The Dijkstra Algorithm

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
May 9, 2017

Dijkstra's Algorithm

- Executing locally at node u
- Executing locally at node u
- Variables storing values known at each iteration
- Executing locally at node u
- Variables storing values known at each iteration
- $D[v]$, cost of the least-cost path from u to v
- Executing locally at node u
- Variables storing values known at each iteration
- $D[v]$, cost of the least-cost path from u to v
- $p[v]$, node preceding v (neighbor of v) on the least-cost path from u to v

Dijkstra's Algorithm

■ Executing locally at node u
■ Variables storing values known at each iteration

- $D[v]$, cost of the least-cost path from u to v
- $p[v]$, node preceding v (neighbor of v) on the least-cost path from u to v
- N, nodes of G whose least-cost path from u is definitely known

Dijkstra's Algorithm

```
\(\operatorname{Dijkstra}(G=(V, E), u)\)
    \(1 N=\{u\}\)
for all \(v \in V\)
        if \(v \in\) neighbors \((u)\)
        \(D[v]=c(u, v)\)
        \(p[v]=u\)
        else \(D[v]=\infty\)
    while \(N \neq V\)
        find \(w \notin N\) such that \(D[w]\) is minimum
        \(N=N \cup\{w\}\)
        for all \(v \in\) neighbors( \(w) \backslash N\)
        if \(D[w]+c(w, v)<D[v]\)
            \(D[v]=D[w]+c(w, v)\)
                \(p[v]=w\)
```

```
Dijkstra( \(G=(V, E), u)\)
    \(N=\{u\}\)
    for all \(v \in V\)
        if \(v \in\) neighbors( \(u\) )
        \(D[v]=c(u, v)\)
                \(p[v]=u\)
        else \(D[v]=\infty\)
    while \(N \neq V\)
find \(w \notin N\) such that \(D[w]\) is minimum
\(N=N \cup\{w\}\)
for all \(v \in\) neighbors( \(w) \backslash N\) if \(D[w]+c(w, v)<D[v]\)
\(D[v]=D[w]+c(w, v)\) \(p[v]=w\)
```


