Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

March 28, 2017

Outline

- Binary search trees
- Randomized binary search trees

- A *binary search tree* implements of a *dynamic set*
 - over a totally ordered domain

- A binary search tree implements of a dynamic set
 - over a totally ordered domain

- TREE-INSERT(T, k) adds a key k to the dictionary D
- ► **TREE-DELETE**(*T*, *k*) removes key *k* from *D*
- ► **TREE-SEARCH**(*T*, *x*) tells whether *D* contains a key *k*

- A binary search tree implements of a dynamic set
 - over a totally ordered domain

- TREE-INSERT(T, k) adds a key k to the dictionary D
- ► **TREE-DELETE**(*T*, *k*) removes key *k* from *D*
- ► **TREE-SEARCH**(*T*, *x*) tells whether *D* contains a key *k*
- tree-walk: INORDER-TREE-WALK(T), etc.

- A binary search tree implements of a dynamic set
 - over a totally ordered domain

- TREE-INSERT(T, k) adds a key k to the dictionary D
- ► **TREE-DELETE**(*T*, *k*) removes key *k* from *D*
- TREE-SEARCH(T, x) tells whether D contains a key k
- tree-walk: INORDER-TREE-WALK(T), etc.
- ► **TREE-MINIMUM**(*T*) finds the smallest element in the tree
- ► **TREE-MAXIMUM**(*T*) finds the largest element in the tree

- A binary search tree implements of a dynamic set
 - over a totally ordered domain

- TREE-INSERT(T, k) adds a key k to the dictionary D
- ► **TREE-DELETE**(*T*, *k*) removes key *k* from *D*
- ► **TREE-SEARCH**(*T*, *x*) tells whether *D* contains a key *k*
- tree-walk: INORDER-TREE-WALK(T), etc.
- TREE-MINIMUM(T) finds the smallest element in the tree
- ► **TREE-MAXIMUM**(*T*) finds the largest element in the tree
- iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor and predecessor, respectively, of an element x

Implementation

T represents the tree, which consists of a set of nodes

Implementation

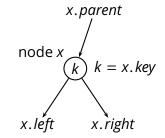
- *T* represents the tree, which consists of a set of *nodes*
- T. root is the root node of tree T

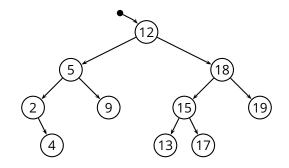
Implementation

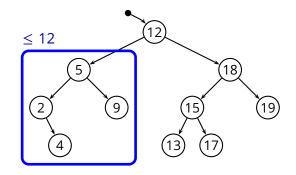
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T

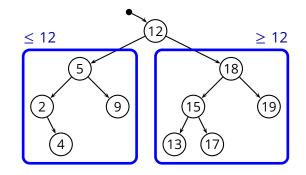
Node *x*

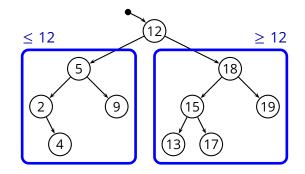
- *x.parent* is the parent of node *x*
- x.key is the key stored in node x
- *x*.*left* is the left child of node *x*
- x.right is the right child of node x









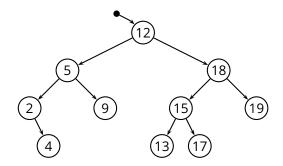


Binary-search-tree property

- ▶ for all nodes *x*, *y*, and *z*
- $y \in left$ -subtree $(x) \Rightarrow y$.key $\leq x$.key
- $z \in right$ -subtree $(x) \Rightarrow z$.key $\geq x$.key

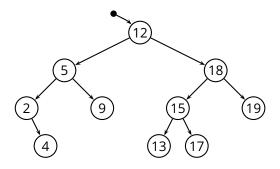
In-Order Tree Walk

• We want to go through the set of keys *in order*



In-Order Tree Walk

■ We want to go through the set of keys *in order*



2 4 5 9 12 13 15 17 18 19

In-Order Tree Walk (2)

A recursive algorithm

In-Order Tree Walk (2)

A recursive algorithm

INORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **INORDER-TREE-WALK**(*x*.*left*)
- 3 print *x*. *key*
- 4 **INORDER-TREE-WALK**(*x*.*right*)

