Divide-and-Conquer Algorithms

Antonio Carzaniga
Faculty of Informatics
Università della Svizzera italiana

March 9, 2017

■ Merging (or set union)

- Searching

■ Sorting
■ Multiplying

- Computing the median

Merging (Set Union)

■ Input: sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$
Output: a sequence (a set) $X=\left\langle x_{1}, x_{2}, \ldots, x_{\ell}\right\rangle$ such that

■ Input: sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$
Output: a sequence (a set) $X=\left\langle x_{1}, x_{2}, \ldots, x_{\ell}\right\rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

■ Input: sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$
Output: a sequence (a set) $X=\left\langle x_{1}, x_{2}, \ldots, x_{\ell}\right\rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

■ Example:
$A=\langle 34,7,11,31,14,51,8,21,10\rangle$
$B=\langle 51,21,14,15,27,31,2\rangle$
$X=$

■ Input: sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$
Output: a sequence (a set) $X=\left\langle x_{1}, x_{2}, \ldots, x_{\ell}\right\rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

■ Example:

$$
\begin{aligned}
& A=\langle 34,7,11,31,14,51,8,21,10\rangle \\
& B=\langle 51,21,14,15,27,31,2\rangle \\
& X=\langle 34,7,11,31,14,51,8,21,10,15,27,2\rangle
\end{aligned}
$$

- Algorithm strategy
- Algorithm strategy
- iterate through every position i, first through A, and then B
- output a_{i} if a_{i} is not in $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}\right\rangle$
- output b_{i} if b_{i} is not in $\left\langle a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots b_{i-1}\right\rangle$

A Simple Merge Algorithm

■ Algorithm strategy

- iterate through every position i, first through A, and then B
- output a_{i} if a_{i} is not in $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}\right\rangle$
- output b_{i} if b_{i} is not in $\left\langle a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots b_{i-1}\right\rangle$

```
MergeSimple(A, B)
for i=1 to length(A)
if not Find}(A[1..i-1],A[i]
                        output A[i]
    for i = }1\mathrm{ to length(B)
    if not FIND(A,B[i]) and not FINd(B[1..i-1],B[i])
        output }B[i
```


Complexity

```
MergeSimple \((A, B)\)
1 for \(i=1\) to length \((A)\)
2 if not \(\operatorname{Find}(A[1 \ldots i-1], A[i])\)
3 output \(A[i]\)
4 for \(i=1\) to length \((B)\)
5 if not \(\operatorname{Find}(A, B[i])\) and not \(\operatorname{Find}(B[1 \ldots i-1], B[i])\)
\(6 \quad\) output \(B[i]\)
```


MergeSimple (A, B)

1 for $i=1$ to length (A)
2 if not $\operatorname{Find}(A[1 \ldots i-1], A[i])$
3 output $A[i]$
4 for $i=1$ to length (B)
5 if not $\operatorname{Find}(A, B[i])$ and not $\operatorname{Find}(B[1 \ldots i-1], B[i])$
$6 \quad$ output $B[i]$

$$
\text { let } n=\operatorname{length}(A)+\text { length }(B)
$$

$$
T(n)=\sum_{i=1}^{\text {length }(A)} T_{\text {FIND }}(i)+\sum_{i=1}^{\text {length }(B)}\left(T_{\text {FIND }}(i)+T_{\text {FIND }}(\text { length }(A))\right)
$$

MergeSimple (A, B)

1 for $i=1$ to length (A)
2 if not $\operatorname{Find}(A[1 \ldots i-1], A[i])$
3 output $A[i]$
4 for $i=1$ to length (B)
5 if not $\operatorname{Find}(A, B[i])$ and not $\operatorname{Find}(B[1 \ldots i-1], B[i])$
$6 \quad$ output $B[i]$

$$
\text { let } n=\operatorname{length}(A)+\text { length }(B)
$$

$$
\begin{gathered}
T(n)=\sum_{i=1}^{\text {length }(A)} T_{\text {FIND }}(i)+\sum_{i=1}^{\text {length }(B)}\left(T_{\text {FIND }}(i)+T_{\text {FIND }}(\text { length }(A))\right) \\
T(n)=\sum_{i=1}^{n} T_{\text {FIND }}(i)
\end{gathered}
$$

