shortest
distance Du(v), from u ∈ V to v ∈ V , using the Bellman-Ford equation

Du(v) = min
x∈Adj(u)

[w(u, x) + Dx(v)]



Bellman-Ford Algorithm

Given a graph G = (V, E) and a weight function w, we compute the shortest
distance Du(v), from u ∈ V to v ∈ V , using the Bellman-Ford equation

Du(v) = min
x∈Adj(u)

[w(u, x) + Dx(v)]

u

v

x1x2

x3

x4

3
1

6
2



Bellman-Ford Algorithm

Given a graph G = (V, E) and a weight function w, we compute the shortest
distance Du(v), from u ∈ V to v ∈ V , using the Bellman-Ford equation

Du(v) = min
x∈Adj(u)

[w(u, x) + Dx(v)]

u

v

x1x2

x3

x4

3
1

6
2

20

23

18

25



Shortest Paths on DAGs

Given a directed acyclic graph G = (V, E), this one with unit weights, find the
shortest distances to a given node

a

b c

d

e

f

g

h i

j

k



Shortest Paths on DAGs

Given a directed acyclic graph G = (V, E), this one with unit weights, find the
shortest distances to a given node

a

b c

d

e

f

g

h i

j

k

Considering V in topological order. . .

a b c d e f g h i j k



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞1



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞3



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞32



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞323



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞3233



Shortest Paths on DAGs (2)

Considering V in topological order

Dx(k) = min
y∈Adj(x)

[w(x, y) + Dy(k)]

a b c d e f g h i j k

0∞1∞12∞3233

Since G is a DAG, computing Dy with y ∈ Adj(x) can be considered a subproblem
of computing Dx

◮ we build the solution bottom-up, storing the subproblem solutions



Longest Increasing Subsequence



Longest Increasing Subsequence

Given a sequence of numbers a1, a2, . . . , an, an increasing subsequence is any
subset ai1, ai2, . . . , aik such that 1 ≤ i1 < i2 < · · · < ik ≤ n, and such that

ai1 < ai2 < · · · < aik

You must find the longest increasing subsequence



Longest Increasing Subsequence

Given a sequence of numbers a1, a2, . . . , an, an increasing subsequence is any
subset ai1, ai2, . . . , aik such that 1 ≤ i1 < i2 < · · · < ik ≤ n, and such that

ai1 < ai2 < · · · < aik

You must find the longest increasing subsequence

Example: find (one of) the longest increasing subsequence in

5 2 8 6 3 6 9 7



Longest Increasing Subsequence

Given a sequence of numbers a1, a2, . . . , an, an increasing subsequence is any
subset ai1, ai2, . . . , aik such that 1 ≤ i1 < i2 < · · · < ik ≤ n, and such that

ai1 < ai2 < · · · < aik

You must find the longest increasing subsequence

Example: find (one of) the longest increasing subsequence in

5 2 8 6 3 6 9 7

A maximal-length subsequence is

2 3 6 9



Longest Increasing Subsequence (2)

Intuition: let L(j) be the length of the longest subsequence ending at aj



Longest Increasing Subsequence (2)

Intuition: let L(j) be the length of the longest subsequence ending at aj
◮ e.g., in

5 2 8 6 3 6 9 7

we have
L(4) = 2



Longest Increasing Subsequence (2)

Intuition: let L(j) be the length of the longest subsequence ending at aj
◮ e.g., in

5 2 8 6 3 6 9 7

we have
L(4) = 2

◮ this is our subproblem structure



Longest Increasing Subsequence (2)

Intuition: let L(j) be the length of the longest subsequence ending at aj
◮ e.g., in

5 2 8 6 3 6 9 7

we have
L(4) = 2

◮ this is our subproblem structure

Combining the subproblems

L(j) = 1 +max{L(i) ` i < j ∧ ai < aj}



Dynamic Programming



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy

◮ decompose a problem in (smaller) subproblems



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy

◮ decompose a problem in (smaller) subproblems

◮ must satisfy the optimal substructure property



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy

◮ decompose a problem in (smaller) subproblems

◮ must satisfy the optimal substructure property

◮ subproblems may overlap (indeed they should overlap!)



