Convex Hull: Ordering the Points.

Elena Khramtcova

Algorithms and Data Structures.
Faculty of Informatics, USI
Spring 2013
Definition of convex hull (CH)

P – set of n points in the plane,
Definition of convex hull (CH)

\(P \) – set of \(n \) points in the plane,

Problem(CH): Compute \(\text{CH}(P) \).

\(\text{CH}(P) \): smallest convex set containing \(P \).
Definition of convex hull (CH)

P – set of n points in the plane,

Problem(CH): Compute $\text{CH}(P)$.

$\text{CH}(P)$: smallest convex set containing P.

[Diagram of a convex hull enclosing a set of points]
Definition of convex hull (CH)

P – set of n points in the plane,

Problem(CH): Compute $\text{CH}(P)$.

h – # of hull points
Sorting can be reduced to CH

A – array of n numbers,

Problem: Compute $B = \text{sorted } A$.
Sorting can be reduced to CH

A – array of n numbers,

Problem: Compute $B = \text{sorted } A$.
Sorting can be reduced to CH

\(A \) – array of \(n \) numbers,

Problem: Compute \(B = \text{sorted } A \).
Sorting can be reduced to CH

A – array of n numbers,

Problem: Compute $B = \text{sorted } A$.

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9
Sorting can be reduced to CH

A – array of n numbers,

Problem: Compute $B = \text{sorted } A$.
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do
 Find p_{next}: min. angle with supporting line
 While $p_{next} \neq p_1$
Time complexity: $O(nh)$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point \(p_1 \)
2. Do

 Find \(p_{next} \): min. angle with supporting line

 While \(p_{next} \neq p_1 \)

\(p_1 \)
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do
 Find p_{next}: min. angle with supporting line
 While $p_{\text{next}} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do
 Find p_{next}: min. angle with supporting line
 While $p_{next} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do

 Find p_{next}: min. angle with supporting line

While $p_{next} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do

 Find p_{next}: min. angle with supporting line

 While $p_{\text{next}} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point \(p_1 \)
2. Do
 Find \(p_{next} \): min. angle with supporting line
 While \(p_{next} \neq p_1 \)
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do
 Find p_{next}: min. angle with supporting line
 While $p_{next} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point \(p_1 \)
2. Do
 Find \(p_{next} \): min. angle with supporting line
 While \(p_{next} \neq p_1 \)
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1
2. Do

 Find p_{next}: min. angle with supporting line

 While $p_{next} \neq p_1$
CH algorithm 1: Jarvis’s march/Jarvis’s wrap

1. Find the lowest point p_1

2. Do

 Find p_{next}: min.
 angle with
 supporting line

 While $p_{next} \neq p_1$

Time complexity: $O(nh)$
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
2. Compute $CH(P_{left})$ and $CH(P_{right})$ recursively
3. Find two bridges
4. Delete all edges in-between the bridges

Time complexity: $O(n \log n)$
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
2. Compute $CH(P_{left})$ and $CH(P_{right})$ recursively

Time complexity: $O(n \log n)$
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
2. Compute $CH(P_{\text{left}})$ and $CH(P_{\text{right}})$ recursively
3. Find two bridges

Time complexity: $O(n \log n)$
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
2. Compute $CH(P_{left})$ and $CH(P_{right})$ recursively
3. Find two bridges

Time complexity: $O(n \log n)$
CH algorithm 2: ...

1. Divide points by a vertical line in two equal parts
2. Compute $\text{CH}(P_{left})$ and $\text{CH}(P_{right})$ recursively
3. Find two bridges
4. Delete all edges in-between the bridges

Time complexity: $O(n \log n)$
CH algorithm 2: Divide and Conquer

1. Divide points by a vertical line in two equal parts
2. Compute \(CH(P_{left}) \) and \(CH(P_{right}) \) recursively
3. Find two bridges
4. Delete all edges in-between the bridges

Time complexity: \(O(n \log n) \)
CH algorithm 3: ...