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

$\operatorname{Find}(A$, key $)$	
1	for $i=1$ to length (A)
2	if $A[i]==$ key
3	return TRUE
4	return FALSE

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

Find(A, key)	
1	for $i=1$ to length(A)
2	if $A[i]==k e y$
3	return TRUE
	return FALSE

■ The complexity of FIND is

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

$\operatorname{Find}(A$, key $)$	
1	for $i=1$ to length(A)
2	if $A[i]==k e y$
3	return TRUE
	return FALSE

■ The complexity of FIND is

$$
T(n)=O(n)
$$

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

	InLIst(A, key)
	item $=$ first (A)
2	while item $\neq \operatorname{last}(A)$
3	if value(item) == key
4	return TRUE
5	item $=$ next(item)
	return FALSE

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

	DINLIST(A, key)
	item $=$ first(A)
2	while item $\neq \operatorname{last}(A)$
3	if value(item) == key
4	return TRUE
5	item $=$ next(item)
	return FALSE

■ The complexity of FindlnList is

■ Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

	InLIST(A, key)
	item $=$ first (A)
2	while item $\neq \operatorname{last}(A)$
3	if value(item) == key
4	return TRUE
5	item $=$ next(item)
	return FALSE

■ The complexity of FindlnList is

$$
T(n)=O(n)
$$

Complexity of MergeSimple

```
MergeSimple(A, B)
for i=1 to length(A)
if not Find(A[1..i-1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find (A,B[i]) and not Find(B[1..i-1],B[i])
6 output B[i]
```


Complexity of MergeSimple

```
MergeSimple(A, B)
for i = 1 to length(A)
if not Find(A[1..i-1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not FInd (A,B[i]) and not Find(B[1..i-1],B[i])
6 output B[i]
```

$$
T(n)=\sum_{i=1}^{n} T_{\mathbf{F I N D}}(i)
$$

Complexity of MergeSimple

```
MergeSimple(A, B)
for i = 1 to length(A)
if not Find(A[1..i-1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not FInd (A,B[i]) and not Find(B[1..i-1],B[i])
6 output B[i]
```

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} T_{\mathrm{FIND}}(i) \\
T(n)=\sum_{i=1}^{n} O(i) & =
\end{aligned}
$$

Complexity of MergeSimple

```
MergeSimple(A, B)
for i = 1 to length(A)
if not Find(A[1..i-1],A[i])
    output A[i]
4 for i = 1 to length(B)
5 if not FINd (A,B[i]) and not FINd(B[1..i-1],B[i])
6 output }B[i
```

$$
\begin{gathered}
T(n)=\sum_{i=1}^{n} T_{\text {FIND }}(i) \\
T(n)=\sum_{i=1}^{n} O(i)=O\left(\frac{n(n+1)}{2}\right)=
\end{gathered}
$$

Complexity of MergeSimple

```
MergeSimple(A, B)
for i = 1 to length(A)
if not Find(A[1..i-1],A[i])
    output A[i]
4 for i = 1 to length(B)
5 if not FINd (A,B[i]) and not FINd(B[1..i-1],B[i])
6 output }B[i
```

$$
\begin{gathered}
T(n)=\sum_{i=1}^{n} T_{\text {FIND }}(i) \\
T(n)=\sum_{i=1}^{n} O(i)=O\left(\frac{n(n+1)}{2}\right)=O\left(n^{2}\right)
\end{gathered}
$$

Searching (2)

