Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

April 18, 2016

Outline

Red-black trees

Summary on Binary Search Trees

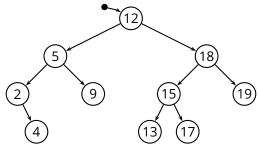
- Binary search trees
 - embody the *divide-and-conquer* search strategy
 - SEARCH, INSERT, MIN, and MAX operations are O(h), where h is the *height of the tree*
 - in general, $h(n) = \Omega(\log n)$ and h(n) = O(n)
 - *randomization* can be used to make the worst-case scenario
 h(n) = n highly unlikely

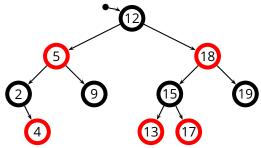
Summary on Binary Search Trees

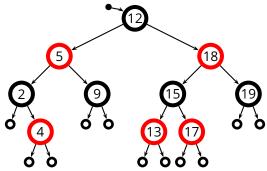
- Binary search trees
 - embody the *divide-and-conquer* search strategy
 - SEARCH, INSERT, MIN, and MAX operations are O(h), where h is the *height of the tree*
 - in general, $h(n) = \Omega(\log n)$ and h(n) = O(n)
 - *randomization* can be used to make the worst-case scenario
 h(n) = n highly unlikely

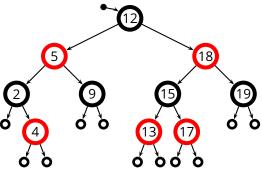
Problem

- worst-case scenario is unlikely but still possible
- simply bad cases are even more probable

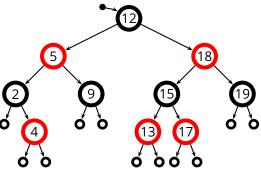




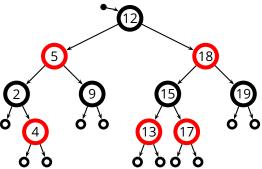




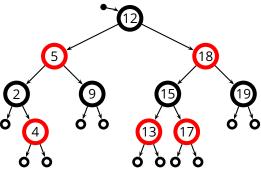
■ *Red-black-tree property*



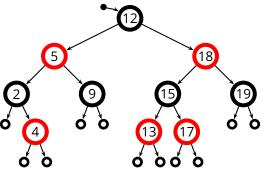
- Red-black-tree property
 - 1. every node is either **red** or **black**



- Red-black-tree property
 - 1. every node is either **red** or **black**
 - 2. the root is **black**

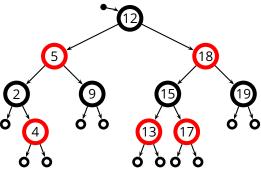


- Red-black-tree property
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**



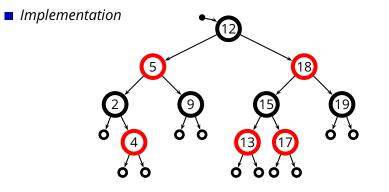
Red-black-tree property

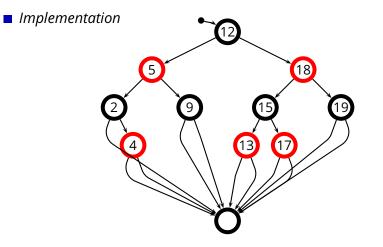
- 1. every node is either **red** or **black**
- 2. the root is **black**
- 3. every (NIL) leaf is **black**
- 4. if a node is **red**, then both its children are **black**



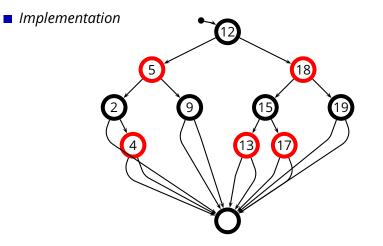
Red-black-tree property

- 1. every node is either **red** or **black**
- 2. the root is **black**
- 3. every (NIL) leaf is black
- 4. if a node is **red**, then both its children are **black**
- 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)





we use a common "sentinel" node to represent leaf nodes



- we use a common "sentinel" node to represent leaf nodes
- the sentinel is also the parent of the root node

