Divide-and-Conquer Algorithms

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

March 9, 2017

Outline

- Merging (or set union)
- Searching
- Sorting
- Multiplying
- Computing the *median*

Input: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, \ldots, x_\ell \rangle$ such that

• Input: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, ..., x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of *X* appears in *A* or in *B* or in both

• Input: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, ..., x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of *X* appears in *A* or in *B* or in both

Example:

$$A = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10 \rangle$$
$$B = \langle 51, 21, 14, 15, 27, 31, 2 \rangle$$

X =

• Input: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, ..., x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

Example:

$$A = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10 \rangle$$

 $B = \langle 51, 21, 14, 15, 27, 31, 2 \rangle$

$$X = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10, 15, 27, 2 \rangle$$

A Simple Merge Algorithm

Algorithm strategy

A Simple Merge Algorithm

Algorithm strategy

- ▶ iterate through every position *i*, first through *A*, and then *B*
- output a_i if a_i is not in $\langle a_1, a_2, \ldots, a_{i-1} \rangle$
- output b_i if b_i is not in $\langle a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_{i-1} \rangle$

A Simple Merge Algorithm

Algorithm strategy

- ▶ iterate through every position *i*, first through *A*, and then *B*
- output a_i if a_i is not in $\langle a_1, a_2, \ldots, a_{i-1} \rangle$
- output b_i if b_i is not in $\langle a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_{i-1} \rangle$

Complexity

Complexity

let n = length(A) + length(B)

$$T(n) = \sum_{i=1}^{length(A)} T_{\text{FIND}}(i) + \sum_{i=1}^{length(B)} \left(T_{\text{FIND}}(i) + T_{\text{FIND}}(length(A)) \right)$$

Complexity

let n = length(A) + length(B)

$$T(n) = \sum_{i=1}^{length(A)} T_{\text{FIND}}(i) + \sum_{i=1}^{length(B)} \left(T_{\text{FIND}}(i) + T_{\text{FIND}}(length(A)) \right)$$
$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key)
1 for *i* = 1 to length(A)
2 if A[*i*] == key
3 return TRUE
4 return FALSE

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key)
1 for *i* = 1 to length(A)
2 if A[*i*] == key
3 return TRUE
4 return FALSE

■ The complexity of **FIND** is

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key)
1 for *i* = 1 to length(A)
2 if A[*i*] == key
3 return TRUE
4 return FALSE

■ The complexity of **FIND** is

$$T(n) = O(n)$$

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST (A, key) item = first(A)2 while $item \neq last(A)$ if value(item) == keyreturn TRUEitem = next(item)return FALSE

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST (A, key) item = first(A)2 while $item \neq last(A)$ if value(item) == keyreturn TRUEitem = next(item)return FALSE

■ The complexity of **FINDINLIST** is

Input: a sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST(A, key) item = first(A)2 while $item \neq last(A)$ if value(item) == keyreturn TRUEitem = next(item)return FALSE

■ The complexity of **FINDINLIST** is

T(n) = O(n)

$$T(n) = \sum_{i=1}^{n} T_{\mathsf{FIND}}(i)$$

$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$
$$T(n) = \sum_{i=1}^{n} O(i) = 0$$

Т

$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$
$$T(n) = \sum_{i=1}^{n} O(i) = O\left(\frac{n(n+1)}{2}\right) = 0$$

$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$
$$T(n) = \sum_{i=1}^{n} O(i) = O\left(\frac{n(n+1)}{2}\right) = O(n^2)$$

Searching (2)

Input: a sorted sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

Searching (2)

Input: a sorted sequence A and a value key Output: TRUE if A contains key, or FALSE otherwise

```
BINARYSEARCH(A, key)
   first = 1
 2
    last = length(A)
 3
    while first \leq last
 4
          middle = [(first + last)/2]
 5
          if A[middle] == key
 6
               return TRUE
 7
         elseif first = last
 8
               return FALSE
 9
         elseif A[middle] > key
10
               last = middle - 1
         else first = middle + 1
11
12
    return FALSE
```