■ Input: a sorted sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

■ Input: a sorted sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

```
BinarySearch(A, key)
    first \(=1\)
    last \(=\) length \((A)\)
    while first \(\leq\) last
    middle \(=\lceil(\) first + last \() / 2\rceil\)
    if \(A[\) middle] \(==\) key
                return true
    elseif first = last
                return FALSE
    elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middlle +1
    return FALSE
```

```
BinarySearch (A, key)
    1 first \(=1\)
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```

```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```

15	
14	
13	
12	
11	
10	key
9	
8	
7	
6	
5	
4	
3	
2	
1	

```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle] \(==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle] \(==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle] \(==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle \(]>\) key
            last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch (A, key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch (A, key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle] \(==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch (A, key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
        return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```



```
BinarySearch ( \(A\), key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
    5 if \(A[\) middle \(]==\) key
                return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
12 return FALSE
```

```
BinarySearch (A, key)
    1 first = 1
    2 last \(=\) length \((A)\)
    3 while first \(\leq\) last
    \(4 \quad\) middle \(=\lceil(\) first + last \() / 2\rceil\)
        if \(A\) [middle] == key
            return TRUE
        elseif first = last
        return FALSE
        elseif \(A[\) middle] > key
        last \(=\) middle -1
        else first \(=\) middle +1
    12 return FALSE
```

 \(T(n)=O(\log n)\)
 - A slightly different problem: Input: two sorted sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$, where $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \ldots \leq b_{m}$
Output: a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{\ell}\right\rangle$ such that
- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

```
MergeSimple2(A, B)
for i=1 to length(A)
    if not BinARySEARCH}(A[1..i-1],A[i]
    output A[i]
    for i = 1 to length(B)
    if not BINARYSEARCH (A, B[i])
    and not BinARYSEARCH(B[1..i-1],B[i])
        output B[i]
```

```
MergeSimple2 \((A, B)\)
1 for \(i=1\) to length \((A)\)
    if not BinarySearch \((A[1 \ldots i-1], A[i])\)
                    output \(A[i]\)
4 for \(i=1\) to length \((B)\)
5 if not BinarySearch \((A, B[i])\)
6 and not \(\operatorname{BinarySeARCH}(B[1 \ldots i-1], B[i])\)
                output \(B[i]\)
```

$$
T(n)=\sum_{i=1}^{n} O(\log i)=
$$

```
MergeSimple2 \((A, B)\)
1 for \(i=1\) to length \((A)\)
    if not BinarySearch \((A[1 \ldots i-1], A[i])\)
                    output \(A[i]\)
4 for \(i=1\) to length \((B)\)
5 if not BinarySearch \((A, B[i])\)
6 and not \(\operatorname{BinarySeARCH}(B[1 \ldots i-1], B[i])\)
                output \(B[i]\)
```

$$
T(n)=\sum_{i=1}^{n} O(\log i)=O(n \log n)
$$

```
MergeSimple2 \((A, B)\)
1 for \(i=1\) to length \((A)\)
    if not BinarySearch \((A[1 \ldots i-1], A[i])\)
    output \(A[i]\)
4 for \(i=1\) to length \((B)\)
5 if not BinarySearch \((A, B[i])\)
6 and not \(\operatorname{BinarySeARCH}(B[1 \ldots i-1], B[i])\)
                output \(B[i]\)
```

$$
T(n)=\sum_{i=1}^{n} O(\log i)=O(n \log n)
$$

Better than $O\left(n^{2}\right)$, but can we do even better than $O(n \log n)$?

- Intuition: A and B are sorted

e.g.

$$
\begin{aligned}
& A=\langle 3,7,12,13,34,37,70,75,80\rangle \\
& B=\langle 1,5,6,7,34,35,40,41,43\rangle
\end{aligned}
$$

An Even Better Merge Algorithm

- Intuition: A and B are sorted
e.g.
$A=\langle 3,7,12,13,34,37,70,75,80\rangle$
$B=\langle 1,5,6,7,34,35,40,41,43\rangle$
so just like in BinarySearch I can avoid looking for an element x if the first element I see is $y>x$

An Even Better Merge Algorithm

- Intuition: A and B are sorted
e.g.
$A=\langle 3,7,12,13,34,37,70,75,80\rangle$
$B=\langle 1,5,6,7,34,35,40,41,43\rangle$
so just like in BinarySearch I can avoid looking for an element x if the first element I see is $y>x$

■ High-level algorithm strategy

- step through every position i of A and every position j of B
- output a_{i} and advance i if $a_{i} \leq b_{j}$ or if j is beyond the end of B
- output b_{j} and advance j if $a_{i} \geq b_{j}$ or if i is beyond the end of A

Output:

Output:

Output: 1

Output: 1

Output: 13

Output: 13

Output: 135

Output: 135

Output: 1356

Output: 1356

Output: 13567

Output: 13567

Output: 1356712

Output: 1356712

Output: 135671213

Output: 1356712 13...