1. Find points r and l
2. Divide the set by rl into A and B
3. Return $HULL(A, l, r) \cup HULL(B, r, l)$

If $A = lr$, return (l, r) else

1. Find $z \in A$: farthest from lr
2. R – points to the right of lz
3. L – points to the left of zr
4. Return $\{HULL(L, l, z) \cup \{z\} \cup HULL(R, z, r)\}$

Time complexity: $O(n^2)$ w.c., $O(n \log n)$ avg.
1. Find points r and l

2. Divide the set by rl into A and B

3. Return $HULL(A, l, r) \cup HULL(B, r, l)$

1. Find $z \in A$: farthest from lr

2. R – points to the right of lz

3. L – points to the left of zr

4. Return $\{HULL(L, l, z) \cup \{z\} \cup HULL(R, z, r)\}$

Time complexity: $O(n^2)$ w.c., $O(n \log n)$ avg.
CH algorithm 3: ...

1. Find points r and l
2. Divide the set by rl into A and B
3. Return $\text{HULL}(A, l, r) \cup \text{HULL}(B, r, l)$

Time complexity: $O(n^2)$ w.c., $O(n \log n)$ avg.
CH algorithm 3: ...

1. Find points r and l
2. Divide the set by rl into A and B
3. Return $\text{HULL}(A, l, r) \cup \text{HULL}(B, r, l)$

$\text{HULL}(A, l, r)$
- if $A = lr$, return (l, r)
- else
 1. Find $z \in A$: farthest from lr
 2. R – points to the right of lz
 3. L – points to the left of zr
 4. Return $\{\text{HULL}(L, l, z) \cup \{z\} \cup \text{HULL}(R, z, r)\}$
CH algorithm 3: ...

1. Find points r and l
2. Divide the set by rl into A and B
3. Return $\text{HULL}(A, l, r) \cup \text{HULL}(B, r, l)$

$\text{HULL}(A, l, r)$
if $A = lr$, return (l, r) else

1. Find $z \in A$: farthest from lr
2. R – points to the right of lz
3. L – points to the left of zr
4. Return
 $\{\text{HULL}(L, l, z) \cup \{z\} \cup \text{HULL}(R, z, r)\}$
CH algorithm 3: ...

1. Find points r and l
2. Divide the set by rl into A and B
3. Return $HULL(A, l, r) \cup HULL(B, r, l)$

$HULL(A, l, r)$
if $A = lr$, return (l, r) else
1. Find $z \in A$: farthest from lr
2. R – points to the right of lz
3. L – points to the left of zr
4. Return
 \[
 \{HULL(L, l, z) \cup \{z\} \cup HULL(R, z, r)\}
 \]
CH algorithm 3: Quickhull

1. Find points \(r \) and \(l \)
2. Divide the set by \(rl \) into \(A \) and \(B \)
3. Return \(\text{HULL}(A, l, r) \cup \text{HULL}(B, r, l) \)

\[
\text{HULL}(A, l, r) \\
\text{if } A = lr, \text{ return } (l, r) \text{ else}
\]

1. Find \(z \in A \): farthest from \(lr \)
2. \(R \) – points to the right of \(lz \)
3. \(L \) – points to the left of \(zr \)
4. Return \[
\{ \text{HULL}(L, l, z) \cup \{z\} \cup \text{HULL}(R, z, r) \}
\]

Time complexity: \(O(n^2) \) w.c., \(O(n \log n) \) avg.
CH algorithm 4: Heaphull. It does exist!

Uses a kinetic heap w.r.t. a certain “up” direction
CH algorithm 4: Heaphull. It does exist!

Uses a kinetic heap w.r.t. a certain “up” direction

Time complexity: $O(n \log^2 n)$
Not covered here

- Graham scan
- Chan’s algorithm
- Randomized incremental construction
- 3- and d-dimension