Implementation

• *T* represents the tree, which consists of a set of *nodes*

Implementation

- *T* represents the tree, which consists of a set of *nodes*
- T. root is the root node of tree T

Implementation

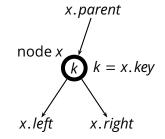
- *T* represents the tree, which consists of a set of *nodes*
- T.root is the root node of tree T
- ► *T.nil* is the "sentinel" node of tree *T*

Implementation

- *T* represents the tree, which consists of a set of *nodes*
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x.key is the key stored in node x
- *x*.*left* is the left child of node *x*
- x.right is the right child of node x

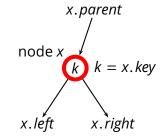


Implementation

- *T* represents the tree, which consists of a set of *nodes*
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x.key is the key stored in node x
- x.left is the left child of node x
- x.right is the right child of node x
- ► x.color ∈ {RED, BLACK} is the color of node x



Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$.

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 *induction step:* consider y_1, y_2 , and x such that $y_1.parent = y_2.parent = x$, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$; prove that $size(x) \ge 2^{bh(x)} - 1$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 *induction step:* consider y_1, y_2 , and x such that $y_1.parent = y_2.parent = x$, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$; prove that $size(x) \ge 2^{bh(x)} - 1$ **proof:** $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 *induction step:* consider y_1 , y_2 , and x such that y_1 . parent = y_2 . parent = x, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$; prove that $size(x) \ge 2^{bh(x)} - 1$ **proof:** $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$

 $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{sir(y_1)} - 1) + (2^{sir(y_2)} - 1) + 1$ since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 *induction step:* consider y_1, y_2 , and x such that $y_1.parent = y_2.parent = x$, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$; prove that $size(x) \ge 2^{bh(x)} - 1$ **proof:**

 $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$ since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

 $size(x) \ge (2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1$

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most $2 \log(n + 1)$. **Proof:**

1. prove that $\forall x : size(x) \ge 2^{bh(x)} - 1$ by induction:

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 *induction step:* consider y_1, y_2 , and x such that $y_1.parent = y_2.parent = x$, and assume (induction) that $size(y_1) \ge 2^{bh(y_1)} - 1$ and $size(y_2) \ge 2^{bh(y_2)} - 1$; prove that $size(x) \ge 2^{bh(x)} - 1$ **proof:**

 $size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$ since

$$bh(x) = \begin{cases} bh(y) & \text{if } color(y) = \text{RED} \\ bh(y) + 1 & \text{if } color(y) = \text{BLACK} \end{cases}$$

 $size(x) \ge (2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1 = 2^{bh(x)} - 1$

1. $size(x) \ge 2^{bh(x)} - 1$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from *x* to a leaf node, at least half the nodes are black

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$

- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$, therefore

 $h \le 2\log(n+1)$

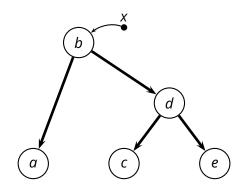
- 1. $size(x) \ge 2^{bh(x)} 1$
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2, $n = size(x) \ge 2^{h(x)/2} 1$, therefore

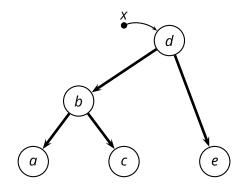
 $h \le 2\log(n+1)$

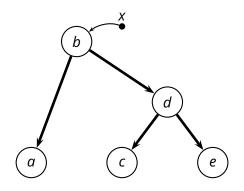
- A red-black tree works as a binary search tree for search, etc.
- So, the complexity of those operations is T(n) = O(h), that is

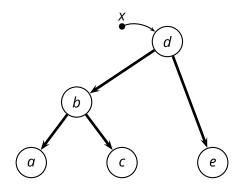
$$T(n) = O(\log n)$$

which is also the worst-case complexity









• x = Right-Rotate(x)

 x = Left-Rotate(x)

■ **RB-INSERT**(*T*, *z*) works as in a binary search tree

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**
 - 4. if a node is **red**, then both its children are **black**
 - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*
 - 1. every node is either **red** or **black**
 - 2. the root is **black**
 - 3. every (NIL) leaf is **black**
 - 4. if a node is **red**, then both its children are **black**
 - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)
- General strategy

