Basics of Complexity Analysis:
The RAM Model and the
Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

February 22,2024

Informal analysis of two Pingala algorithms

The random-access machine model

Measure of complexity

Characterizing functions with their asymptotic behavior

Big-O, omega, and theta notations

Outline

running time (seconds)

Slow vs. Fast Pingala
—— Racket
60 - Java
= Python
50 A s C
— C-gCC
40 A (Python) Pingala-Inc
30 A
20 A
10 A
0 - i T T T T i i —

0 20 40 60 80 100 120 140 160 180 200
n

Slow vs. Fast Pingala

m We informally characterized our two Pingala algorithms

Slow vs. Fast Pingala

m We informally characterized our two Pingala algorithms

> PINGALA(N) is exponential in n

> PINGALA-INC(n) is linearin n

Slow vs. Fast Pingala

m We informally characterized our two Pingala algorithms
> PINGALA(N) is exponential in n
> PINGALA-INC(n) is linearin n

m How do we characterize the complexity of algorithms?

» in general

Slow vs. Fast Pingala

m We informally characterized our two Pingala algorithms

> PINGALA(N) is exponential in n

> PINGALA-INC(n) is linearin n

m How do we characterize the complexity of algorithms?
» in general
» in a way that is specific to the algorithms

> but independent of implementation details

running time (seconds)

Slow vs. Fast Pingala
—— Racket
60 - Java
= Python
50 A s C
— C-gCC
40 A (Python) Pingala-Inc
30 A
20 A
10 A
0 - i T T T T i i —

0 20 40 60 80 100 120 140 160 180 200
n

time

Slow vs. Fast Pingala

PINGALA e
PINGALA-INC =

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
> limited size of each “word” of data (e.g., 64 bits)

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
> limited size of each “word” of data (e.g., 64 bits)

m Basic steps in the RAM model

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
> limited size of each “word” of data (e.g., 64 bits)

m Basic steps in the RAM model

v

operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

A Model of the Computer

m Aninformal model of the Random-Access Machine (RAM)

m Basic types in the RAM model

> integer and floating-point numbers
> limited size of each “word” of data (e.g., 64 bits)

m Basic steps in the RAM model

v

operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

m A basic step in the RAM model takes a constant time

PINGALA-INC(N)

1
2
3
4
5
6
7
8
9

ifn<2
returnn

pprev = 1

prev = 2

fori =3ton
P = prev + pprev
pprev = prev
prev = P

return P

Analysis in the RAM Model

PINGALA-INC(N)

1
2
3
4
5
6
7
8
9

ifn<2
returnn

pprev = 1

prev = 2

fori =3ton
P = prev + pprev
pprev = prev
prev = P

return P

Analysis in the RAM Model

cost times (n > 2)

Analysis in the RAM Model

PINGALA-INC(N) cost times (n > 2)
1 ifn<?2 1 1

2 returnn) 0

3 pprev =1 C3 1

4 prev =2 Cs4 1

5 fori=3ton Cs n-1

6 P = prev +pprev | Cs n-2

7 pprev = prev C7 n-2

8 prev = P Cg n-2

9 returnP Co 1

T(n) =c1+C3+C4+Co+(n—1)cs5+ (N —2)(Ce + C7 + Cg)

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

X = OIvs. y+z|

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x:OIvs. y+z|

m We do not care about the specific costs of each basic step

>

these costs are likely to vary significantly with languages, implementations, and
processors

we simplify our model by effectively considering only the maximal cost of any basic
step

Analysis in the RAM Model

PINGALA-INC(N) cost times (n > 2)
1 ifn<?2 1 1

2 returnn) 0

3 pprev =1 C3 1

4 prev =2 Cs4 1

5 fori=3ton Cs n-1

6 P = prev +pprev | Cs n-2

7 pprev = prev C7 n-2

8 prev = P Cg n-2

9 returnP Co 1

T(n) =C1+C3+C4+Co+(n—1)cs5+ (N —2)(Ce + C7 + Cg)