```
\(\operatorname{Merge}(A, B)\)
    \(1 \quad i, j=1\)
    \(2 x=\varnothing\)
    3 while \(i \leq \operatorname{length}(A)\) or \(j \leq\) length \((B)\)
    4
        if \(i>\) length \((A)\)
                \(X=X \circ B[j] \quad / /\) appends \(B[j]\) to \(X\)
            \(j=j+1\)
    elseif \(j>\) length \((B)\)
        \(X=X \circ A[i]\)
        \(i=i+1\)
    elseif \(A[i]<B[j]\)
        \(X=X \circ A[i]\)
        \(i=i+1\)
        else \(X=X \circ B[j]\)
        \(j=j+1\)
15 return \(X\)
```

```
\(\operatorname{Merge}(A, B)\)
    \(1 i, j=1\)
    \(2 x=\varnothing\)
    3 while \(i \leq \operatorname{length}(A)\) or \(j \leq \operatorname{length}(B)\)
    4 if \(i>\) length \((A)\)
        \(X=X \circ B[j] \quad / /\) appends \(B[j]\) to \(X\)
        \(j=j+1\)
        elseif \(j>\) length \((B)\)
        \(X=X \circ A[i]\)
        \(i=i+1\)
        elseif \(A[i]<B[j]\)
        \(X=X \circ A[i]\)
        \(i=i+1\)
        else \(X=X \circ B[j]\)
        \(j=j+1\)
    return \(X\)
```

■ This algorithm is incorrect! (Exercise: fix it)

Complexity of Merge

```
\(\operatorname{Merge}(A, B)\)
\(1 \quad i, j=1\)
\(2 \quad X=\varnothing\)
3 while \(i \leq\) length \((A)\) or \(j \leq\) length \((B)\)
\(4 \quad\) if \(i \leq\) length \((A)\) and \((j>\) length \((B)\) or \(A[i]<B[j])\)
\(X=X \circ A[i]\)
\(i=i+1\)
    else \(X=X \circ B[j]\)
\(8 \quad j=j+1\)
9 return \(X\)
```


Complexity of Merge

```
\(\operatorname{Merge}(A, B)\)
\(1 \quad i, j=1\)
\(2 \quad x=\varnothing\)
3 while \(i \leq\) length \((A)\) or \(j \leq\) length \((B)\)
\(4 \quad\) if \(i \leq\) length \((A)\) and \((j>\) length \((B)\) or \(A[i]<B[j])\)
\(X=X \circ A[i]\)
\(i=i+1\)
    else \(X=X \circ B[j]\)
        \(j=j+1\)
9 return \(X\)
```

$$
T(n)=\Theta(n)
$$

Complexity of Merge

```
\(\operatorname{Merge}(A, B)\)
\(1 \quad i, j=1\)
\(2 \quad X=\varnothing\)
3 while \(i \leq\) length \((A)\) or \(j \leq\) length \((B)\)
\(4 \quad\) if \(i \leq\) length \((A)\) and \((j>\) length \((B)\) or \(A[i]<B[j])\)
                \(X=X \circ A[i]\)
                \(i=i+1\)
    else \(X=X \circ B[j]\)
        \(j=j+1\)
9 return \(X\)
```

$$
T(n)=\Theta(n)
$$

■ Can we do better?

Complexity of Merge