BINARYSEARCH(A, key)

1	first = 1
2	last = length(A)
3	while first \leq last
4	$middle = \lceil (first + last)/2 \rceil$
5	if <i>A</i> [<i>middle</i>] == <i>key</i>
6	return TRUE
7	elseif <i>first</i> = <i>last</i>
8	return FALSE
9	<pre>elseif A[middle] > key</pre>
10	last = middle – 1
11	else first = middle + 1
12	return FALSE

BINARYSEARCH(A, key)			
1	first = 1		
2	last = length(A)		
3	while first \leq last		
4	$middle = \lceil (first + last)/2 \rceil$		
5	if <i>A</i> [<i>middle</i>] == <i>key</i>		
6	return True		
7	elseif <i>first</i> = <i>last</i>		
8	return FALSE		
9	elseif A[middle] > key		
10	last = middle – 1		
11	else <i>first</i> = <i>middle</i> + 1		
12	return FALSE		

15		
14		
13		
12		
11		
10	key	
9		
9 8		
7		
6 5		
4 3 2		
3		
2		
1		

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 $middle = \left[(first + last)/2 \right]$ 4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1**else** *first* = *middle* + 1 11 12 return FALSE

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 middle = [(first + last)/2]4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1**else** *first* = *middle* + 1 11 12 return FALSE

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 middle = [(first + last)/2]4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1**else** *first* = *middle* + 1 11 12 return FALSE

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 middle = [(first + last)/2]4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1**else** *first* = *middle* + 1 11 12 return FALSE

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 middle = [(first + last)/2]4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1**else** *first* = *middle* + 1 11 12 return FALSE

BINARYSEARCH(A, key)first = 1last = length(A)2 while first \leq last 3 middle = [(first + last)/2]4 5 **if** *A*[*middle*] == *key* 6 return TRUE 7 **elseif** first = last 8 return FALSE 9 **elseif** *A*[*middle*] > *key* 10 last = middle - 1else first = middle + 111 12 return FALSE

 $T(n) = O(\log n)$

Merging Sorted Sequences

A slightly different problem:

Input: two *sorted* sequences $A = \langle a_1, a_2, ..., a_n \rangle$ and $B = \langle b_1, b_2, ..., b_m \rangle$, where $a_1 \le a_2 \le ... \le a_n$ and $b_1 \le b_2 \le ... \le b_m$

Output: a sequence $X = \langle x_1, x_2, ..., x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of *X* appears in *A* or in *B* or in both

$$T(n) = \sum_{i=1}^{n} O(\log i) =$$

$$T(n) = \sum_{i=1}^{n} O(\log i) = O(n \log n)$$

$$T(n) = \sum_{i=1}^{n} O(\log i) = O(n \log n)$$

Better than $O(n^2)$, but can we do even better than $O(n \log n)$?

An Even Better Merge Algorithm

Intuition: A and B are sorted
 e.g.
 A = ⟨3, 7, 12, 13, 34, 37, 70, 75, 80⟩
 B = ⟨1, 5, 6, 7, 34, 35, 40, 41, 43⟩

An Even Better Merge Algorithm

Intuition: A and B are sorted
 e.g.
 A = ⟨3, 7, 12, 13, 34, 37, 70, 75, 80⟩
 B = ⟨1, 5, 6, 7, 34, 35, 40, 41, 43⟩

so just like in **BINARYSEARCH** I can avoid looking for an element *x* if the *first* element I see is y > x

An Even Better Merge Algorithm

Intuition: A and B are sorted
 e.g.
 A = ⟨3, 7, 12, 13, 34, 37, 70, 75, 80⟩
 B = ⟨1, 5, 6, 7, 34, 35, 40, 41, 43⟩

so just like in **BINARYSEARCH** I can avoid looking for an element *x* if the *first* element I see is y > x