In-Order Tree Walk (2)

A recursive algorithm

INORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **INORDER-TREE-WALK**(*x*.*left*)
- 3 print *x*.*key*
- 4 **INORDER-TREE-WALK**(*x*.*right*)

And then we need a "starter" procedure

INORDER-TREE-WALK-START(T)

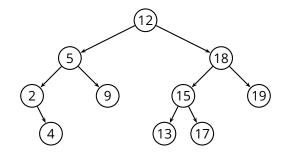
1 **INORDER-TREE-WALK**(*T.root*)

PREORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 print *x*. *key*
- 3 **PREORDER-TREE-WALK**(*x.left*)
- 4 **PREORDER-TREE-WALK**(*x.right*)

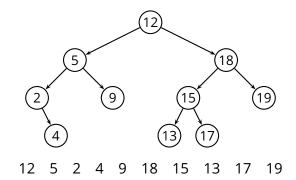
PREORDER-TREE-WALK(X)

- if $x \neq \text{NIL}$ 1
- 2 3 print x.key
- **PREORDER-TREE-WALK**(*x*.*left*)
- 4 **PREORDER-TREE-WALK**(*x.right*)



PREORDER-TREE-WALK(x)

- if $x \neq \text{NIL}$ 1
- 2 3 print x.key
- **PREORDER-TREE-WALK**(*x*.*left*)
- 4 **PREORDER-TREE-WALK**(*x*.*right*)

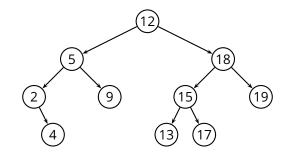


POSTORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **POSTORDER-TREE-WALK**(*x.left*)
- 3 **POSTORDER-TREE-WALK**(*x.right*)
- 4 print *x*. *key*

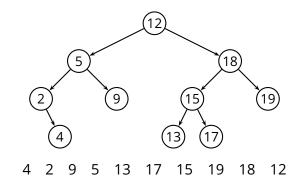
POSTORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **POSTORDER-TREE-WALK**(*x*.*left*)
- **3 POSTORDER-TREE-WALK**(*x.right*)
- 4 print *x*. *key*



POSTORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **POSTORDER-TREE-WALK**(*x*.*left*)
- **3 POSTORDER-TREE-WALK**(*x.right*)
- 4 print *x*. *key*

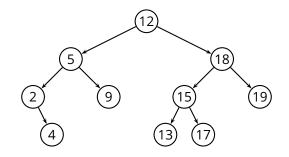


REVERSE-ORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **REVERSE-ORDER-TREE-WALK**(*x.right*)
- 3 print *x*.*key*
- 4 **REVERSE-ORDER-TREE-WALK**(*x.left*)

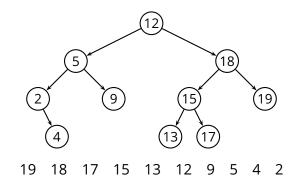
REVERSE-ORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **REVERSE-ORDER-TREE-WALK**(*x.right*)
- 3 print *x*.*key*
- 4 **REVERSE-ORDER-TREE-WALK**(*x.left*)



REVERSE-ORDER-TREE-WALK(*X*)

- 1 **if** $x \neq \text{NIL}$
- 2 **REVERSE-ORDER-TREE-WALK**(*x.right*)
- 3 print *x*.*key*
- 4 **REVERSE-ORDER-TREE-WALK**(*x.left*)



■ The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
Postorder-Tree-Walk	$\Theta(n)$
Reverse-Order-Tree-Walk	$\Theta(n)$

The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
Postorder-Tree-Walk	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

Complexity of Tree Walks

The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
Postorder-Tree-Walk	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

Can we do better?

Complexity of Tree Walks

The general recurrence is

$$T(n) = T(n_L) + T(n - n_L - 1) + \Theta(1)$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
Postorder-Tree-Walk	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

Can we do better? No!