RB-INSERT(*T*, *z*) works as in a binary search tree

Except that it must preserve the *red-black-tree property*

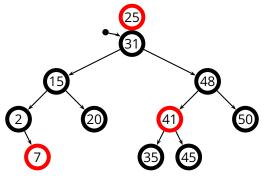
- 1. every node is either **red** or **black**
- 2. the root is **black**
- 3. every (NIL) leaf is **black**
- 4. if a node is **red**, then both its children are **black**
- 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

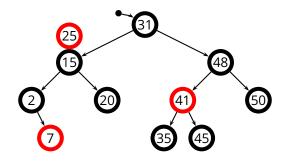
General strategy

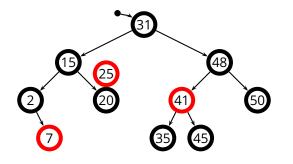
- 1. insert *z* as in a binary search tree
- 2. color *z* red so as to preserve property 5
- 3. fix the tree to correct possible violations of property 4

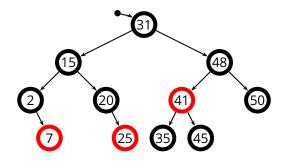
RB-INSERT

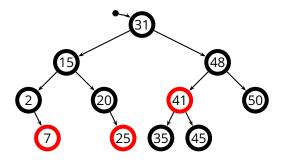
RB-INSERT(T, z)y = T.nil1 2 x = T.root3 while $x \neq T$. nil 4 y = x5 if z.key < x.key6 x = x.left7 else x = x.right 8 z.parent = y9 if y == T.nil10 T.root = z11 else if z.key < y.key12 y.left = zelse y.right = z13 14 z.left = z.right = T.nil15 z.color = RED16 **RB-INSERT-FIXUP**(T, z)



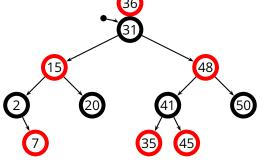


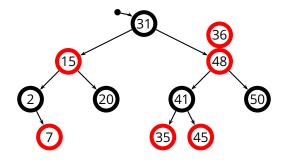


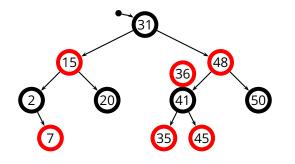


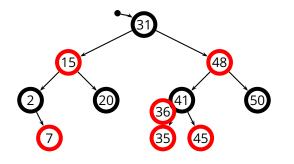


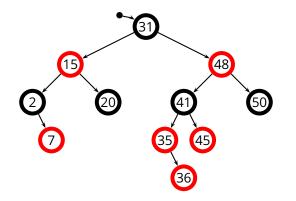
■ *z*'s father is **black**, so no fixup needed