High-level algorithm strategy

- step through every position i of A and every position j of B
- output a_i and advance *i* if $a_i \le b_j$ or if *j* is beyond the end of *B*
- output b_j and advance j if $a_i \ge b_j$ or if i is beyond the end of A

А	3	7	12	13	34	37	70	75	80	
---	---	---	----	----	----	----	----	----	----	--

В	1	5	6	7	34	35	40	41	43	
---	---	---	---	---	----	----	----	----	----	--

Output:

$$B \boxed{1} 5 6 7 34 35 40 41 43$$

$$j = 1$$

Output:

B
 1
 5
 6
 7
 34
 35
 40
 41
 43

$$j = 2$$
 1

Output: 1

Output: 1

B
 1
 5
 6
 7
 34
 35
 40
 41
 43

$$j = 2$$
 1

Output: 1 3

Output: 1 3

Output: 135

Output: 135

Output: 1 3 5 6

Output: 1 3 5 6

В	1	5	6	7	34	35	40	41	43	
<i>j</i> = 5					1					

Output: 1 3 5 6 7

Output: 1 3 5 6 7

Output: 1 3 5 6 7 12

Output: 1 3 5 6 7 12

Output: 1 3 5 6 7 12 13

Output: 1 3 5 6 7 12 13...

MERGE Algorithm (2)

```
Merge(A, B)
   i, j = 1
 1
 2 X = \emptyset
 3
   while i \leq length(A) or j \leq length(B)
 4
          if i > length(A)
 5
6
7
              X = X \circ B[j] // appends B[j] to X
              j = j + 1
         elseif i > length(B)
 8
9
              X = X \circ A[i]
               i = i + 1
   elseif A[i] < B[j]
10
11
              X = X \circ A[i]
12
              i = i + 1
13
   else X = X \circ B[j]
14
            j = j + 1
15
    return X
```

MERGE Algorithm (2)

```
Merge(A, B)
   i, j = 1
 2 X = \emptyset
 3
   while i \leq length(A) or j \leq length(B)
 4
         if i > length(A)
 5
              X = X \circ B[j] // appends B[j] to X
 6
7
              i = i + 1
         elseif i > length(B)
 8
              X = X \circ A[i]
 9
              i = i + 1
10
   elseif A[i] < B[i]
11
              X = X \circ A[i]
12
              i = i + 1
13
   else X = X \circ B[j]
14
           i = i + 1
15
    return X
```

■ This algorithm is incorrect! (Exercise: fix it)

Complexity of MERGE

Merge(A, B)1 i, j = 1 $2 X = \emptyset$ 3 while $i \leq length(A)$ or $j \leq length(B)$ 4 if $i \leq length(A)$ and (i > length(B) or A[i] < B[i])5 $X = X \circ A[i]$ 6 i = i + 17 8 else $X = X \circ B[i]$ i = i + 19 return X

Complexity of MERGE

Merge(A, B)i, j = 11 $2 X = \emptyset$ 3 while $i \leq length(A)$ or $j \leq length(B)$ 4 if $i \leq length(A)$ and (i > length(B) or A[i] < B[i])5 $X = X \circ A[i]$ 6 i = i + 17 else $X = X \circ B[i]$ 8 i = i + 19 return X

$$T(n) = \Theta(n)$$

Complexity of MERGE

Merge(A, B)i, j = 11 $2 X = \emptyset$ 3 while $i \leq length(A)$ or $j \leq length(B)$ 4 if $i \leq length(A)$ and (i > length(B) or A[i] < B[i])5 $X = X \circ A[i]$ 6 i = i + 17 else $X = X \circ B[i]$ 8 i = i + 19 return X

$$T(n) = \Theta(n)$$

Can we do better?