• the length of the output is $\Theta(n)$

Minimum and Maximum Keys

Minimum and Maximum Keys

- Recall the binary-search-tree property
 - ▶ for all nodes *x*, *y*, and *z*
 - $y \in left$ -subtree $(x) \Rightarrow y$.key $\leq x$.key
 - $z \in right$ -subtree $(x) \Rightarrow z$.key $\ge x$.key

Minimum and Maximum Keys

- Recall the *binary-search-tree property*
 - for all nodes x, y, and z
 - $y \in left$ -subtree $(x) \Rightarrow y$.key $\leq x$.key
 - $z \in right$ -subtree $(x) \Rightarrow z$.key $\ge x$.key
- So, the minimum key is in all the way to the left
 - similarly, the maximum key is all the way to the right

```
TREE-MINIMUM(x)

1 while x.left \neq NIL

2 x = x.left

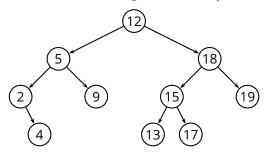
3 return x
```

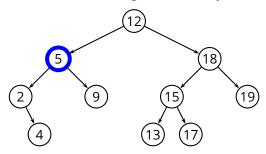
TREE-MAXIMUM(*X*)

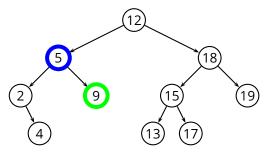
1 **while** *x*.*right* ≠ NIL

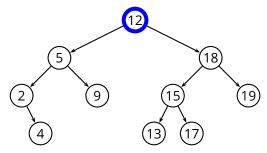
$$x = x.right$$

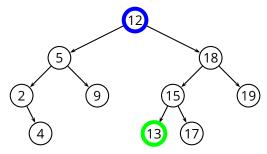
3 return x



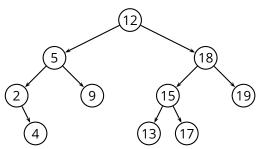




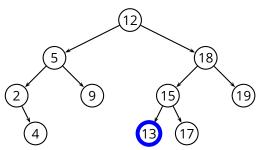




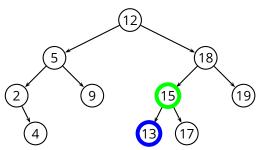
Given a node *x*, find the node containing the next key value



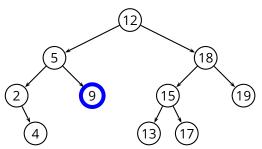
Given a node *x*, find the node containing the next key value



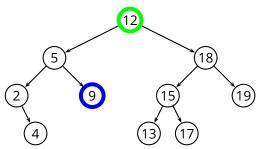
Given a node *x*, find the node containing the next key value



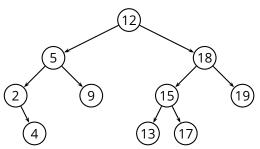
Given a node *x*, find the node containing the next key value



Given a node *x*, find the node containing the next key value



Given a node *x*, find the node containing the next key value

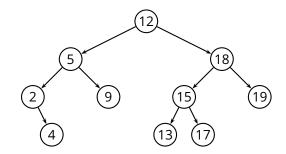


■ The successor of *x* is the *minimum* of the *right* subtree of *x*, if that exists

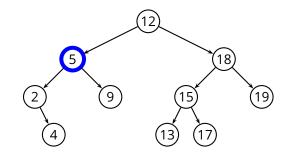
■ Otherwise it is the *first ancestor a* of *x* such that *x* falls in the *left* subtree of *a*

- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y. right
- 5 x = y
- 6 y = y. parent
- 7 return y

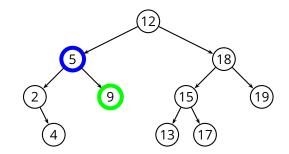
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



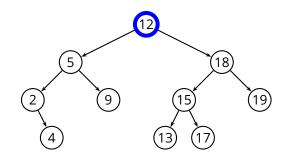
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



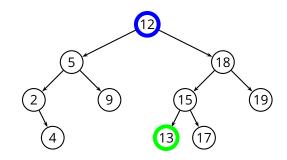
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y. right
- 5 x = y
- 6 y = y. parent
- 7 return y



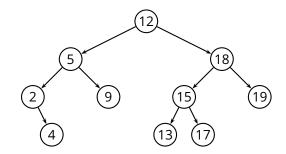
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



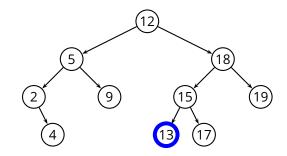
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