```
\(\operatorname{Merge}(A, B)\)
\(1 \quad i, j=1\)
\(2 \quad X=\varnothing\)
3 while \(i \leq\) length \((A)\) or \(j \leq\) length \((B)\)
\(4 \quad\) if \(i \leq\) length \((A)\) and \((j>\) length \((B)\) or \(A[i]<B[j])\)
                \(X=X \circ A[i]\)
                \(i=i+1\)
    else \(X=X \circ B[j]\)
        \(j=j+1\)
9 return \(X\)
```

$$
T(n)=\Theta(n)
$$

■ Can we do better? No!

Complexity of Merge

```
\(\operatorname{Merge}(A, B)\)
\(1 \quad i, j=1\)
\(2 \quad X=\varnothing\)
3 while \(i \leq\) length \((A)\) or \(j \leq\) length \((B)\)
\(4 \quad\) if \(i \leq\) length \((A)\) and \((j>\) length \((B)\) or \(A[i]<B[j])\)
\(\begin{array}{ll}5 & X=X \circ A[i] \\ 6 & i=i+1\end{array}\)
\(7 \quad\) else \(X=X \circ B[j]\)
\(8 \quad\) return \(X\)
```

$$
T(n)=\Theta(n)
$$

■ Can we do better? No!

- we have to output $n=$ length $(A)+$ length (B) elements

Using Merge

■ So now we have a linear-complexity merge procedure

- merges two sorted sequences
- produces a sorted sequence

Using Merge

■ So now we have a linear-complexity merge procedure

- merges two sorted sequences
- produces a sorted sequence

■ Perhaps we could use it to implement a sort algorithm

Using Merge

- So now we have a linear-complexity merge procedure
- merges two sorted sequences
- produces a sorted sequence

■ Perhaps we could use it to implement a sort algorithm

- Idea
- use a variant of Merge that outputs all elements of its input sequences
- i.e., without removing duplicates
- assume that two parts, $A_{L} \circ A_{R}=A$, and that A_{L} and A_{R} are sorted

Using Merge

- So now we have a linear-complexity merge procedure
- merges two sorted sequences
- produces a sorted sequence

■ Perhaps we could use it to implement a sort algorithm

- Idea
- use a variant of Merge that outputs all elements of its input sequences
- i.e., without removing duplicates
- assume that two parts, $A_{L} \circ A_{R}=A$, and that A_{L} and A_{R} are sorted
- use Merge to combine A_{L} and A_{R} into a sorted sequence

Using Merge

- So now we have a linear-complexity merge procedure
- merges two sorted sequences
- produces a sorted sequence

■ Perhaps we could use it to implement a sort algorithm

- Idea
- use a variant of Merge that outputs all elements of its input sequences
- i.e., without removing duplicates
- assume that two parts, $A_{L} \circ A_{R}=A$, and that A_{L} and A_{R} are sorted
- use Merge to combine A_{L} and A_{R} into a sorted sequence
- this suggests a recursive algorithm

Merge Sort

```
MergeSort(A)
1f length }(A)==
2 return A
3 m = \length (A)/2\rfloor
4 A
5 A
6 return Merge( }\mp@subsup{A}{L}{},\mp@subsup{A}{R}{}
```

```
MergeSort(A)
1f length }(A)==
2 return A
3 m = \length(A)/2\rfloor
4 A
5 A AR = MergeSort(A[m + 1 ..length(A)])
6 return Merge( }\mp@subsup{A}{L}{},\mp@subsup{A}{R}{}
```

■ The complexity of MergeSort is