Complexity of MERGE

Merge(A, B)1 i, j = 1 $2 X = \emptyset$ 3 while $i \leq length(A)$ or $j \leq length(B)$ 4 if $i \leq length(A)$ and (i > length(B) or A[i] < B[i])5 $X = X \circ A[i]$ 6 i = i + 17 else $X = X \circ B[i]$ 8 i = i + 19 return X

$$T(n) = \Theta(n)$$

Can we do better? No!

Complexity of MERGE

Merge(A, B)i, j = 11 2 $X = \emptyset$ 3 while $i \leq length(A)$ or $j \leq length(B)$ 4 if $i \leq length(A)$ and (i > length(B) or A[i] < B[i])5 $X = X \circ A[i]$ 6 i = i + 17 else $X = X \circ B[i]$ j = j + 18 9 return X

$$T(n) = \Theta(n)$$

Can we do better? No!

we have to output n = length(A) + length(B) elements

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm

Idea

- use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
- assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm

Idea

- use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
- assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted
- use **Merge** to combine A_L and A_R into a sorted sequence

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm

Idea

- use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
- assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted
- use **Merge** to combine A_L and A_R into a sorted sequence
- this suggests a recursive algorithm

MERGESORT(A) 1 if length(A) == 12 return A 3 $m = \lfloor length(A)/2 \rfloor$ 4 $A_L = MERGESORT(A[1 . . m])$ 5 $A_R = MERGESORT(A[m + 1 . . length(A)])$ 6 return MERGE(A_L, A_R)

 $\begin{array}{ll} \textbf{MergeSort}(A) \\ 1 & \textbf{if} \ length(A) == 1 \\ 2 & \textbf{return } A \\ 3 & m = \lfloor length(A)/2 \rfloor \\ 4 & A_L = \textbf{MergeSort}(A[1 \dots m]) \\ 5 & A_R = \textbf{MergeSort}(A[m + 1 \dots length(A)]) \\ 6 & \textbf{return Merge}(A_L, A_R) \end{array}$

■ The complexity of **MergeSort** is

 $\begin{array}{ll} \textbf{MergeSort}(A) \\ 1 & \textbf{if} \ length(A) == 1 \\ 2 & \textbf{return } A \\ 3 & m = \lfloor length(A)/2 \rfloor \\ 4 & A_L = \textbf{MergeSort}(A[1 \dots m]) \\ 5 & A_R = \textbf{MergeSort}(A[m + 1 \dots length(A)]) \\ 6 & \textbf{return Merge}(A_L, A_R) \end{array}$

■ The complexity of **MergeSort** is

T(n) = 2T(n/2) + O(n)

 $\begin{array}{ll} \textbf{MergeSort}(A) \\ 1 & \textbf{if} \ length(A) == 1 \\ 2 & \textbf{return } A \\ 3 & m = \lfloor length(A)/2 \rfloor \\ 4 & A_L = \textbf{MergeSort}(A[1 \dots m]) \\ 5 & A_R = \textbf{MergeSort}(A[m + 1 \dots length(A)]) \\ 6 & \textbf{return Merge}(A_L, A_R) \end{array}$

■ The complexity of **MergeSort** is

T(n) = 2T(n/2) + O(n)

$$T(n) = O(n \log n)$$

Divide and Conquer

MERGESORT exemplifies the *divide and conquer* strategy

Divide and Conquer

MERGESORT exemplifies the *divide and conquer* strategy

■ General strategy: given a problem P on input data A

- *divide* the input *A* into parts A_1, A_2, \ldots, A_k with $|A_i| < |A| = n$
- **solve** problem *P* for the individual *k* parts
- *combine* the partial solutions to obtain the solution for A

Divide and Conquer

MERGESORT exemplifies the *divide and conquer* strategy

■ General strategy: given a problem P on input data A

- *divide* the input *A* into parts A_1, A_2, \ldots, A_k with $|A_i| < |A| = n$
- solve problem P for the individual k parts
- combine the partial solutions to obtain the solution for A