Analysis in the RAM Model

PINGALA-INC(N) cost times (n > 2)
1 ifn<?2 1 1

2 returnn) 0

3 pprev =1 C3 1

4 prev =2 Cs4 1

5 fori=3ton Cs n-1

6 P = prev +pprev | Cs n-2

7 pprev = prev C7 n-2

8 prev = P Cg n-2

9 returnP Co 1

T(n) =nCy+C,

= T(n) is alinear function of n

A Model of Any Computer, Past, Present, and Future

A Model of Any Computer, Past, Present, and Future

m A basic step in the RAM model takes a constant time

> “constant” means independent of the input size

A Model of Any Computer, Past, Present, and Future

m A basic step in the RAM model takes a constant time

> “constant” means independent of the input size

m The specific constant is a technological factor

A Model of Any Computer, Past, Present, and Future

m A basic step in the RAM model takes a constant time

> “constant” means independent of the input size

m The specific constant is a technological factor

m Technology changes
...S0 we ignore any specific multiplicative or additive constants

...effectively we allow for any scaling factor

Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits

Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for PINGALA-INC?

Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for PINGALA-INC?

m Example: given a sequence A = (a1, 03, ..., apn), and a value x, output TRUE if A
contains x, or FALSE otherwise

Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for PINGALA-INC?

m Example: given a sequence A = (a1, 03, ..., apn), and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)

1 fori = 1tolength(A)
2 if A[i] ==

3 return TRUE
4 return FALSE

Complexity as a Function of the Size of the Input

m We measure the complexity of an algorithm as a function of the size of the input

» size measured in bits
» did we do that for PINGALA-INC?

m Example: given a sequence A = (a1, 03, ..., apn), and a value x, output TRUE if A
contains x, or FALSE otherwise

FIND(A, x)

1 fori = 1tolength(A)
2 if A[i] ==

3 return TRUE
4 return FALSE

T(n)=Cn

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a1, 0, . . ., ap), output TRUE if A contains two
equal values a; = ag; (with/ # j)

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a1, 0, . . ., ap), output TRUE if A contains two
equal values a; = ag; (with/ # j)

FINDEQUALS(A)
1 fori = 1tolength(A) -1

2 forj = i+ 1to length(A)
3 if Ali] == A[j]
4 return TRUE

5 return FALSE

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a1, 0, . . ., ap), output TRUE if A contains two
equal values a; = ag; (with/ # j)

FINDEQUALS(A)
1 fori = 1tolength(A) -1

2 forj = i+ 1to length(A)
3 if Ali] == A[j]
4 return TRUE

5 return FALSE

n(n-1)

T(n)=C 5

Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”

Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”

m We care only about the asymptotic order of growth of T(n)

Asymptotic Complexity

m We care about T(n) as n goes to infinity

> “for sufficiently large n”

m We care only about the asymptotic order of growth of T(n)
> so we ignore lower-order terms

Example:
Algorithm 1 costs T1(n) = 100n + 3000 basic steps
Algorithm 2 costs T,(n) = 0.02n? + 2 basic steps

Which is best?

O-Notation

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

f(n)

m Given a function g(n), we define the family of functions O(g(n))

v,

2
4

7

cg(n)
f(n)

O-Notation

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

No

0(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < f(n) <cg(n)foralln > ng}

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

No

0(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < f(n) <cg(n)foralln > ng}

f(n) is below g(n) for all sufficiently large n, and for some scaling factor c

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

f(n) = 0(g(n))
i.e,f(n) € 0(g(n))
“f(n) is big-oh of g(n)”

No

0(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < f(n) <cg(n)foralln > ng}

f(n) is below g(n) for all sufficiently large n, and for some scaling factor c

Q-Notation

Q-Notation

m Given a function g(n), we define the family of functions Q(g(n))

Q-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

Q-Notation

m Given a function g(n), we define the family of functions Q(g(n))
f(n)

cg(n)

Q-Notation

m Given a function g(n), we define the family of functions Q(g(n))
f(n)

cg(n)

_

Q(g(n)) ={f(n) : 3c > 0,3ny > 0
:0<cg(n) <f(n)foralln > ng}

No

Q-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

f(n) = Q(g(n))
i.e,f(n) € Q(g(n))
“f(n) isomega of g(n)”

cg(n)

