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Slow vs. Fast Pingala

We informally characterized our two Pingala algorithms

◮ PINGALA(n) is exponential in n

◮ PINGALA-INC(n) is linear in n

How do we characterize the complexity of algorithms?

◮ in general

◮ in a way that is specific to the algorithms

◮ but independent of implementation details
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Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAMmodel

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A basic step in the RAMmodel takes a constant time
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PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)
c1 1
c2 0
c3 1
c4 1
c5 n − 1
c6 n − 2
c7 n − 2
c8 n − 2
c9 1

T (n) = c1 + c3 + c4 + c9 + (n − 1)c5 + (n − 2)(c6 + c7 + c8)
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Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ we simplify our model by effectively considering only the maximal cost of any basic
step

◮ so, we assume c1 = c2 = c3 = · · · = ci
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Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)
c1 1
c2 0
c3 1
c4 1
c5 n − 1
c6 n − 2
c7 n − 2
c8 n − 2
c9 1

T (n) = nC1 + C2 ⇒ T (n) is a linear function of n
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AModel of Any Computer, Past, Present, and Future

A basic step in the RAMmodel takes a constant time

◮ “constant” means independent of the input size

The specific constant is a technological factor

Technology changes

. . . sowe ignore any specific multiplicative or additive constants

. . .effectively we allow for any scaling factor
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Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for PINGALA-INC?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)
1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE

T (n) = Cn
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Worst-Case Complexity

In general wemeasure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T (n) = C
n(n − 1)

2
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Asymptotic Complexity

We care about T (n) as n goes to infinity
◮ “for sufficiently large n”

We care only about the asymptotic order of growth of T (n)
◮ so we ignore lower-order terms

Example:

Algorithm 1 costs T1 (n) = 100n + 3000 basic steps

Algorithm 2 costs T2 (n) = 0.02n2 + 2 basic steps

Which is best?
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O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

f (n) = O(g(n))
i.e., f (n) ∈ O(g(n) )

“f (n) is big-oh of g(n)”

O(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

f (n) is below g(n) for all sufficiently large n, and for some scaling factor c
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Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

f (n) = Ω(g(n))
i.e., f (n) ∈ Ω(g(n) )

“f (n) is omega of g(n)”

Ω(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}
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Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

f (n)

c2g(n)

c1g(n)

n0

f (n) = Θ(g(n))
i.e., f (n) ∈ Θ(g(n) )

“f (n) is theta of g(n)”

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0
: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}



o-Notation



o-Notation

The O-notation defines an upper bound that might not be asymptotically tight



o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight



o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ f (n) < cg(n) for all n ≥ n0}



o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ f (n) < cg(n) for all n ≥ n0}

f (n) is below g(n) for all sufficiently large n, and for ALL scaling factors c



ω-Notation



ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight



ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight



ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use theω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω (g(n))

ω (g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ cg(n) < f (n) for all n ≥ n0}



ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use theω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω (g(n))

ω (g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ cg(n) < f (n) for all n ≥ n0}

f (n) is above g(n) for all sufficiently large n, and for ALL scaling factors c



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound

In fact, the fundamental prime number theorem says that

lim
n→∞

π (n) ln n
n

= 1
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Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6 )

T (n) = 10+n
n2

⇒ T (n) = Θ( 1n)

T (n) = complexity of PINGALA-INC ⇒ T (n) = Θ(n)

We characterize the behavior of T (n) in the limit

TheΘ-notation is an asymptotic notation
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FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T (n) = Θ(n2)

◮ n = length(A) is the size of the input
◮ wemeasure theworst-case complexity
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