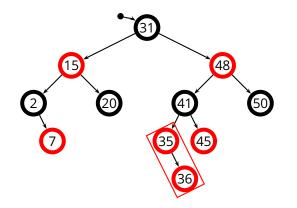


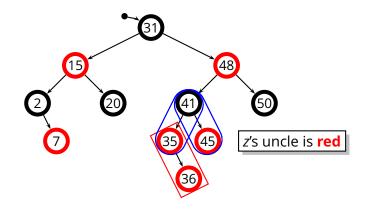


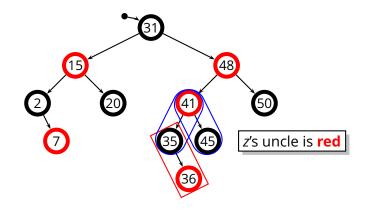


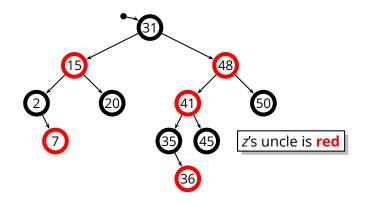


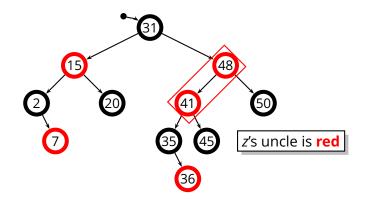


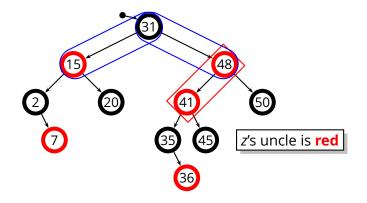


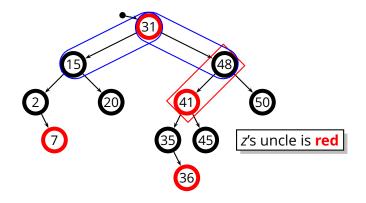


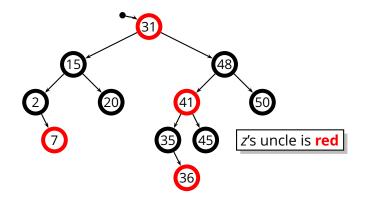


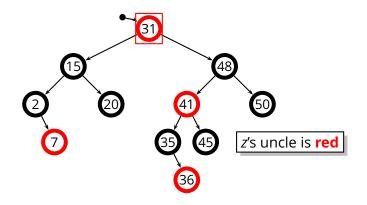


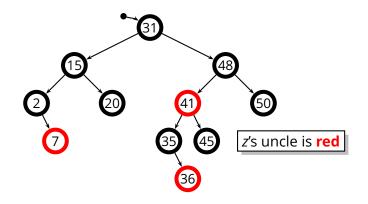


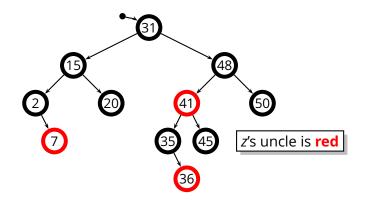




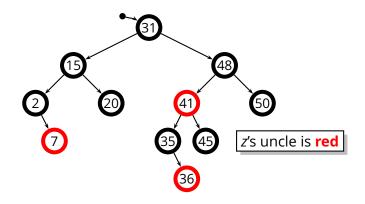




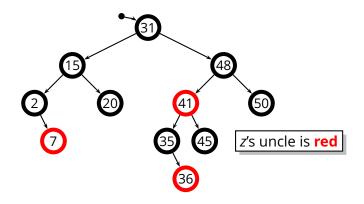




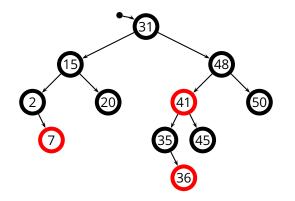
A black node can become red and transfer its black color to its two children

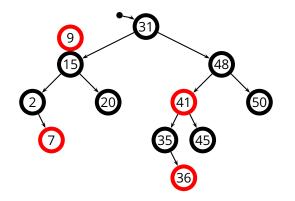


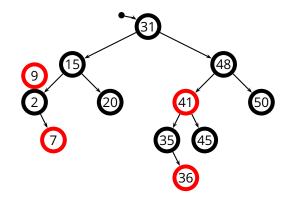
- A black node can become red and transfer its black color to its two children
- This may cause other **red**-**red** conflicts, so we iterate...

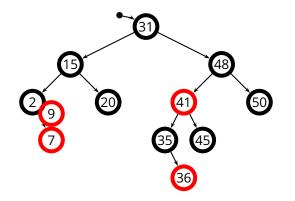


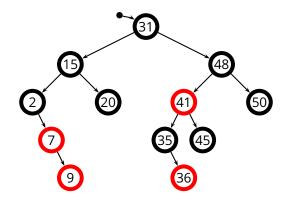
- A black node can become red and transfer its black color to its two children
- This may cause other **red**-**red** conflicts, so we iterate...
- The root can change to **black** without causing conflicts