No

Q(g(n)) ={f(n) : 3c > 0,3dny > 0
:0<cg(n) <f(n)foralln > ng}

©-Notation

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

f(n)

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

Y c2g(n)
f(n)
/ 7 ot
Z)
27

m Given a function g(n), we define the family of functions ©(g(n))
c2g(n)
f(n)

c1g9(n)

_

©(g(n)) ={f(n) : 3c; > 0,3c; > 0,3ng > 0

No

©-Notation

:0 <c1g(n) < f(n) < cag(n)foralln > ng}

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
c29(n)
f(n)

f(n) =©(g(n))
ie,f(n) € ©(g(n))
“f(n) is theta of g(n)”

c1g9(n)

No

©(g(n)) ={f(n) : 3c; > 0,3c; > 0,3ng > 0
:0 <c1g(n) < f(n) < cag(n)foralln > ng}

o-Notation

o-Notation

m The O-notation defines an upper bound that might not be asymptotically tight

o-Notation

m The O-notation defines an upper bound that might not be asymptotically tight
E.g.
nlogn = 0(n?) isnotasymptotically tight
so,nlogn = 0(n?) but nlogn # ©(n?)
n? —n+10=0(n?) isasymptotically tight

o-Notation

m The O-notation defines an upper bound that might not be asymptotically tight
E.g.,
nlogn = 0(n?) isnotasymptotically tight
so,nlogn = 0(n?) but nlogn # ©(n?)
n? —n+10=0(n?) isasymptotically tight

m We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) ={f(n) : YVc>0,3ny >0
:0 < f(n) <cg(n)foralln > ng}

o-Notation

m The O-notation defines an upper bound that might not be asymptotically tight
E.g.
nlogn = 0(n?) isnotasymptotically tight
so,nlogn = 0(n?) but nlogn # ©(n?)
n? —n+10=0(n?) isasymptotically tight

m We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) ={f(n) : YVc>0,3ny >0
:0 < f(n) <cg(n)foralln > ng}

f(n) is below g(n) for all sufficiently large n, and for ALL scaling factors c

w-Notation

w-Notation

m The Q-notation defines a lower bound that might not be asymptotically tight

w-Notation

m The Q-notation defines a lower bound that might not be asymptotically tight
E.g.,
2" = Q(nlogn) isnotasymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

w-Notation

m The Q-notation defines a lower bound that might not be asymptotically tight
E.g.,
2" = Q(nlogn) isnotasymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

m We use the w-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions w(g(n))

w(g(n)) ={f(n) :Yc>0,3ny >0
:0 <cg(n) < f(n)foralln > ne}

w-Notation

m The Q-notation defines a lower bound that might not be asymptotically tight
E.g.,
2" = Q(nlogn) isnotasymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

m We use the w-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions w(g(n))

w(g(n)) ={f(n) :Yc>0,3ny >0
:0 <cg(n) < f(n)foralln > ne}

f(n) is above g(n) for all sufficiently large n, and for ALL scaling factors c

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> x(n) =0(n) trivial upper bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> x(n) =0(n) trivial upper bound

> x(n) =Q(1) trivial lower bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> x(n) =0(n) trivial upper bound

> x(n) =Q(1) trivial lower bound

> n(n) =O(n/logn) non-trivial tight bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function that
is not completely known

Example:

Let 7(n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7 (n)?

> x(n) =0(n) trivial upper bound
> 7(n) =Q(1) trivial lower bound

> n(n) =O(n/logn) non-trivial tight bound
In fact, the fundamental prime number theorem says that

. a(minn
lim =1
n—oo n

Examples

m 7(n) =n%+10n+100

Examples

mT7(n)=n*+10n+100 = T(n) =0(n?

