

 1

Searching and Sorting Algorithms,
Complexity Analysis

© F. Pedone, N. Schiper 2

Searching Algorithms
– General definition

• Locate an element x in a list of distinct elements
a1, a2, …, an, or determine that it is not in the list

– Linear search

Algorithm 2: Linear search
Input: unsorted sequence a1, a2, …, an

 position of target value x
Output: subscript of entry equal to target value; 0 if not found
Initialize: i ← 1
while (i ≤ n and x ≠ ai)

i ← i + 1
if i ≤ n then location ← i else location ← 0

© F. Pedone, N. Schiper 3

Searching Algorithms
– Binary search

• Requires input sequence to be sorted
General Idea:
Find 9 in the sequence: <1, 4, 6, 9, 10, 14>

 left mid right

<1, 4, 6, 9, 10, 14>

9 > amid ?
Yes (9 > 6)

left mid right

<1, 4, 6, 9, 10, 14>

9 > amid ?
No (9 < 10)

left mid right

<1, 4, 6, 9, 10, 14>

…

© F. Pedone, N. Schiper 4

Searching Algorithms
– Binary search

Algorithm 3: Binary search
Input: sorted sequence a1, a2, …, an

 position of target value x
Output: subscript of entry equal to target value; 0 if not found
Initialize: left ← 1; right ← n
while (left < right)

mid ← (left + right) / 2
if x > amid then left ← mid + 1 else right ← mid

if x = aleft then location ← left else location ← 0

 2

© F. Pedone, N. Schiper 5

Complexity Analysis
– Usually time complexity considered

– Space complexity can also be considered

– RAM Model
• Constant time basic operations (add, sub, load, store…)

– Worst-case complexity measure
• Estimates the time required for the most time-consuming input

of each size

– Average-case complexity measure
• Estimates the average time required for input of each size

• Not always easy to see what is the average-case

© F. Pedone, N. Schiper 6

Complexity Analysis

Algorithm 2: Linear search
Initialize: i ← 1
while (i ≤ n and x ≠ ai)

i ← i + 1
if i ≤ n then location ← i else location ← 0

Worst-case: element is at the end of the sequence or is
not present n iterations of loop ⋅c1 + c2 => Θ(n)

Avrg-case: element is at the middle of the sequence

n/2 iterations of loop ⋅c1 + c2 => Θ(n)

© F. Pedone, N. Schiper 7

Complexity Analysis
Algorithm 3: Binary search
Initialize: left ← 1; right ← n
while (left < right)

mid ← (left + right) / 2
if x > amid then left ← mid + 1 else right ← mid

if x = aleft then location ← left else location ← 0

Average & worst-case analysis:
k iteration of while loop ⋅ c1 + c2 => Θ(k) = Θ(log2 n)

…
n elements

height = k

© F. Pedone, N. Schiper 8

Sorting Algorithms
– General definition

• Putting a number of elements into a list in
which the elements are in increasing order

– Input:
• A sequence of n numbers <a1, a2, …, an>

– Output:
• A permutation (reordering) <a’1, a’2, …, a’n> of the

input sequence such that a’1 ≤ a’2 ≤ … ≤ a’n

 3

© F. Pedone, N. Schiper 9

Sorting Algorithms
– Insertion sort
– General idea:

• Same idea as what you do when cards are
distributed

• Your left hand is initially empty
• Until all cards have been distributed

– Take a card with right hand and insert it at the right
position in left hand

© F. Pedone, N. Schiper 10

Sorting Algorithms
– Insertion sort

Algorithm 3: Insertion sort
Input: unsorted sequence a1, a2, …, an

Output: sorted sequence a1, a2, …, an

for j ← 2 to n distribute all cards
key ← aj

i ← j - 1
while i > 0 and ai > aj insert at right position in left hand

 ai+1 ← ai

i ← i - 1
ai ← key

© F. Pedone, N. Schiper 11

Insertion Sort - example

 <3, 18, 4, 10, 7>

 <3, 18, 4, 10, 7>

 <3, 4, 18, 10, 7>

 <3, 4, 10, 18, 7>

j

j

j

j

<3, 18, 4, 10, 7>

<3, 4, 18, 10, 7>

<3, 4, 10, 18, 7>

<3, 4, 7, 10, 18>

© F. Pedone, N. Schiper 12

Correctness proof of insertion sort

– Must prove that:
• The algorithm terminates
• The algorithm sorts the input sequence