```
MergeSort \((A)\)
1 if length \((A)==1\)
2 return \(A\)
\(3 m=\lfloor\) length \((A) / 2\rfloor\)
\(4 \quad A_{L}=\operatorname{MergeSort}(A[1 \ldots m])\)
\(5 A_{R}=\operatorname{MergeSort}(A[m+1 \ldots\) length \((A)])\)
6 return \(\operatorname{Merge}\left(A_{L}, A_{R}\right)\)
```

■ The complexity of MergeSort is

$$
T(n)=2 T(n / 2)+O(n)
$$

```
MergeSort(A)
1 if length }(A)==
2 return A
3 m = \length (A)/2\rfloor
4 A
5 A AR = MergeSort(A[m+1 . .length(A)])
6 return Merge( }\mp@subsup{A}{L}{},\mp@subsup{A}{R}{}
```

■ The complexity of MergeSort is

$$
\begin{gathered}
T(n)=2 T(n / 2)+O(n) \\
T(n)=O(n \log n)
\end{gathered}
$$

■ MergeSort exemplifies the divide and conquer strategy

■ MergeSort exemplifies the divide and conquer strategy
■ General strategy: given a problem P on input data A

- divide the input A into parts $A_{1}, A_{2}, \ldots, A_{k}$ with $\left|A_{i}\right|<|A|=n$
- solve problem P for the individual k parts
- combine the partial solutions to obtain the solution for A

■ MergeSort exemplifies the divide and conquer strategy
■ General strategy: given a problem P on input data A

- divide the input A into parts $A_{1}, A_{2}, \ldots, A_{k}$ with $\left|A_{i}\right|<|A|=n$
- solve problem P for the individual k parts
- combine the partial solutions to obtain the solution for A

■ Complexity analysis

$$
T(n)=T_{\text {divide }}+\sum_{i=1}^{k} T\left(\left|A_{i}\right|\right)+T_{\text {combine }}
$$

we will analyze this formula another time...

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)==0\)
2 return \(B\)
3 if length \((B)=0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2 \ldots\). length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```


A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)==0\)
2 return \(B\)
3 if length \((B)==0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2\). . length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)

A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)==0\)
2 return \(B\)
3 if length \((B)=0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2 \ldots\) length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)
■ The complexity of Merger is

A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)==0\)
2 return \(B\)
3 if length \((B)=0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2 \ldots\) length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)
■ The complexity of Merger is

$$
T(n)=C_{1}+T(n-1)
$$

A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)==0\)
2 return \(B\)
3 if length \((B)=0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2 \ldots\) length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)
■ The complexity of Merger is

$$
T(n)=C_{1}+T(n-1)=C_{1} n
$$

A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if \(\operatorname{length}(A)=0\)
2 return \(B\)
3 if length \((B)==0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2\). length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MERGER}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)
■ The complexity of Merger is

$$
T(n)=C_{1}+T(n-1)=C_{1} n=O(n)
$$

■ Can we do better?

A Divide-and-Conquer Merge