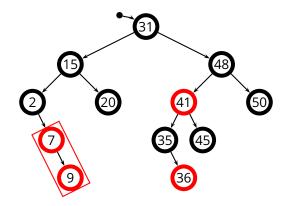


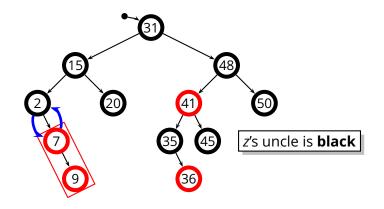


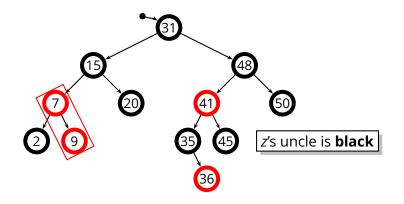


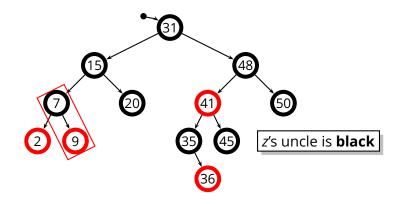


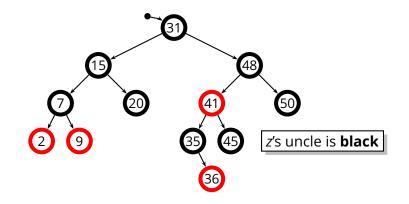




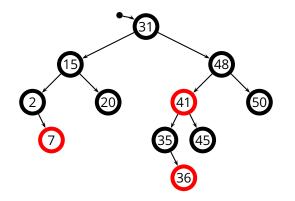


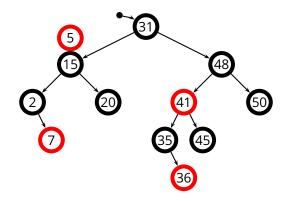


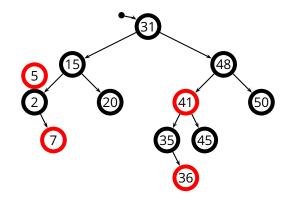


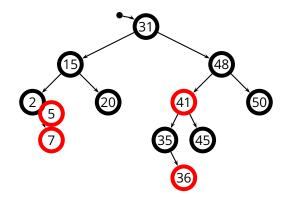


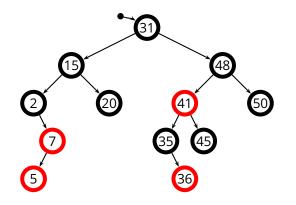
An in-line red-red conflicts can be resolved with a rotation plus a color switch

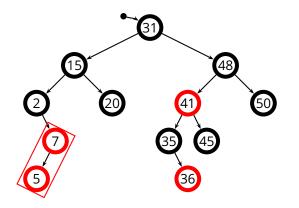


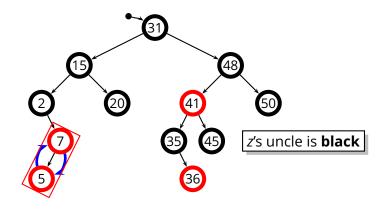


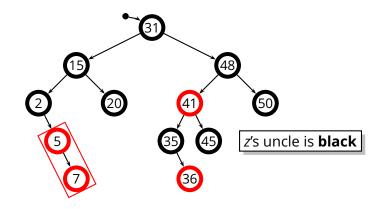


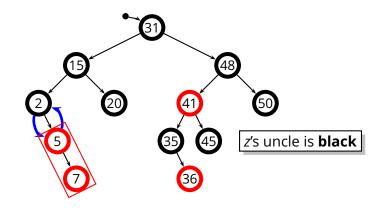


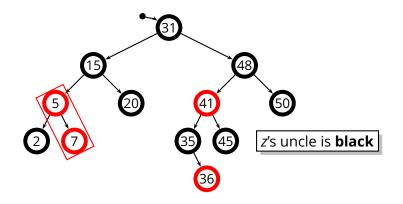


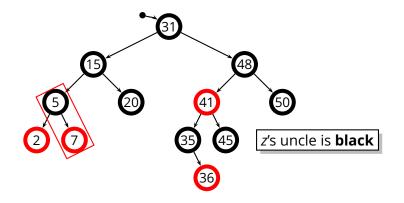


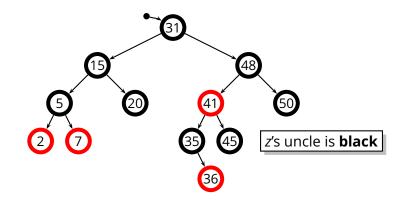












A zig-zag red-red conflicts can be resolved with a rotation to turn it into an *in-line* conflict, and then a rotation plus a color switch