Complexity analysis

$$T(n) = T_{\text{divide}} + \sum_{i=1}^{k} T(|A_i|) + T_{\text{combine}}$$

we will analyze this formula another time...

```
 \begin{array}{ll} \textbf{MergeR}(A, B) \\ 1 & \textbf{if } length(A) == 0 \\ 2 & \textbf{return } B \\ 3 & \textbf{if } length(B) == 0 \\ 4 & \textbf{return } A \\ 5 & \textbf{if } A[1] < B[1] \\ 6 & \textbf{return } A[1] \circ \textbf{MergeR}(A[2 \dots length(A)], B) \\ 7 & \textbf{else return } B[1] \circ \textbf{MergeR}(A, B[2 \dots length(B)]) \\ \end{array}
```


Again, this algorithm is a bit incorrect (Exercise: Fix it.)

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

■ The complexity of **MergeR** is

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

■ The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1)$$

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

■ The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1) = C_1 n$$

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

■ The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1) = C_1 n = O(n)$$

Can we do better?

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

■ The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1) = C_1 n = O(n)$$

Can we do better? No! (We knew that already)

Going back to multiplication...

Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

which means $x = 2^{\ell/2} x_L + x_R$ and $y = 2^{\ell/2} y_L + y_R$, so...

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

which means $x = 2^{\ell/2} x_L + x_R$ and $y = 2^{\ell/2} y_L + y_R$, so...

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

$$T(\ell) = 4T(\ell/2) + O(\ell)$$

Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

which means $x = 2^{\ell/2} x_L + x_R$ and $y = 2^{\ell/2} y_L + y_R$, so...

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

$$T(\ell) = 4T(\ell/2) + O(\ell)$$

$$T(\boldsymbol{\ell}) = \Theta(\boldsymbol{\ell}^2)$$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_L y_R + x_R y_L = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$, so

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_Ly_R + x_Ry_L = (x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R$, so

$$xy = 2^{\ell}x_Ly_L + 2^{\ell/2}((x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R) + x_Ry_R$$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_Ly_R + x_Ry_L = (x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R$, so

$$xy = 2^{\ell} x_L y_L + 2^{\ell/2} ((x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R) + x_R y_R$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_Ly_R + x_Ry_L = (x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R$, so

$$xy = 2^{\ell}x_Ly_L + 2^{\ell/2}((x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R) + x_Ry_R$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

$$T(\ell) = \frac{3}{4}T(\ell/2) + O(\ell)$$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_Ly_R + x_Ry_L = (x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R$, so

$$xy = 2^{\ell} x_L y_L + 2^{\ell/2} ((x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R) + x_R y_R$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

$$T(\ell) = 3T(\ell/2) + O(\ell)$$

which, as we will see, leads to a much better complexity

$$T(\boldsymbol{\ell}) = O(\boldsymbol{\ell}^{\log_2 3}) = O(\boldsymbol{\ell}^{1.59})$$

The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

▶ e.g., what is the median of *A* = ⟨2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1⟩?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MergeSort(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