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy

◮ decompose a problem in (smaller) subproblems

◮ must satisfy the optimal substructure property

◮ subproblems may overlap (indeed they should overlap!)

◮ solve the subproblems



Dynamic Programming

First, the name “dynamic programming”

◮ does not mean writing a computer program

◮ term used in the 1950s, when “programming”meant “planning”

Problem domain

◮ typically optimization problems

◮ longest sequence, shortest path, etc.

General strategy

◮ decompose a problem in (smaller) subproblems

◮ must satisfy the optimal substructure property

◮ subproblems may overlap (indeed they should overlap!)

◮ solve the subproblems

◮ derive the solution from (one of) the solutions to the subproblems



Examples

Unweighted shortest path: given G = (V, E), find the length of the shortest path
from u to v



Examples

Unweighted shortest path: given G = (V, E), find the length of the shortest path
from u to v

◮ decompose u { v into u { w { v



Examples

Unweighted shortest path: given G = (V, E), find the length of the shortest path
from u to v

◮ decompose u { v into u { w { v

◮ easy to prove that, if u { w { v is minimal, then w { v is also minimal

◮ this is the optimal substructure property



Examples

Unweighted shortest path: given G = (V, E), find the length of the shortest path
from u to v

◮ decompose u { v into u { w { v

◮ easy to prove that, if u { w { v is minimal, then w { v is also minimal

◮ this is the optimal substructure property

Unweighted longest simple path: given G = (V, E), find the length of the longest
simple (i.e., no cycles) path from u to v

◮ we can also decompose u { v into u { w { v

◮ however, we can not prove that, if u { w { v is maximal, then w { v is also
maximal



Examples

Unweighted shortest path: given G = (V, E), find the length of the shortest path
from u to v

◮ decompose u { v into u { w { v

◮ easy to prove that, if u { w { v is minimal, then w { v is also minimal

◮ this is the optimal substructure property

Unweighted longest simple path: given G = (V, E), find the length of the longest
simple (i.e., no cycles) path from u to v

◮ we can also decompose u { v into u { w { v

◮ however, we can not prove that, if u { w { v is maximal, then w { v is also
maximal

◮ exercise: find a counter-example



Dynamic Programming vs. Divide-and-Conquer

Divide-and-conquer is also about decomposing a problem into subproblems



Dynamic Programming vs. Divide-and-Conquer

Divide-and-conquer is also about decomposing a problem into subproblems

Divide-and-conquer works by breaking the problem into significantly smaller
subproblems

◮ in dynamic programming, it is typical to reduce L(j) into L(j − 1)

◮ this is one reason why recursion does not work so well for dynamic programming



Dynamic Programming vs. Divide-and-Conquer

Divide-and-conquer is also about decomposing a problem into subproblems

Divide-and-conquer works by breaking the problem into significantly smaller
subproblems

◮ in dynamic programming, it is typical to reduce L(j) into L(j − 1)

◮ this is one reason why recursion does not work so well for dynamic programming

Divide-and-conquer splits the problem into independent subproblems

◮ in dynamic programming, subproblems typically overlap

◮ pretty much the same argument as above



Dynamic Programming vs. Greedy

Greedy: requires the greedy-choice property

◮ greedy: greedy choice plus one subproblem

◮ greedy choice typically before proceeding to the subproblem

◮ no need to store the result of each subproblem



Dynamic Programming vs. Greedy

Greedy: requires the greedy-choice property

◮ greedy: greedy choice plus one subproblem

◮ greedy choice typically before proceeding to the subproblem

◮ no need to store the result of each subproblem

Dynamic programming: more general

◮ does not need the greedy-choice property

◮ typically looks at several subproblems

◮ “dynamically” choose one of them to obtain a global solution

◮ typically works bottom-up

◮ typically reuses solutions of the subproblems



Typical Subproblem Structures

Prefix/suffix subproblems

◮ Input: x1, x2, . . . , xn
◮ Subproblem: x1, x2, . . . , xi, with i < n

◮ O(n) subproblems



Typical Subproblem Structures

Prefix/suffix subproblems

◮ Input: x1, x2, . . . , xn
◮ Subproblem: x1, x2, . . . , xi, with i < n

◮ O(n) subproblems

Subsequence subproblems

◮ Input: x1, x2, . . . , xn
◮ Subproblem: xi, xi+1, . . . , xj, with 1 ≤ i < j ≤ n



