Basics of Complexity Analysis: The RAM Model and the Growth of Functions

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

February 22, 2024

Outline

- Informal analysis of two Pingala algorithms
- The random-access machine model
- Measure of complexity
- Characterizing functions with their asymptotic behavior
- Big-O, omega, and theta notations

■ We informally characterized our two Pingala algorithms

- We informally characterized our two Pingala algorithms
 - PINGALA(n) is exponential in n
 - PINGALA-INC(n) is *linear* in n

- We informally characterized our two Pingala algorithms
 - PINGALA(n) is exponential in n
 - PINGALA-INC(n) is *linear* in n
- How do we characterize the complexity of algorithms?
 - ▶ in general

- We informally characterized our two Pingala algorithms
 - PINGALA(n) is exponential in n
 - PINGALA-INC(n) is *linear* in n
- How do we characterize the complexity of algorithms?
 - ▶ in general
 - ▶ in a way that is *specific to the algorithms*
 - but independent of implementation details

An informal model of the *Random-Access Machine (RAM)*

- An informal model of the *Random-Access Machine (RAM)*
- Basic types in the RAM model

An informal model of the *Random-Access Machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

An informal model of the *Random-Access Machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

An informal model of the *Random-Access Machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

An informal model of the *Random-Access Machine (RAM)*

Basic types in the RAM model

- integer and floating-point numbers
- limited size of each "word" of data (e.g., 64 bits)

Basic steps in the RAM model

- operations involving basic types
- load/store: assignment, use of a variable
- arithmetic operations: addition, multiplication, division, etc.
- branch operations: conditional branch, jump
- subroutine call

A basic step in the RAM model takes a constant time

PINGALA-INC(n)

- 1 **if** *n* ≤ 2
- 2 return n
- 3 pprev = 1
- 4 *prev* = 2
- 5 **for** *i* = 3 **to** *n*
- $6 \qquad P = prev + pprev$
- 7 pprev = prev
- 8 prev = P
- 9 return P

PINGALA-INC(<i>n</i>)				
1	if <i>n</i> ≤ 2			
2	return n			
3	pprev = 1			
4	prev = 2			
5	for <i>i</i> = 3 to <i>n</i>			
6	P = prev + pprev			
7	pprev = prev			
8	prev = P			
9	return P			

cost times (n > 2)

PINGALA-INC(<i>n</i>)		cost	times $(n > 2)$
1	if <i>n</i> ≤ 2	<i>c</i> ₁	1
2	return n	<i>c</i> ₂	0
3	pprev = 1	<i>C</i> 3	1
4	prev = 2	C4	1
5	for <i>i</i> = 3 to <i>n</i>	C5	n-1
6	P = prev + pprev	<i>C</i> 6	n – 2
7	pprev = prev	C7	n – 2
8	prev = P	<i>C</i> 8	n – 2
9	return P	C9	1

$$T(n) = c_1 + c_3 + c_4 + c_9 + (n-1)c_5 + (n-2)(c_6 + c_7 + c_8)$$

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

$$x = 0$$
 vs. $y + z$

■ We do not care about the specific costs of each basic step

- these costs are likely to vary significantly with languages, implementations, and processors
- we simplify our model by effectively considering only the maximal cost of any basic step

• so, we assume
$$c_1 = c_2 = c_3 = \cdots = c_i$$

PINGALA-INC(<i>n</i>)		cost	times $(n > 2)$
1	if <i>n</i> ≤ 2	<i>c</i> ₁	1
2	return n	<i>c</i> ₂	0
3	pprev = 1	<i>C</i> 3	1
4	prev = 2	C4	1
5	for <i>i</i> = 3 to <i>n</i>	<i>C</i> 5	n-1
6	P = prev + pprev	<i>C</i> 6	n – 2
7	pprev = prev	C7	n – 2
8	prev = P	<i>C</i> 8	n – 2
9	return P	C9	1

$$T(n) = c_1 + c_3 + c_4 + c_9 + (n-1)c_5 + (n-2)(c_6 + c_7 + c_8)$$

PINGALA-INC(<i>n</i>)		cost	times $(n > 2)$
1	if <i>n</i> ≤ 2	<i>c</i> ₁	1
2	return n	<i>c</i> ₂	0
3	pprev = 1	C3	1
4	prev = 2	C4	1
5	for <i>i</i> = 3 to <i>n</i>	C5	n-1
6	P = prev + pprev	<i>C</i> 6	n – 2
7	pprev = prev	C7	n – 2
8	prev = P	<i>C</i> 8	n – 2
9	return P	C9	1