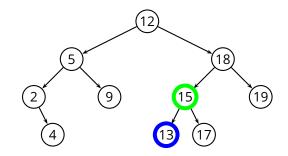
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



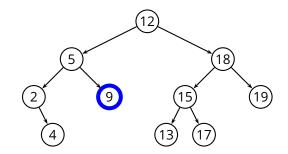
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



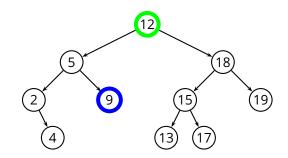
- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



- 1 **if** x.right \neq NIL
- 2 **return TREE-MINIMUM**(*x.right*)
- 3 y = x.parent
- 4 while $y \neq \text{NIL}$ and x = y.right
- 5 x = y
- 6 y = y. parent
- 7 return y



■ *Binary search* (thus the name of the tree)

Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)

Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)

Is this correct?

■ *Binary search* (thus the name of the tree)

```
TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)
```

■ Is this correct? Yes, thanks to the *binary-search-tree property*

■ *Binary search* (thus the name of the tree)

```
TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)
```

■ Is this correct? Yes, thanks to the *binary-search-tree property*

Complexity?

■ *Binary search* (thus the name of the tree)

TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)

■ Is this correct? Yes, thanks to the *binary-search-tree property*

Complexity?

 $T(n) = \Theta(depth of the tree)$

■ *Binary search* (thus the name of the tree)

TREE-SEARCH(x, k)1if x = NIL or k = x.key2return x3if k < x.key4return TREE-SEARCH(x.left, k)5else return TREE-SEARCH(x.right, k)

■ Is this correct? Yes, thanks to the *binary-search-tree property*

Complexity?

 $T(n) = \Theta(depth of the tree)$ T(n) = O(n)

Search (2)

Search (2)

■ Iterative *binary search*

Search (2)

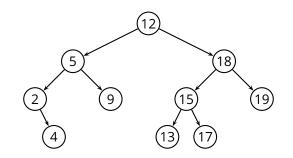
Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)

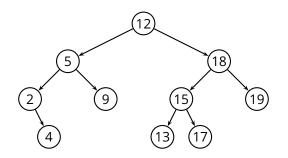
1 x = T.root2 while $x \neq NIL \land k \neq x.key$ 3 if k < x.key4 x = x.left5 else x = x.right6 return x

Insertion

Insertion



Insertion

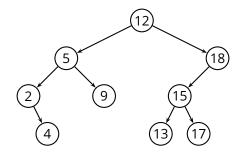


Idea

- in order to insert x, we search for x (more precisely x. key)
- if we don't find it, we add it where the search stopped

TREE-INSERT(T, z)1 y = NIL2 x = T.root3 while $x \neq NIL$ 4 y = x5 if z.key < x.key6 x = x.left7 else x = x.right8 z.parent = y9 if y = NIL10 T.root = z11 else if z.key < y.key12 y.left = z13 else y.right = z

1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$



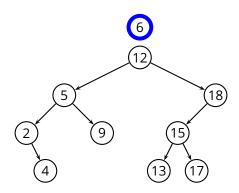
TREE-INSERT(T, z)1 y = NIL2 x = T.root3 while $x \neq \text{NIL}$ 4 y = x5 if z.key < x.key 6 x = x.left7 else x = x.right8 z.parent = y

9

10

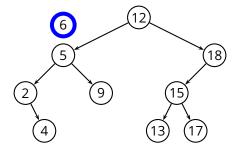
11 12

- z.parent = yif y = NIL T.root = zelse if z.key < y.keyy.left = z
- 13 **else** *y*.*right* = *z*

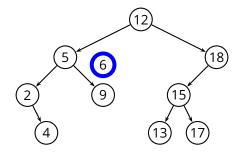


Insertion (2)

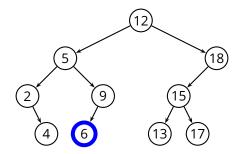
1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$



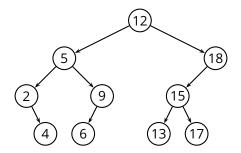
1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$



