
Basics of Complexity Analysis:

The RAMModel and the

Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

February 22, 2024

Outline

Informal analysis of two Pingala algorithms

The random-access machinemodel

Measure of complexity

Characterizing functions with their asymptotic behavior

Big-O, omega, and theta notations

Slow vs. Fast Pingala

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

n

ru
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

Racket
Java
Python
C
C-gcc
(Python) Pingala-Inc

Slow vs. Fast Pingala

We informally characterized our two Pingala algorithms

Slow vs. Fast Pingala

We informally characterized our two Pingala algorithms

◮ PINGALA(n) is exponential in n

◮ PINGALA-INC(n) is linear in n

Slow vs. Fast Pingala

We informally characterized our two Pingala algorithms

◮ PINGALA(n) is exponential in n

◮ PINGALA-INC(n) is linear in n

How do we characterize the complexity of algorithms?

◮ in general

Slow vs. Fast Pingala

We informally characterized our two Pingala algorithms

◮ PINGALA(n) is exponential in n

◮ PINGALA-INC(n) is linear in n

How do we characterize the complexity of algorithms?

◮ in general

◮ in a way that is specific to the algorithms

◮ but independent of implementation details

Slow vs. Fast Pingala

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

n

ru
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

Racket
Java
Python
C
C-gcc
(Python) Pingala-Inc

Slow vs. Fast Pingala

n

ti
m
e

PINGALA

PINGALA-INC

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

Basic types in the RAMmodel

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAMmodel

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAMmodel

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

AModel of the Computer

An informal model of the Random-Access Machine (RAM)

Basic types in the RAMmodel

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAMmodel

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A basic step in the RAMmodel takes a constant time

Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)

Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)
c1 1
c2 0
c3 1
c4 1
c5 n − 1
c6 n − 2
c7 n − 2
c8 n − 2
c9 1

T (n) = c1 + c3 + c4 + c9 + (n − 1)c5 + (n − 2)(c6 + c7 + c8)

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ we simplify our model by effectively considering only the maximal cost of any basic
step

◮ so, we assume c1 = c2 = c3 = · · · = ci

Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)
c1 1
c2 0
c3 1
c4 1
c5 n − 1
c6 n − 2
c7 n − 2
c8 n − 2
c9 1

T (n) = c1 + c3 + c4 + c9 + (n − 1)c5 + (n − 2)(c6 + c7 + c8)

Analysis in the RAMModel

PINGALA-INC(n)
1 if n ≤ 2
2 return n

3 pprev = 1
4 prev = 2
5 for i = 3 to n
6 P = prev + pprev
7 pprev = prev

8 prev = P

9 return P

cost times (n > 2)
c1 1
c2 0
c3 1
c4 1
c5 n − 1
c6 n − 2
c7 n − 2
c8 n − 2
c9 1

T (n) = nC1 + C2 ⇒ T (n) is a linear function of n

AModel of Any Computer, Past, Present, and Future

AModel of Any Computer, Past, Present, and Future

A basic step in the RAMmodel takes a constant time

◮ “constant” means independent of the input size

AModel of Any Computer, Past, Present, and Future

A basic step in the RAMmodel takes a constant time

◮ “constant” means independent of the input size

The specific constant is a technological factor

AModel of Any Computer, Past, Present, and Future

A basic step in the RAMmodel takes a constant time

◮ “constant” means independent of the input size

The specific constant is a technological factor

Technology changes

. . . sowe ignore any specific multiplicative or additive constants

. . .effectively we allow for any scaling factor

Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for PINGALA-INC?

Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for PINGALA-INC?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x, or FALSE otherwise

Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for PINGALA-INC?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)
1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE

Complexity as a Function of the Size of the Input

Wemeasure the complexity of an algorithm as a function of the size of the input

◮ size measured in bits

◮ did we do that for PINGALA-INC?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)
1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE

T (n) = Cn

Worst-Case Complexity

In general wemeasure the complexity of an algorithm in the worst case

Worst-Case Complexity

In general wemeasure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

Worst-Case Complexity

In general wemeasure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

Worst-Case Complexity

In general wemeasure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T (n) = C
n(n − 1)

2

Asymptotic Complexity

We care about T (n) as n goes to infinity
◮ “for sufficiently large n”

Asymptotic Complexity

We care about T (n) as n goes to infinity
◮ “for sufficiently large n”

We care only about the asymptotic order of growth of T (n)

Asymptotic Complexity

We care about T (n) as n goes to infinity
◮ “for sufficiently large n”

We care only about the asymptotic order of growth of T (n)
◮ so we ignore lower-order terms

Example:

Algorithm 1 costs T1 (n) = 100n + 3000 basic steps

Algorithm 2 costs T2 (n) = 0.02n2 + 2 basic steps

Which is best?