```
\(\operatorname{MergeR}(A, B)\)
1 if length \((A)==0\)
2 return \(B\)
3 if length \((B)=0\)
4 return \(A\)
5 if \(A[1]<B[1]\)
6 return \(A[1] \circ \operatorname{MergeR}(A[2 \ldots\) length \((A)], B)\)
7 else return \(B[1] \circ \operatorname{MergeR}(A, B[2 \ldots\) length \((B)])\)
```

■ Again, this algorithm is a bit incorrect (Exercise: Fix it.)
■ The complexity of Merger is

$$
T(n)=C_{1}+T(n-1)=C_{1} n=O(n)
$$

■ Can we do better? No! (We knew that already)

Divide-and-Conquer Multiplication

Divide-and-Conquer Multiplication

- Going back to multiplication...

■ Going back to multiplication...

$$
x=X_{L} \quad X_{R} \quad \text { and } \quad y=Y_{L}, Y_{R}
$$

■ Going back to multiplication...
$x=X_{L} X_{R}$ and $y=Y_{L} Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

■ Going back to multiplication...
$x=X_{L} X_{R}$ and $y=Y_{L} Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

$$
T(\ell)=4 T(\ell / 2)+O(\ell)
$$

■ Going back to multiplication...
$x=X_{L} X_{R}$ and $y=Y_{L} Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

$$
\begin{gathered}
T(\ell)=4 T(\ell / 2)+O(\ell) \\
T(\ell)=\Theta\left(\ell^{2}\right)
\end{gathered}
$$

Divide-and-Conquer Multiplication (2)

Divide-and-Conquer Multiplication (2)

■ Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Divide-and-Conquer Multiplication (2)

■ Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

Divide-and-Conquer Multiplication (2)

■ Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

■ Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L}\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L}\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

$$
T(\ell)=3 T(\ell / 2)+O(\ell)
$$

■ Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L}\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

$$
T(\ell)=3 T(\ell / 2)+O(\ell)
$$

which, as we will see, leads to a much better complexity

$$
T(\ell)=O\left(\ell^{\log _{2} 3}\right)=O\left(\ell^{1.59}\right)
$$

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[[length(A)/2\rfloor]
```


Computing the Median

- The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[[length(A)/2\rfloor]
```

■ Is it correct?

Computing the Median

- The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[\length(A)/2\rfloor]
```

■ Is it correct? Yes

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[[length(A)/2\rfloor]
```

■ Is it correct? Yes
■ How long does it take?

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian (A)
1 X = MergeSort(A)
2 return X[\lfloorlength(A)/2\rfloor]
```

■ Is it correct? Yes

■ How long does it take? $T(n)=T_{\text {Mergesort }}(n)=O(n \log n)$

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[[length(A)/2\rfloor]
```

■ Is it correct? Yes

■ How long does it take? $T(n)=T_{\text {MergeSort }}(n)=O(n \log n)$
■ Can we do better?

Computing the Median

■ The median of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- e.g., what is the median of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?

■ Idea: first sort, then pick the element in the middle