Typical Subproblem Structures

Prefix/suffix subproblems

◮ Input: x1, x2, . . . , xn
◮ Subproblem: x1, x2, . . . , xi, with i < n

◮ O(n) subproblems

Subsequence subproblems

◮ Input: x1, x2, . . . , xn
◮ Subproblem: xi, xi+1, . . . , xj, with 1 ≤ i < j ≤ n

◮ O(n2) subproblems



Edit Distance

Given two strings x and y, find the smallest set of edit operations that transform x
into y



Edit Distance

Given two strings x and y, find the smallest set of edit operations that transform x
into y

◮ edit operations: delete, insert, andmodify a single character

◮ very important applications

◮ spell checker

◮ DNA sequencing



Edit Distance

Given two strings x and y, find the smallest set of edit operations that transform x
into y

◮ edit operations: delete, insert, andmodify a single character

◮ very important applications

◮ spell checker

◮ DNA sequencing

Example: transform “Carzaniga” into “Jazayeri”



Edit Distance

Given two strings x and y, find the smallest set of edit operations that transform x
into y

◮ edit operations: delete, insert, andmodify a single character

◮ very important applications

◮ spell checker

◮ DNA sequencing

Example: transform “Carzaniga” into “Jazayeri”

C a r z a n i g a

J a z a y e r i



Edit Distance

Given two strings x and y, find the smallest set of edit operations that transform x
into y

◮ edit operations: delete, insert, andmodify a single character

◮ very important applications

◮ spell checker

◮ DNA sequencing

Example: transform “Carzaniga” into “Jazayeri”

C a r z a n i g a

J a z a y e r i

⇓ − ⇓ + + − −

J y e r



Edit Distance (2)

Align the two strings x and y, possibly inserting “gaps” between letters

◮ a gap in the source means insertion

◮ a gap in the destination means deletion

◮ two different character in the same position meansmodification



Edit Distance (2)

Align the two strings x and y, possibly inserting “gaps” between letters

◮ a gap in the source means insertion

◮ a gap in the destination means deletion

◮ two different character in the same position meansmodification

Many alignments are possible; the alignment with the smallest number of
insertions, deletions, and modifications defines the edit distance



Edit Distance (2)

Align the two strings x and y, possibly inserting “gaps” between letters

◮ a gap in the source means insertion

◮ a gap in the destination means deletion

◮ two different character in the same position meansmodification

Many alignments are possible; the alignment with the smallest number of
insertions, deletions, and modifications defines the edit distance

So, how do we solve this problem?



Edit Distance (2)

Align the two strings x and y, possibly inserting “gaps” between letters

◮ a gap in the source means insertion

◮ a gap in the destination means deletion

◮ two different character in the same position meansmodification

Many alignments are possible; the alignment with the smallest number of
insertions, deletions, and modifications defines the edit distance

So, how do we solve this problem?

What are the subproblems?



Edit Distance (3)



Edit Distance (3)

Idea: consider a prefix of x and a prefix of y



Edit Distance (3)

Idea: consider a prefix of x and a prefix of y

Let E(i, j) be the smallest set of changes that turn the first i characters of x into
the first j characters of y



Edit Distance (3)

Idea: consider a prefix of x and a prefix of y

Let E(i, j) be the smallest set of changes that turn the first i characters of x into
the first j characters of y

Now, the last column of the alignment of E(i, j) can have either

◮ a gap for x (i.e., insertion)

◮ a gap for y (i.e., deletion)

◮ no gaps (i.e., modification iff x[i] , y[j])



Edit Distance (3)

Idea: consider a prefix of x and a prefix of y

Let E(i, j) be the smallest set of changes that turn the first i characters of x into
the first j characters of y

Now, the last column of the alignment of E(i, j) can have either

◮ a gap for x (i.e., insertion)

◮ a gap for y (i.e., deletion)