O-Notation

O-Notation

Given a function g(n), we define the family of functions O(g(n))

O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

O(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

O(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

f (n) is below g(n) for all sufficiently large n, and for some scaling factor c

O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

f (n) = O(g(n))
i.e., f (n) ∈ O(g(n))

“f (n) is big-oh of g(n)”

O(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

f (n) is below g(n) for all sufficiently large n, and for some scaling factor c

Ω-Notation

Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

Ω(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

f (n) = Ω(g(n))
i.e., f (n) ∈ Ω(g(n))

“f (n) is omega of g(n)”

Ω(g(n)) = {f (n) : \c > 0,\n0 > 0
: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

Θ-Notation

Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

f (n)

Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

f (n)

c2g(n)

c1g(n)

Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

f (n)

c2g(n)

c1g(n)

n0

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0
: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}

Θ-Notation

Given a function g(n), we define the family of functionsΘ(g(n))

f (n)

c2g(n)

c1g(n)

n0

f (n) = Θ(g(n))
i.e., f (n) ∈ Θ(g(n))

“f (n) is theta of g(n)”

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0
: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}

o-Notation

o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight

o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ f (n) < cg(n) for all n ≥ n0}

o-Notation

The O-notation defines an upper bound that might not be asymptotically tight

E.g.,

n log n = O(n2) is not asymptotically tight

so, n log n = O(n2) but n log n , Θ(n2)
n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ f (n) < cg(n) for all n ≥ n0}

f (n) is below g(n) for all sufficiently large n, and for ALL scaling factors c

ω-Notation

ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use theω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω (g(n))

ω (g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ cg(n) < f (n) for all n ≥ n0}

ω-Notation

The Ω-notation defines a lower bound that might not be asymptotically tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use theω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω (g(n))

ω (g(n)) = {f (n) : [c > 0,\n0 > 0
: 0 ≤ cg(n) < f (n) for all n ≥ n0}

f (n) is above g(n) for all sufficiently large n, and for ALL scaling factors c

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound

Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very o�en to characterize a function that
is not completely known

Example:

Let π (n) be the number of primes less than or equal to n
What is the asymptotic behavior of π (n)?

◮ π (n) = O(n) trivial upper bound

◮ π (n) = Ω(1) trivial lower bound

◮ π (n) = Θ(n/log n) non-trivial tight bound

In fact, the fundamental prime number theorem says that

lim
n→∞

π (n) ln n
n

= 1

Examples

T (n) = n2 + 10n + 100

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n
n2

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n
n2

⇒ T (n) = Θ(1n)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n
n2

⇒ T (n) = Θ(1n)

T (n) = complexity of PINGALA-INC

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n
n2

⇒ T (n) = Θ(1n)

T (n) = complexity of PINGALA-INC ⇒ T (n) = Θ(n)

Examples

T (n) = n2 + 10n + 100 ⇒ T (n) = Θ(n2)

T (n) = n + 10 log n ⇒ T (n) = Θ(n)

T (n) = n log n + n
√
n ⇒ T (n) = Θ(n

√
n)

T (n) = 2 n
6 + n7 ⇒ T (n) = Θ(2 n

6)

T (n) = 10+n
n2

⇒ T (n) = Θ(1n)

T (n) = complexity of PINGALA-INC ⇒ T (n) = Θ(n)

We characterize the behavior of T (n) in the limit

TheΘ-notation is an asymptotic notation

Examples

f (n) = n2 + 10n + 100

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))

f (n) = Θ(g(n)) ∧ g(n) = O(h(n)) ⇒ f (n) = O(h(n))

Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2 n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))

f (n) = Θ(g(n)) ∧ g(n) = O(h(n)) ⇒ f (n) = O(h(n))

f (n) = O(g(n)) ∧ g(n) = Θ(h(n)) ⇒ f (n) = O(h(n))

Examples

n2 − 10n + 100 = O(n log n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2 + (1.5)n = O(2 n
2)?

Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n) ⇒ f (n) = O(n2)? NO

f (n) = Θ(2n) ⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n) ⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n) ⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2 + (1.5)n = O(2 n
2)? NO

Example

So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

Example

So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)
1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T (n) = Θ(n2)

◮ n = length(A) is the size of the input
◮ wemeasure theworst-case complexity

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

TheΘ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

TheΘ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g⇔ f = g

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

TheΘ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g⇔ f = g

When f (n) = O(g(n)) we say that g(n) is an upper bound for f (n), and that g(n)
dominates f (n)

Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

TheΘ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g⇔ f = g

When f (n) = O(g(n)) we say that g(n) is an upper bound for f (n), and that g(n)
dominates f (n)

When f (n) = Ω(g(n)) we say that g(n) is a lower bound for f (n)

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)?

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)?

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)?

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

n log n + Θ(
√
n) = O(n

√
n)?

Θ, O, and Ω as Anonymous Functions

We can use theΘ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)
means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

n log n + Θ(
√
n) = O(n

√
n)? YES

n

nn2

nn2 n1.5

nn2 n1.5

2n3n

nn2 n1.5

2n3n

n log n

nn2 n1.5

2n3n

n log n

√
n = n0.5

nn2 n1.5

2n3n

n log n

√
n = n0.5

log n

nn2 n1.5

2n3n

n log n

√
n = n0.5

log n

n
log n