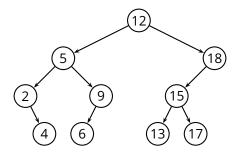
1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$

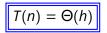


1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$



1	y = NIL
2	x = T.root
3	while $x \neq NIL$
4	y = x
5	if z . key $< x$. key
6	x = x.left
7	else $x = x.right$
8	z.parent = y
9	if $y = NIL$
10	T.root = z
11	else if z . key $< y$. key
12	y.left = z
13	else $y.right = z$





Both insertion and search operations have complexity h, where h is the height of the tree

- Both insertion and search operations have complexity h, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order

- Both insertion and search operations have complexity h, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- h = O(n) in some particular cases

- Both insertion and search operations have complexity h, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- h = O(n) in some particular cases
 - i.e., with ordered sequences

- Both insertion and search operations have complexity h, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- h = O(n) in some particular cases
 - i.e., with ordered sequences
 - the problem is that the "worst" case is not that uncommon

- Both insertion and search operations have complexity h, where h is the height of the tree
- $h = O(\log n)$ in the average case
 - i.e., with a random insertion order
- h = O(n) in some particular cases
 - i.e., with ordered sequences
 - the problem is that the "worst" case is not that uncommon
- *Idea*: use randomization to turn all cases in the average case

■ *Idea 1:* insert every sequence as a random sequence

■ *Idea 1:* insert every sequence as a random sequence

• i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A

- Idea 1: insert every sequence as a random sequence
 - i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a *random permutation* of A
 - problem: A is not necessarily known in advance

■ *Idea 1:* insert every sequence as a random sequence

- i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A
- problem: A is not necessarily known in advance
- *Idea 2:* we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures
 - tail insertion: this is what TREE-INSERT does

■ *Idea 1:* insert every sequence as a random sequence

- i.e., given $A = \langle 1, 2, 3, ..., n \rangle$, insert a random permutation of A
- problem: A is not necessarily known in advance
- *Idea 2:* we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures
 - tail insertion: this is what TREE-INSERT does
 - head insertion: for this we need a new procedure TREE-ROOT-INSERT
 - ▶ inserts *n* in *T* as if *n* was inserted as the first element

```
TREE-RANDOMIZED-INSERT1(T, z)

1 r = uniformly random value from \{1, ..., t.size + 1\}

2 if r = 1

3 TREE-ROOT-INSERT(T, z)

4 else TREE-INSERT(T, z)
```

```
TREE-RANDOMIZED-INSERT1(T, z)

1 r = uniformly random value from \{1, ..., t.size + 1\}

2 if r = 1

3 TREE-ROOT-INSERT(T, z)

4 else TREE-INSERT(T, z)
```

Does this really simulate a random permutation?

i.e., with all permutations being equally likely?

```
TREE-RANDOMIZED-INSERT1(T, z)

1 r = uniformly random value from \{1, \ldots, t.size + 1\}

2 if r = 1

3 TREE-ROOT-INSERT(T, z)

4 else TREE-INSERT(T, z)
```

Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom

```
TREE-RANDOMIZED-INSERT1(T, z)

1 r = uniformly random value from \{1, ..., t.size + 1\}

2 if r = 1

3 TREE-ROOT-INSERT(T, z)

4 else TREE-INSERT(T, z)
```

Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom
- It is true that any node has the same probability of being inserted at the top

```
TREE-RANDOMIZED-INSERT1(T, z)

1 r = uniformly random value from \{1, ..., t.size + 1\}

2 if r = 1

3 TREE-ROOT-INSERT(T, z)

4 else TREE-INSERT(T, z)
```

Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom
- It is true that any node has the same probability of being inserted at the top
 - this suggests a recursive application of this same procedure