◮ no gaps (i.e., modification iff x[i] , y[j])

This suggests a way to combine the subproblems; let diff (i, j) = 1 iff x[i] , y[j]
or 0 otherwise

E(i, j) = min{1 + E(i − 1, j),

1 + E(i, j − 1),

diff (i, j) + E(i − 1, j − 1)}



Knapsack

Problem definition

◮ Input: a set of n objects with their weights w1,w2, . . .wn and their values
v1, v2, . . . vn, and a maximum weightW

◮ Output: a subset K of the objects such that
∑

i∈K wi ≤ W and such that
∑

i∈K vi is
maximal



Knapsack

Problem definition

◮ Input: a set of n objects with their weights w1,w2, . . .wn and their values
v1, v2, . . . vn, and a maximum weightW

◮ Output: a subset K of the objects such that
∑

i∈K wi ≤ W and such that
∑

i∈K vi is
maximal

Dynamic-programming solution

◮ let K(w, j) be the maximum value achievable at maximum capacity w using the first
j items (i.e., items 1 . . . j)

◮ considering the jth element, we can either “use it or loose it,” so

K(w, j) = max{K(w − wj, j − 1) + vj, K(w, j − 1)}



Recursion?

The breakdown of a problem into subproblem suggests the use of a recursive
function. Is that a good idea?



Recursion?

The breakdown of a problem into subproblem suggests the use of a recursive
function. Is that a good idea?

◮ No! As we already said, recursion doesn’t quite work here



Recursion?

The breakdown of a problem into subproblem suggests the use of a recursive
function. Is that a good idea?

◮ No! As we already said, recursion doesn’t quite work here

◮ Why?

Remember Fibonacci?



Recursion?

The breakdown of a problem into subproblem suggests the use of a recursive
function. Is that a good idea?

◮ No! As we already said, recursion doesn’t quite work here

◮ Why?

Remember Fibonacci?

FIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)



Recursion?

The breakdown of a problem into subproblem suggests the use of a recursive
function. Is that a good idea?

◮ No! As we already said, recursion doesn’t quite work here

◮ Why?

Remember Fibonacci?

FIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

Recursion solves the same problem over and over again



Memoization

Problem: recursion solves the same problems repeatedly

Idea: “cache” the results



Memoization

Problem: recursion solves the same problems repeatedly

Idea: “cache” the results

FIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 elseif (n, x) ∈ H // a hash table H “caches” results
6 return x
7 else x = FIBONACCI(n − 1) + FIBONACCI(n − 2)
8 INSERT(H, n, x)
9 return x

Idea also known asmemoization



Complexity



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

◮ the complexity of the greedy strategy per-se is Θ(n)



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

◮ the complexity of the greedy strategy per-se is Θ(n)

Dynamic programming

1. break down the problem in subproblems



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

◮ the complexity of the greedy strategy per-se is Θ(n)

Dynamic programming

1. break down the problem in subproblems—O(1), O(n), O(n2), . . . subproblems



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

◮ the complexity of the greedy strategy per-se is Θ(n)

Dynamic programming

1. break down the problem in subproblems—O(1), O(n), O(n2), . . . subproblems

2. you solve the main problem by choosing one of the subproblems



Complexity

Greedy

1. start with the greedy choice

2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

◮ the complexity of the greedy strategy per-se is Θ(n)

Dynamic programming

1. break down the problem in subproblems—O(1), O(n), O(n2), . . . subproblems

2. you solve the main problem by choosing one of the subproblems

3. in practice, solve the subproblems bottom-up



Exercise



Exercise

Puzzle 0: is it possible to insert some ‘+’ signs in the string “213478” so that the
resulting expression would equal 214?



Exercise

Puzzle 0: is it possible to insert some ‘+’ signs in the string “213478” so that the
resulting expression would equal 214?
◮ Yes, because 2 + 134 + 78 = 214

Puzzle 1: is it possible to insert some ‘+’ signs in the strings of digits to obtain
the corresponding target number?

digits target

646805736141599100791159198 472004

6152732017763987430884029264512187586207273294807 560351

48796142803774467559157928 326306

195961521219109124054410617072018922584281838218 7779515