Examples

mT7(n)=n*+10n+100 = T(n) =0(n?

m7(n)=n+10logn

Examples

mT7(n)=n*+10n+100 = T(n) =0(n?

m7(n)=n+10logn = T(n) =0©(n)

Examples
mT7(n)=n*+10n+100 = T(n) =0(n?
m7(n)=n+10logn = T(n) =0©(n)

m 7(n) =nlogn+nvn

Examples
mT7(n)=n*+10n+100 = T(n) =0(n?
m7(n)=n+10logn = T(n) =0©(n)

m 7(n)=nlogn+nyn = T(n)=0(nvn)

Examples
m7(n)=n*>+10n+100 = T(n) =0(n?)
m T(n)=n+10logn = T(n) =O(n)
m T(n) =nlogn+nyn = T(n) = ©(nyn)

mT(n) =26+n’

Examples
m7(n)=n*>+10n+100 = T(n) =0(n?)
m T(n)=n+10logn = T(n) =O(n)
m T(n) =nlogn+nyn = T(n) = ©(nyn)

mT(n)=26+n" = T(n)=0(25)

T(n) =n>+10n+100 = T(n) = O(n?)
T(n)=n+10logn = T(n) = ©(n)
T(n) =nlogn+nyn = T(n) = ©(nyn)
T(n)=2s+n” = T(n) =©(26)

T(n) = &0

n2

Examples

T(n) =n>+10n+100 = T(n) = O(n?)
T(n)=n+10logn = T(n) = ©(n)
T(n) =nlogn+nyn = T(n) = ©(nyn)
T(n)=2s+n” = T(n) =©(26)

T(n) =1 =T =0(})

Examples

T(n) =n>+10n+100 = T(n) = O(n?)
T(n)=n+10logn = T(n) = ©(n)
T(n) =nlogn+nyn = T(n) = ©(nyn)
T(n)=25+n" = T(n) =0O(25%)

T(n) =3 =T(n)=0(;)

T(n) = complexity of PINGALA-INC

Examples

T(n) =n?>+10n+100 = T(n) = ©(n?)

T(n) =n+10logn = T(n) =0©(n)

T(n) =nlogn+nyn = T(n) =0(nvn)

T(n) =26 +n” = T(n) = ©(25)
T(n) =1 =T =0(})

T(n) = complexity of PINGALA-INC

= T(n) =©(n)

Examples

T(n) =n?>+10n+100 = T(n) = ©(n?)

T(n) =n+10logn = T(n) =0©(n)

T(n) =nlogn+nyn = T(n) =0(nvn)
T(n)=25+n" = T(n) =0O(25%)

T =1 = 7(n)=0(

T(n) = complexity of PINGALA-INC = T(n) = ©(n)
We characterize the behavior of T(n) in the limit

The ©-notation is an asymptotic notation

Examples

Examples

m f(n) =n?+10n+ 100

Examples

mf(n) =n*>+10n+100 = f(n) = 0(n?)

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%

m f(n)=n+10logn

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%

mf(n)=n+10logn = f(n) =0(2")

Examples
mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
mf(n)=n+10logn = f(n) =0(2")

m f(n) =nlogn+nyn

Examples
mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
mf(n)=n+10logn = f(n) =0(2")

m f(n) =nlogn+nyn = f(n) =0(n?

Examples
mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
mf(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n) = 0(n?)

mf(n)=25+n"

Examples
mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
mf(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n) = 0(n?)

mf(n)=25+n" = f(n)=0((1.5)")

mf(n) =n*>+10n+100 = f(n) = 0(n?)
m f(n)=n+10logn = f(n) = 0(2")

m f(n) =nlogn+nyn = f(n) = 0(n?)
mf(n)=25+n" = f(n)=0((1.5)")

m f(n) = 1042

= f(n) = 0(n%)

Examples

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
m f(n)=n+10logn = f(n) = 0(2")

m f(n) =nlogn+nyn = f(n) = 0(n?)

mf(n)=25+n" = f(n)=0((1.5)")

mf(n)=" = f(n=0(1)

n?2

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%

m f(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n) = 0(n?)
mf(n)=25+n" = f(n)=0((1.5)")
mf(n) =0 = f(n)=0(1)

m f(n) = O(g(n) = f(n) = 0(g(n)

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%

m f(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n) = 0(n?)
mf(n)=25+n" = f(n)=0((1.5)")
mf(n) =0 = f(n)=0(1)

m f(n) = O(g(n) = f(n) = 0(g(n)

m f(n) = ©(g(n) A g(n) = 0(h(n)) = f(n) = O(h(n))