 $T(n) = nC_1 + C_2 \implies T(n)$ is a linear function of n

A basic step in the RAM model takes a constant time

"constant" means independent of the input size

A basic step in the RAM model takes a constant time

- "constant" means independent of the input size
- The *specific* constant is a *technological factor*

A basic step in the RAM model takes a constant time

- "constant" means independent of the input size
- The *specific* constant is a *technological factor*

Technology changes

... so we ignore any specific multiplicative or additive constants

... effectively we allow for *any scaling factor*

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for PINGALA-INC?

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for PINGALA-INC?
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output TRUE if *A* contains *x*, or FALSE otherwise

• We measure the complexity of an algorithm *as a function of the size of the input*

- size measured in bits
- did we do that for PINGALA-INC?
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output TRUE if *A* contains *x*, or FALSE otherwise

```
FIND(A, x)

1 for i = 1 to length(A)

2 if A[i] == x

3 return TRUE

4 return FALSE
```

- We measure the complexity of an algorithm *as a function of the size of the input*
 - size measured in bits
 - did we do that for PINGALA-INC?
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value *x*, output TRUE if *A* contains *x*, or FALSE otherwise

```
FIND(A, x)

1 for i = 1 to length(A)

2 if A[i] == x

3 return TRUE

4 return FALSE
```

T(n) = Cn

■ In general we measure the complexity of an algorithm *in the worst case*

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output TRUE if A contains two equal values $a_i = a_i$ (with $i \neq j$)

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output TRUE if A contains two equal values $a_i = a_i$ (with $i \neq j$)

FINDEQUALS(A) 1 for *i* = 1 to length(A) - 1 2 for *j* = *i* + 1 to length(A) 3 if A[*i*] == A[*j*] 4 return TRUE 5 return FALSE

- In general we measure the complexity of an algorithm *in the worst case*
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output TRUE if A contains two equal values $a_i = a_i$ (with $i \neq j$)

FINDEQUALS(A) 1 for i = 1 to length(A) - 12 for j = i + 1 to length(A)3 if A[i] == A[j]4 return TRUE 5 return FALSE n(n - 1)

$$T(n) = C \frac{n(n-1)}{2}$$

Asymptotic Complexity

- We care about *T*(*n*) as *n* **goes to infinity**
 - "for sufficiently large n"
Asymptotic Complexity

■ We care about *T*(*n*) as *n* **goes to infinity**

"for sufficiently large n"

■ We care only about the *asymptotic order of growth* of *T*(*n*)

Asymptotic Complexity

■ We care about *T*(*n*) as *n* **goes to infinity**

"for sufficiently large n"

■ We care only about the *asymptotic order of growth* of *T*(*n*)

so we ignore lower-order terms

Example:

Algorithm 1 costs $T_1(n) = 100n + 3000$ basic steps

Algorithm 2 costs $T_2(n) = 0.02n^2 + 2$ basic steps

Which is best?

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$

Given a function g(n), we define the *family of functions* O(g(n))

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$

f(n) is below g(n) for all sufficiently large n, and for some scaling factor c

Given a function g(n), we define the *family of functions* O(g(n))

$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0 \\ : 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$$

f(n) is below g(n) for all sufficiently large n, and for some scaling factor c

$$\begin{aligned} \Omega(g(n)) &= \{f(n) : \exists c > 0, \exists n_0 > 0 \\ &: 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \} \end{aligned}$$

Θ -Notation

Θ -Notation

Θ -Notation

Θ-Notation

Θ-Notation

 $\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ-Notation

Given a function g(n), we define the *family of functions* $\Theta(g(n))$

 $\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \\ : 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

■ The O-notation defines an upper bound that might not be *asymptotically tight*

The *O*-notation defines an upper bound that might not be *asymptotically tight* E.g., $n \log n = O(n^2)$ is not asymptotically tight

so, $n \log n = O(n^2)$ but $n \log n \neq \Theta(n^2)$

 $n^2 - n + 10 = O(n^2)$ is asymptotically tight

- The O-notation defines an upper bound that might not be *asymptotically tight* E.g., $n \log n = O(n^2)$ is not asymptotically tight so, $n \log n = O(n^2)$ but $n \log n \neq \Theta(n^2)$
 - $n^2 n + 10 = O(n^2)$ is asymptotically tight
- We use the *o*-notation to denote upper bounds that are *not* asymtotically tight. So, given a function *g*(*n*), we define the family of functions *o*(*g*(*n*))