```
SimpleMedian(A)
1 X = MergeSort(A)
2 return X[[length(A)/2\rfloor]
```

■ Is it correct? Yes

■ How long does it take? $T(n)=T_{\text {MergeSort }}(n)=O(n \log n)$

■ Can we do better? Let's try divide-and-conquer...

- The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

■ Generalizating, the \boldsymbol{k}-smallest element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v

Computing the Median (2)

■ The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

■ Generalizating, the \boldsymbol{k}-smallest element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v
E.g.,

- for $k=1$, the minimum of A

Computing the Median (2)

■ The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

■ Generalizating, the \boldsymbol{k}-smallest element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v
E.g.,

- for $k=1$, the minimum of A
- for $k=\lfloor|A| / 2\rfloor$, the median of A
- The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

■ Generalizating, the \boldsymbol{k}-smallest element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v
E.g.,

- for $k=1$, the minimum of A
- for $k=\lfloor|A| / 2\rfloor$, the median of A
- what is the 6 th smallest element of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$?
- The median of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

■ Generalizating, the \boldsymbol{k}-smallest element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v
E.g.,

- for $k=1$, the minimum of A
- for $k=\lfloor|A| / 2\rfloor$, the median of A
- what is the 6 th smallest element of $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$? the 6th smallest element of A-a.k.a. $\operatorname{select}(A, 6)$-is 8

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle
$$

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle
$$

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

Now, where is the 7th smallest value of A ?

■ Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater then v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

and we must compute the 7 th smallest value in A
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

Now, where is the 7th smallest value of A ?
It is the $2 n d$ smallest value of A_{R}

We use select (A, k) to denote the k-smallest element of A

$$
\operatorname{select}(A, k)= \begin{cases}\operatorname{select}\left(A_{L}, k\right) & \text { if } k \leq\left|A_{L}\right| \\ v & \text { if }\left|A_{L}\right|<k \leq\left|A_{L}\right|+\left|A_{V}\right| \\ \operatorname{select}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{V}\right|\right) & \text { if } k>\left|A_{L}\right|+\left|A_{V}\right|\end{cases}
$$

We use select (A, k) to denote the k-smallest element of A

$$
\operatorname{select}(A, k)= \begin{cases}\operatorname{select}\left(A_{L}, k\right) & \text { if } k \leq\left|A_{L}\right| \\ v & \text { if }\left|A_{L}\right|<k \leq\left|A_{L}\right|+\left|A_{v}\right| \\ \operatorname{select}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{v}\right|\right) & \text { if } k>\left|A_{L}\right|+\left|A_{v}\right|\end{cases}
$$

■ Computing A_{L}, A_{V}, and A_{R} takes $O(n)$ steps

We use select (A, k) to denote the k-smallest element of A

$$
\operatorname{select}(A, k)= \begin{cases}\operatorname{select}\left(A_{L}, k\right) & \text { if } k \leq\left|A_{L}\right| \\ v & \text { if }\left|A_{L}\right|<k \leq\left|A_{L}\right|+\left|A_{V}\right| \\ \operatorname{select}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{V}\right|\right) & \text { if } k>\left|A_{L}\right|+\left|A_{V}\right|\end{cases}
$$

■ Computing A_{L}, A_{V}, and A_{R} takes $O(n)$ steps

- How do we pick v ?

We use select (A, k) to denote the k-smallest element of A

$$
\operatorname{select}(A, k)= \begin{cases}\operatorname{select}\left(A_{L}, k\right) & \text { if } k \leq\left|A_{L}\right| \\ v & \text { if }\left|A_{L}\right|<k \leq\left|A_{L}\right|+\left|A_{V}\right| \\ \operatorname{select}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{v}\right|\right) & \text { if } k>\left|A_{L}\right|+\left|A_{V}\right|\end{cases}
$$

■ Computing A_{L}, A_{V}, and A_{R} takes $O(n)$ steps

- How do we pick v ?

■ Ideally, we should pick v so as to obtain $\left|A_{L}\right| \approx\left|A_{R}\right| \approx|A| / 2$

- so, ideally we should pick $v=$ median(A), but. . .

We use select (A, k) to denote the k-smallest element of A

$$
\operatorname{select}(A, k)= \begin{cases}\operatorname{select}\left(A_{L}, k\right) & \text { if } k \leq\left|A_{L}\right| \\ v & \text { if }\left|A_{L}\right|<k \leq\left|A_{L}\right|+\left|A_{V}\right| \\ \operatorname{select}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{V}\right|\right) & \text { if } k>\left|A_{L}\right|+\left|A_{V}\right|\end{cases}
$$

■ Computing A_{L}, A_{V}, and A_{R} takes $O(n)$ steps

- How do we pick v ?

■ Ideally, we should pick v so as to obtain $\left|A_{L}\right| \approx\left|A_{R}\right| \approx|A| / 2$

- so, ideally we should pick $v=$ median(A), but...

■ We pick a random element of A

Selection Algorithm

```
Selection \((A, k)\)
    \(1 \quad v=A[\operatorname{random}(1 \ldots|A|)]\)
    \(2 A_{L}, A_{V}, A_{R}=\varnothing\)
    3 for \(i=1\) to \(|A|\)
    4 if \(A[i]<v\)
    \(5 \quad A_{L}=A_{L} \cup A[i]\)
        elseif \(A[i]==v\)
        \(A_{v}=A_{V} \cup A[i]\)
        else \(A_{R}=A_{R} \cup A[i]\)
    if \(k \leq\left|A_{L}\right|\)
        return SeLection \(\left(A_{L}, k\right)\)
        elseif \(k>\left|A_{L}\right|+\left|A_{V}\right|\)
        return \(\operatorname{Selection}\left(A_{R}, k-\left|A_{L}\right|-\left|A_{v}\right|\right)\)
    else return \(v\)
```