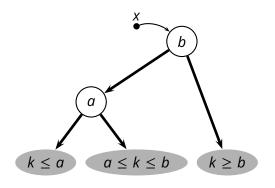
```
TREE-RANDOMIZED-INSERT(t, z)
 1 if t = NII
 2
         return z
 3 r = uniformly random value from \{1, \ldots, t.size + 1\}
 4 if r = 1
                            // \Pr[r = 1] = 1/(t.size + 1)
 5
        z.size = t.size + 1
 6
         return Tree-Root-Insert(t, z)
 7
   if z.key < t.key
 8
         t.left = TREE-RANDOMIZED-INSERT(t.left, z)
    else t.right = TREE-RANDOMIZED-INSERT(t.right, z)
 9
10
    t.size = t.size + 1
11
    return t
```

```
TREE-RANDOMIZED-INSERT(t, z)
 1 if t = NII
 2
         return z
 3 r = uniformly random value from \{1, \ldots, t.size + 1\}
 4 if r = 1
                             // \Pr[r = 1] = 1/(t.size + 1)
 5
         z.size = t.size + 1
 6
         return Tree-Root-Insert(t, z)
 7
    if z.key < t.key
 8
         t.left = \text{Tree-Randomized-Insert}(t.left, z)
    else t.right = TREE-RANDOMIZED-INSERT(t.right, z)
 9
10
    t.size = t.size + 1
11
    return t
```

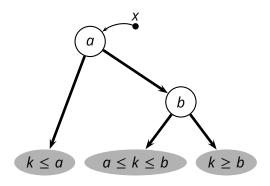
■ Looks like this one really simulates a random permutation...

Rotation

Rotation

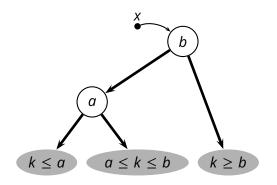


Rotation



• x = Right-Rotate(x)

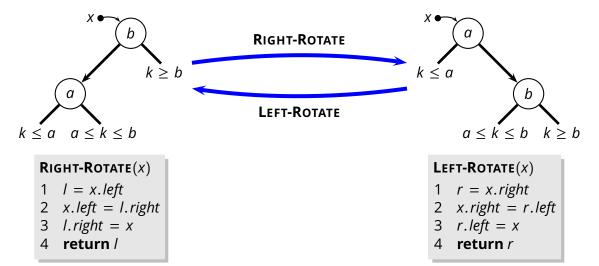
Rotation

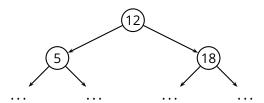


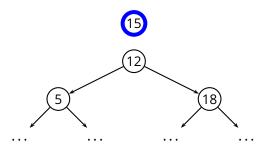
• x = Right-Rotate(x)

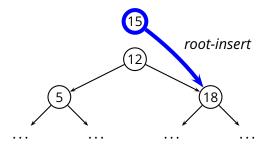
• x = Left-Rotate(x)

Rotation

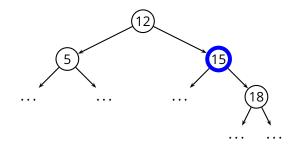




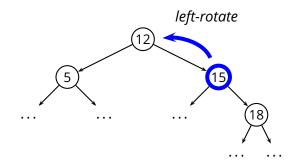




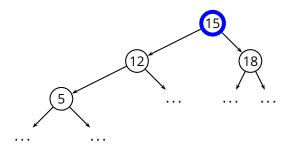
1. Recursively insert *z* at the root of the appropriate subtree (right)



1. Recursively insert *z* at the root of the appropriate subtree (right)



- 1. Recursively insert *z* at the root of the appropriate subtree (right)
- 2. Rotate *x* with *z* (left-rotate)



- 1. Recursively insert *z* at the root of the appropriate subtree (right)
- 2. Rotate *x* with *z* (left-rotate)

Root Insertion (2)

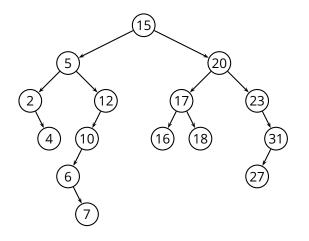
TREE-ROOT-INSERT (x, z)1if x = NIL2return z3if z.key < x.key4x.left = TREE-ROOT-INSERT(x.left, z)5return RIGHT-ROTATE(x)6else x.right = TREE-ROOT-INSERT(x.right, z)7return LEFT-ROTATE(x)

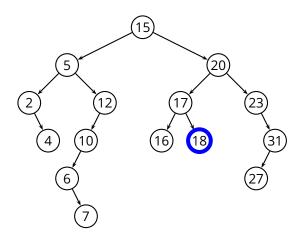
General strategies to deal with complexity in the worst case

- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable

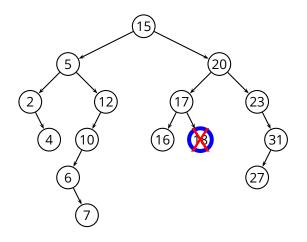
- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable
 - *amortized maintenance:* e.g., balancing a BST or resizing a hash table
 - relatively expensive but "amortized" operations

- General strategies to deal with complexity in the worst case
 - randomization: turns any case into the average case
 - the worst case is still possible, but it is extremely improbable
 - *amortized maintenance:* e.g., balancing a BST or resizing a hash table
 - relatively expensive but "amortized" operations
 - optimized data structures: a self-balanced data structure
 - guaranteed O(log n) complexity bounds

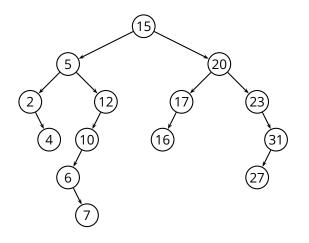




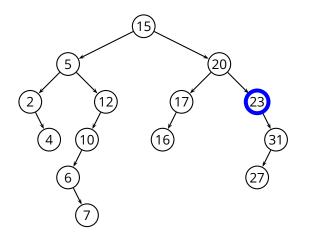
1. *z* has no children



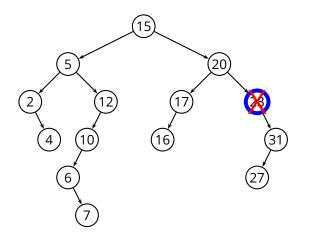
- 1. z has no children
 - simply remove z



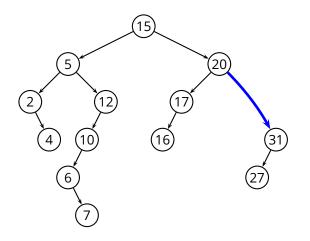
- 1. z has no children
 - simply remove z



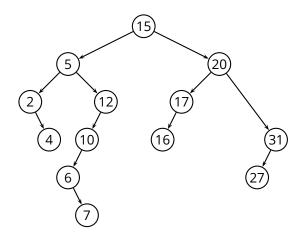
- 1. z has no children
 - simply remove z
- 2. z has one child



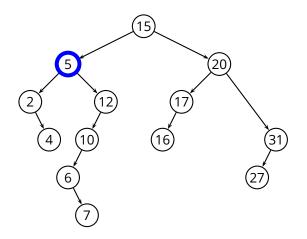
- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z



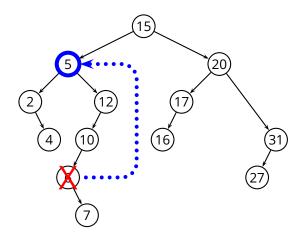
- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z
 - connect z. parent to z. right



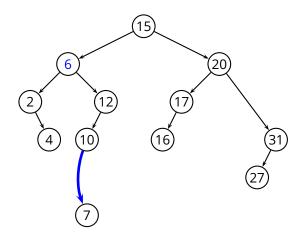
- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z
 - connect z. parent to z. right



- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z
 - connect z. parent to z. right
- 3. z has two children



- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z
 - connect z. parent to z. right
- 3. z has two children
 - replace z with
 y = TREE-SUCCESSOR(z)
 - remove y (1 child!)



- 1. z has no children
 - simply remove z
- 2. z has one child
 - remove z
 - connect z. parent to z. right
- 3. z has two children
 - replace z with
 - y = TREE-SUCCESSOR(z)
 - remove y (1 child!)
 - connect y. parent to y. right

Deletion (2)

```
TREE-DELETE(T, z)
    if z. left = NIL or z. right = NIL
 1
 2
         y = z
 3 else y = \text{TREE-SUCCESSOR}(z)
 4 if y.left \neq NIL
 5 x = y.left
 6 else x = y.right
 7 if x \neq \text{NIL}
 8
         x.parent = y.parent
 9
   if y. parent = NIL
10
         T.root = x
11
    else if y = y. parent. left
12
             y.parent.left = x
13
         else y. parentright = x
14 if y \neq z
15
         z.key = y.key
16
          copy any other data from y into z
```