$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0$$

: $0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

The O-notation defines an upper bound that might not be *asymptotically tight* E.g., $n \log n = O(n^2)$ is not asymptotically tight so, $n \log n = O(n^2)$ but $n \log n \neq \Theta(n^2)$

 $n^2 - n + 10 = O(n^2)$ is asymptotically tight

■ We use the *o*-notation to denote upper bounds that are *not* asymtotically tight. So, given a function *g*(*n*), we define the family of functions *o*(*g*(*n*))

$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0$$

: $0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

f(n) is below g(n) for all sufficiently large n, and for ALL scaling factors c

The Ω -notation defines a lower bound that might not be *asymptotically tight*

- The Ω-notation defines a lower bound that might not be asymptotically tight
 E.g.,
 - $2^n = \Omega(n \log n)$ is not asymptotically tight
 - $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

The Ω-notation defines a lower bound that might not be *asymptotically tight* E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

 $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

We use the ω-notation to denote lower bounds that are *not* asymtotically tight.
 So, given a function g(n), we define the family of functions ω(g(n))

$$\omega(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0 \\ : 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}$$

The Ω-notation defines a lower bound that might not be *asymptotically tight* E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight

 $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

We use the ω-notation to denote lower bounds that are *not* asymtotically tight.
 So, given a function g(n), we define the family of functions ω(g(n))

$$\omega(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0 \\ : 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}$$

f(n) is above g(n) for all sufficiently large n, and for ALL scaling factors c

The idea of the O, Ω , and Θ notations is very often to characterize a function that is *not completely known*

The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

 $\blacktriangleright \pi(n) = O(n)$

trivial upper bound

The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

• $\pi(n) = O(n)$	trivial upper bound
• $\pi(n) = \Omega(1)$	trivial <i>lower bound</i>
• $\pi(n) = \Theta(n/\log n)$	non-trivial tight bound
Characterizing Unknown Functions

The idea of the O, Ω, and Θ notations is very often to characterize a function that is not completely known

Example:

Let $\pi(n)$ be the number of *primes* less than or equal to *n* What is the asymptotic behavior of $\pi(n)$?

 $\pi(n) = O(n)$ trivial upper bound $\pi(n) = \Omega(1)$ trivial lower bound $\pi(n) = \Theta(n/\log n)$ non-trivial tight bound

In fact, the fundamental prime number theorem says that

$$\lim_{n \to \infty} \frac{\pi(n) \ln n}{n} = 1$$

$$T(n) = n^2 + 10n + 100$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

 $\blacksquare T(n) = n + 10 \log n$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

 $\blacksquare T(n) = n + 10 \log n \implies T(n) = \Theta(n)$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

- $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
- $T(n) = n \log n + n \sqrt{n}$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

 $T(n) = 2^{\frac{n}{6}} + n^7$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

 $T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$

$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

$$T(n) = n + 10 \log n \implies T(n) = \Theta(n)$$

$$T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2}$$

■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$

■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$
■ $T(n) = \text{complexity of PINGALA-INC}$

■
$$T(n) = n^2 + 10n + 100 \implies T(n) = \Theta(n^2)$$

■ $T(n) = n + 10 \log n \implies T(n) = \Theta(n)$
■ $T(n) = n \log n + n\sqrt{n} \implies T(n) = \Theta(n\sqrt{n})$
■ $T(n) = 2^{\frac{n}{6}} + n^7 \implies T(n) = \Theta(2^{\frac{n}{6}})$
■ $T(n) = \frac{10+n}{n^2} \implies T(n) = \Theta(\frac{1}{n})$
■ $T(n) = \text{complexity of PINGALA-INC} \implies T(n) = \Theta(n)$

• We characterize the behavior of T(n) in the limit

■ The ⊖-notation is an *asymptotic notation*

$$f(n) = n^2 + 10n + 100$$

■
$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

 $\bullet f(n) = n + 10 \log n$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