– Termination:
• All operations of the algorithm take a finite amount of time
• The algorithm executes a bounded number of loop iterations

 4

© F. Pedone, N. Schiper 13

Correctness proof of insertion sort
– The algorithm sorts the input sequence

• Prove a loop invariant:
– a1 ... aj sorted at end of iteration j

Algorithm 3: Insertion sort
for j ← 2 to n

key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

© F. Pedone, N. Schiper 14

Correctness proof of insertion sort

– Prove loop invariant by induction
• Base step: j = 2
• Induction step: if true for 2 ≤ k < j then true for j

Algorithm 3: Insertion sort
for j ← 2 to n

key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

© F. Pedone, N. Schiper 15

Correctness proof of insertion sort

– Base step (j = 2): a1 … a2
• Property holds by condition of while loop and last line

Algorithm 3: Insertion sort
for j ← 2 to n

key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

© F. Pedone, N. Schiper 16

Correctness proof of insertion sort

– Induction step:
• Property holds by condition of while loop and last

line

Algorithm 3: Insertion sort
for j ← 2 to n

key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

 5

© F. Pedone, N. Schiper 17

Correctness proof of insertion sort
– We proved that a1 … aj is sorted at end of

iteration j

– The last iteration is when j = n

– Consequently, when the algorithm terminates,
a1 … aj is sorted

© F. Pedone, N. Schiper 18

Sorting Algorithms
– Bubble Sort

Algorithm 4: Bubble sort
Input: unsorted sequence a1, a2, …, an

Output: sorted sequence a1, a2, …, an

for i ← 1 to n
for j ← n to i + 1

if aj < aj-1 then interchange aj and aj-1

© F. Pedone, N. Schiper 19

Bubble sort - example

 <18, 4, 10, 7>

 < 4, 18, 7, 10 >

 < 4, 7, 18, 10 >

 < 4, 7, 10, 18 >

i

i

i

i

<4, 18, 7, 10>

< 4, 7, 18, 10>

< 4, 7, 10, 18>

<4, 7, 10, 18>

© F. Pedone, N. Schiper 20

Complexity Analysis
Algorithm 3: Insertion sort

for j ← 2 to n
key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

Worst-case: input is sorted in reverse order

 => Θ(n2)

!

c
i=1

j"1

#
j= 2

n

= c + 2c + ...+ (n "1)c =
(n "1)2

2
c

 6

© F. Pedone, N. Schiper 21

Complexity Analysis
Algorithm 3: Insertion sort

for j ← 2 to n
key ← aj

i ← j - 1
while i > 0 and ai > aj

 ai+1 ← ai

i ← i - 1
ai ← key

Average-case: half of the elements in a1..aj-1 are greater
than aj

=> Θ(n2)

!

c
i=1

(j"1)/ 2# $

%
j= 2

n

% = c + c + 2c + 2c + ...+
n "1

2

& &
$

' '
c (

n +1

2
)
n "1

2

© F. Pedone, N. Schiper 22

Complexity Analysis

Algorithm 4: Bubble sort
for i ← 1 to n

for j ← n to i+1
if aj < aj-1 then interchange aj and aj-1

Average & worst-case:

!

c
j= i+1

n

"
i=1

n

" = (n #1)c + (n # 2)c + ...+ c =
(n #1)2

2
c => Θ(n2)

© F. Pedone, N. Schiper 23

Summary

Θ(n2)Θ(n2)Bubble sort

Θ(n2)Θ(n2)Insertion sort

Θ(log2(n))Θ(log2(n))Binary search

Θ(n)Θ(n)Linear search

Worst-caseAvrg-caseAlgorithm

© F. Pedone, N. Schiper 24

Complexity of algorithms
– Common terminology

Factorial complexityO(n!)

Exponential complexityO(bn), b > 1

Polynomial complexityO(nb)

n log n complexityO(n log n)

Linear complexityO(n)

Logarithmic complexityO(log n)

Constant complexityO(1)

TerminologyComplexity