Is it correct?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

Is it correct? Yes

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[[length(A)/2]]
```

Is it correct? Yes

How long does it take?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

Is it correct? Yes

• How long does it take? $T(n) = T_{MERGESORT}(n) = O(n \log n)$

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MergeSort(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

Is it correct? Yes

- How long does it take? $T(n) = T_{MERGESORT}(n) = O(n \log n)$
- Can we do better?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MergeSort(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

Is it correct? Yes

• How long does it take? $T(n) = T_{MERGESORT}(n) = O(n \log n)$

Can we do better? Let's try *divide-and-conquer*...

The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value v ∈ A such that exactly k elements of A are less than or equal to v
 E.g.,
 - for k = 1, the minimum of A

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value v ∈ A such that exactly k elements of A are less than or equal to v
 E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value v ∈ A such that exactly k elements of A are less than or equal to v
 E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A
 - what is the 6th smallest element of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value v ∈ A such that exactly k elements of A are less than or equal to v
 E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A
 - ▶ what is the 6th smallest element of A = (2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1)? the 6th smallest element of A—a.k.a. select(A, 6)—is 8

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle$$

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- A_L contains the set of elements that are less than v
- A_v contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_v = \langle 5, 5 \rangle$

Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Idea: we split the sequence A in three parts based on a *chosen value* $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in Awe pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Now, where is the 7th smallest value of A?

Idea: we split the sequence A in three parts based on a chosen value $v \in A$

- ► *A*_L contains the set of elements that are *less than v*
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in Awe pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Now, where is the 7th smallest value of *A*? *It is the 2nd smallest value of A*_{*R*}

We use *select*(*A*, *k*) to denote the k-smallest element of *A*

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \le |A_{L}| \\ v & \text{if } |A_{L}| < k \le |A_{L}| + |A_{v}| \\ select(A_{R}, k - |A_{L}| - |A_{v}|) & \text{if } k > |A_{L}| + |A_{v}| \end{cases}$$

We use *select*(*A*, *k*) to denote the k-smallest element of *A*

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \le |A_{L}| \\ v & \text{if } |A_{L}| < k \le |A_{L}| + |A_{v}| \\ select(A_{R}, k - |A_{L}| - |A_{v}|) & \text{if } k > |A_{L}| + |A_{v}| \end{cases}$$

Computing A_L , A_v , and A_R takes O(n) steps

We use *select*(*A*, *k*) to denote the k-smallest element of *A*

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \le |A_{L}| \\ v & \text{if } |A_{L}| < k \le |A_{L}| + |A_{v}| \\ select(A_{R}, k - |A_{L}| - |A_{v}|) & \text{if } k > |A_{L}| + |A_{v}| \end{cases}$$

Computing A_L , A_v , and A_R takes O(n) steps

How do we pick *v*?

We use *select*(*A*, *k*) to denote the k-smallest element of *A*

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \le |A_{L}| \\ v & \text{if } |A_{L}| < k \le |A_{L}| + |A_{v}| \\ select(A_{R}, k - |A_{L}| - |A_{v}|) & \text{if } k > |A_{L}| + |A_{v}| \end{cases}$$

Computing A_L , A_V , and A_R takes O(n) steps

- How do we pick *v*?
- Ideally, we should pick *v* so as to obtain $|A_L| \approx |A_R| \approx |A|/2$
 - ▶ so, ideally we should pick v = median(A), but...

We use *select*(*A*, *k*) to denote the k-smallest element of *A*

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \le |A_{L}| \\ v & \text{if } |A_{L}| < k \le |A_{L}| + |A_{v}| \\ select(A_{R}, k - |A_{L}| - |A_{v}|) & \text{if } k > |A_{L}| + |A_{v}| \end{cases}$$

Computing A_L , A_V , and A_R takes O(n) steps

- How do we pick *v*?
- Ideally, we should pick *v* so as to obtain $|A_L| \approx |A_R| \approx |A|/2$
 - ▶ so, ideally we should pick v = median(A), but...

• We pick a random element of A

Selection Algorithm

SELECTION(A, k)1 v = A[random(1...|A|)]2 $A_I, A_V, A_R = \emptyset$ 3 **for** i = 1 **to** |A|4 if A[i] < v5 $A_i = A_i \cup A[i]$ 6 **elseif** *A*[*i*] == *v* 7 $A_{\nu} = A_{\nu} \cup A[i]$ 8 else $A_R = A_R \cup A[i]$ 9 if $k \leq |A_L|$ 10 return Selection (A_L, k) elseif $k > |A_L| + |A_V|$ 11 12 **return Selection** $(A_R, k - |A_l| - |A_v|)$ else return v 13