 $f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

- $f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$
- $f(n) = n \log n + n \sqrt{n}$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

 $f(n) = n \log n + n\sqrt{n} \quad \Rightarrow f(n) = O(n^2)$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

■ $f(n) = 2^{\frac{n}{6}} + n^7$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \quad \Rightarrow f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2}$$

$$f(n) = n^2 + 10n + 100 \quad \Rightarrow f(n) = O(n^2) \quad \Rightarrow f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n \sqrt{n} \quad \Rightarrow f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

 $\bullet f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$

• $f(n) = \Theta(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

$$f(n) = n^2 + 10n + 100 \implies f(n) = O(n^2) \implies f(n) = O(n^3)$$

$$f(n) = n + 10 \log n \quad \Rightarrow f(n) = O(2^n)$$

$$f(n) = n \log n + n\sqrt{n} \implies f(n) = O(n^2)$$

■
$$f(n) = 2^{\frac{n}{6}} + n^7 \implies f(n) = O((1.5)^n)$$

$$f(n) = \frac{10+n}{n^2} \implies f(n) = O(1)$$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

$$f(n) = \Theta(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = O(g(n)) \land g(n) = \Theta(h(n)) \Rightarrow f(n) = O(h(n))$$

$$n^2 - 10n + 100 = O(n \log n)?$$

■ $n^2 - 10n + 100 = O(n \log n)$? NO

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

• $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$?

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

• $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$?

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

$$f(n) = \Theta(n^2 2^n) \Longrightarrow f(n) = O(2^{n+2\log_2 n})?$$

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

•
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES
■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

•
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$\bullet f(n) = O(2^n) \Longrightarrow f(n) = \Theta(n^2)?$$

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

•
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

•
$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$$
? NO

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

•
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? \text{ NO}$$

 $\quad \bullet \quad \sqrt{n} = O(\log^2 n)?$

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO

•
$$f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$$
? NO

•
$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)$$
? YES

•
$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? \text{ NO}$$

• $\sqrt{n} = O(\log^2 n)$? NO

■
$$n^2 - 10n + 100 = O(n \log n)$$
? NO
■ $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
■ $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
■ $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
■ $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
■ $\sqrt{n} = O(\log^2 n)$? NO
■ $n^2 + (1.5)^n = O(2^{\frac{n}{2}})$?

$$n^2 - 10n + 100 = O(n \log n)$$
? NO
 $f(n) = O(2^n) \Rightarrow f(n) = O(n^2)$? NO
 $f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^22^n)$? YES
 $f(n) = \Theta(n^22^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$? YES
 $f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)$? NO
 $\sqrt{n} = O(\log^2 n)$? NO
 $n^2 + (1.5)^n = O(2^{\frac{n}{2}})$? NO

So, what is the complexity of **FINDEQUALS**?

FINDEQUALS(A) 1 for *i* = 1 to *length*(A) - 1 2 for *j* = *i* + 1 to *length*(A) 3 if A[*i*] == A[*j*] 4 return TRUE 5 return FALSE

■ So, what is the complexity of **FINDEQUALS**?

FINDEQUALS(A) 1 for *i* = 1 to length(A) - 1 2 for *j* = *i* + 1 to length(A) 3 if A[*i*] == A[*j*] 4 return TRUE 5 return FALSE

$$T(n) = \Theta(n^2)$$

- n = length(A) is the size of the input
- we measure the worst-case complexity

Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

 $f \geq g \wedge f \leq g \Leftrightarrow f = g$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

■ When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n)**dominates** f(n)

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \land f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \geq g \wedge f \leq g \Leftrightarrow f = g$$

- When f(n) = O(g(n)) we say that g(n) is an **upper bound** for f(n), and that g(n)**dominates** f(n)
- When $f(n) = \Omega(g(n))$ we say that g(n) is a *lower bound* for f(n)

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

Examples

 $n^2 + 4n - 1 = n^2 + \Theta(n)$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

Examples

 $n^2 + 4n - 1 = n^2 + \Theta(n)$? YES

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$?

 We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or unsecified) functions
 E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

$$n^{2} + 4n - 1 = n^{2} + \Theta(n)$$
? YES
 $n^{2} + \Omega(n) - 1 = O(n^{2})$? NO
 $n^{2} + O(n) - 1 = O(n^{2})$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$? YES

