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Slow vs. Fast Pingala

m We informally characterized our two Pingala algorithms

> PINGALA(N) is exponential in n

> PINGALA-INC(n) is linearin n

m How do we characterize the complexity of algorithms?
» in general
» in a way that is specific to the algorithms

> but independent of implementation details
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m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
> limited size of each “word” of data (e.g., 64 bits)

m Basic steps in the RAM model

v

operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

m A basic step in the RAM model takes a constant time
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Analysis in the RAM Model

PINGALA-INC(N) cost times (n > 2)
1 ifn<?2 1 1

2 returnn ) 0

3 pprev =1 C3 1

4 prev =2 Cs4 1

5 fori=3ton Cs n-1

6 P = prev +pprev | Cs n-2

7 pprev = prev C7 n-2

8 prev = P Cg n-2

9 returnP Co 1

T(n) =c1+C3+C4+Co+(n—1)cs5+ (N —2)(Ce + C7 + Cg)
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Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x:OIvs. y+z|

m We do not care about the specific costs of each basic step

>

these costs are likely to vary significantly with languages, implementations, and
processors

we simplify our model by effectively considering only the maximal cost of any basic
step
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Analysis in the RAM Model

PINGALA-INC(N) cost times (n > 2)
1 ifn<?2 1 1

2 returnn ) 0

3 pprev =1 C3 1

4 prev =2 Cs4 1

5 fori=3ton Cs n-1

6 P = prev +pprev | Cs n-2

7 pprev = prev C7 n-2

8 prev = P Cg n-2

9 returnP Co 1

T(n) =nCy+C,

= T(n) is alinear function of n
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A Model of Any Computer, Past, Present, and Future

m A basic step in the RAM model takes a constant time

> “constant” means independent of the input size

m The specific constant is a technological factor

m Technology changes
...S0 we ignore any specific multiplicative or additive constants

...effectively we allow for any scaling factor
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Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for PINGALA-INC?

m Example: given a sequence A = (a1, 03, ..., apn), and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)

1 fori = 1tolength(A)
2 if A[i] ==

3 return TRUE
4 return FALSE

T(n)=Cn
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Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a1, 0, . . ., ap), output TRUE if A contains two
equal values a; = ag; (with/ # j)

FINDEQUALS(A)
1 fori = 1tolength(A) -1

2 forj = i+ 1to length(A)
3 if Ali] == A[j]
4 return TRUE

5 return FALSE

n(n-1)

T(n)=C 5




Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”



Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”

m We care only about the asymptotic order of growth of T(n)



Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”

m We care only about the asymptotic order of growth of T(n)
> so we ignore lower-order terms

Example:
Algorithm 1 costs T1(n) = 100n + 3000 basic steps
Algorithm 2 costs T,(n) = 0.02n? + 2 basic steps

Which is best?
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m Given a function g(n), we define the family of functions ©(g(n))
c29(n)
f(n)

f(n) =©(g(n))
ie,f(n) € ©(g(n))
“f(n) is theta of g(n)”

c1g9(n)

No

©(g(n)) ={f(n) : 3c; > 0,3c; > 0,3ng > 0
:0 <c1g(n) < f(n) < cag(n)foralln > ng}
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Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> x(n) =0(n) trivial upper bound
> 7(n) =Q(1) trivial lower bound

> n(n) =O(n/logn) non-trivial tight bound
In fact, the fundamental prime number theorem says that

. a(minn
lim =1
n—oo n
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T(n) =n+10logn = T(n) =0©(n)

T(n) =nlogn+nyn = T(n) =0(nvn)
T(n)=25+n" = T(n) =0O(25%)

T =1 = 7(n)=0(

T(n) = complexity of PINGALA-INC = T(n) = ©(n)
We characterize the behavior of T(n) in the limit

The ©-notation is an asymptotic notation
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m So, whatis the complexity of FINDEQUALS?

FINDEQUALS(A)
1 fori = 1tolength(A) -1

2 forj = i+ 1tolength(A)
3 if Ali] == A[j]
4 return TRUE

5 return FALSE




Example

m So, whatis the complexity of FINDEQUALS?

FINDEQUALS(A)

1 fori = 1tolength(A) -1

2 forj = i+ 1to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

T(n) = ©(n?)

> n = length(A) is the size of the input

> we measure the worst-case complexity
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m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

f>gnf<gef=g

m When f(n) = 0(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

m When f(n) = Q(g(n)) we say that g(n) is a lower bound for f(n)
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0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
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