Examples

Examples

mf(n)=n*>+10n+100 = f(n) =0(n?*) = f(n)=0(n%
m f(n)=n+10logn = f(n) = 0(2")

m f(n) =nlogn+nyn = f(n) = 0(n?)

mf(n)=25+n" = f(n)=0((1.5)")

mf(n) =12 = f(n)=0(1)

m f(n) =0O(g(n) = f(n) = 0(g(n))

m f(n) =©(g(n) Ag(n) =0(h(n)) = f(n) = O(h(n))

m f(n) = 0(g(n) A g(n) =B(h(n)) = f(n) = O(h(n))

Examples

m n?—10n+100 = O(nlogn)?

Examples

m n?—10n+100 = O(nlogn)? NO

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)?

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n?)? NO

Examples
m n?—10n+100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = ©(2") = f(n) = 0(n?2")?

Examples
m n?—10n+100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

Examples

m n?—10n+100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = 0(n?)? NO
m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) = ©(n?2") = f(n) = 0(2"2loe2n)?

Examples

m n?—10n+100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = 0(n?)? NO
m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n%)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES

m f(n) =0(2") = f(n) = ©(n?)?

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n%)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES

m f(n) =0(2") = f(n) =©(n*)? NO

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n?)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES
m (n) =0(2") = f(n) =0(n*)? NO

m \n = 0(log?n)?

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n?)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES
m (n) =0(2") = f(n) =0(n*)? NO

m \n = 0(log?n)? NO

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n?)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES
m (n) =0(2") = f(n) =0(n*)? NO

m \n = 0(log?n)? NO

m n?+ (1.5)" = 0(21)?

Examples

m n?—10n+100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = 0(n?)? NO

m f(n) = ©(2") = f(n) = 0(n*2")? YES

m f(n) =©(n%2") = f(n) = 0(2"2°82")7 YES
m (n) =0(2") = f(n) =0(n*)? NO

m \n = 0(log?n)? NO

m n?+(1.5)" =0(27)? NO

Examples

Example

m So, whatis the complexity of FINDEQUALS?

FINDEQUALS(A)
1 fori = 1tolength(A) -1

2 forj = i+ 1tolength(A)
3 if Ali] == A[j]
4 return TRUE

5 return FALSE

Example

m So, whatis the complexity of FINDEQUALS?

FINDEQUALS(A)

1 fori = 1tolength(A) -1

2 forj = i+ 1to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

T(n) = ©(n?)

> n = length(A) is the size of the input

> we measure the worst-case complexity

©, 0, and Q as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

©, 0, and Q as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

©, 0, and Q as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

f>gnf<gef=g

©, 0, and Q as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

f>gnf<gef=g

m When f(n) = 0(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

©, 0, and Q as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n) Af(n) = 0(g(n)) & f(n) =(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

f>gnf<gef=g

m When f(n) = 0(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

m When f(n) = Q(g(n)) we say that g(n) is a lower bound for f(n)

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)
means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.
m Examples

n*+4n-1=n%*+0(n)?

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)
means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.
m Examples

n*+4n-1=n*>+0(n)? YES

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n? +Q(n) — 1 =0(n?)?

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n?+Q(n)-1=0(n*? NO

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n?+Q(n)-1=0(n*? NO
n?+0(n) —1=0(n?)?

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n?+Q(n)-1=0(n*? NO
n*>+0(n) —1=0(n?*? YES

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n?+Q(n)-1=0(n*? NO
n*>+0(n) —1=0(n?*? YES
nlogn+©(+/n) = 0(nyn)?

0, 0, and Q as Anonymous Functions

m We can use the ©-, 0-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n* + O(n)

means that f(n) is equal to 10n? plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

m Examples
n*+4n-1=n*>+0(n)? YES
n?+Q(n)-1=0(n*? NO
n*>+0(n) —1=0(n?*? YES
nlogn+©(+/n) = 0(nyn)? YES

15

3n

vn

0.5

\n = n®5

log n

