# **Greedy Algorithms**

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 23, 2023

# Outline

- Greedy strategy
- Examples
- Activity selection
- Huffman coding

#### Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a  $T \subseteq E$  that is a minimum-weight spanning tree

- Find the MST of G = (V, E) with  $w : E \to \mathbb{R}$ 
  - find a  $T \subseteq E$  that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices

- Find the MST of G = (V, E) with  $w : E \to \mathbb{R}$ 
  - find a  $T \subseteq E$  that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
  - at each point we have a partial solution  $A \subseteq T$

- Find the MST of G = (V, E) with  $w : E \to \mathbb{R}$ 
  - find a  $T \subseteq E$  that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
  - at each point we have a partial solution  $A \subseteq T$
  - we have a number of choices on how to extend A

- Find the MST of G = (V, E) with  $w : E \to \mathbb{R}$ 
  - find a  $T \subseteq E$  that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
  - at each point we have a partial solution  $A \subseteq T$
  - we have a number of choices on how to extend A
  - we make a "greedy" choice by selecting the *lightest* edge that does not violate the constraints of the MST problem

- Find the MST of G = (V, E) with  $w : E \to \mathbb{R}$ 
  - find a  $T \subseteq E$  that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
  - at each point we have a partial solution  $A \subseteq T$
  - we have a number of choices on how to extend A
  - we make a "greedy" choice by selecting the *lightest* edge that does not violate the constraints of the MST problem

```
GENERIC-MST(G, w)1 A = \emptyset2 while A is not a spanning tree3 find a safe edge e = (u, v) // the lightest that...4 A = A \cup \{e\}
```

- 1. Cast the problem as one where
  - we make a greedy choice, and
  - we are left with a subproblem

- 1. Cast the problem as one where
  - we make a greedy choice, and
  - we are left with a *subproblem*
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
  - i.e., that the greedy choice always leads to an optimal solution
    - not necessarily always the same one

- 1. Cast the problem as one where
  - we make a greedy choice, and
  - we are left with a *subproblem*
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
  - i.e., that the greedy choice always leads to an optimal solution
    - not necessarily always the same one
- 3. Prove that the remaining subproblem is such that
  - combining the greedy choice with the optimal solution of the subproblem gives an optimal solution to the original problem

#### **The Greedy-Choice Property**

■ The first key ingredient of a greedy strategy is the following

*greedy-choice property:* one can always arrive at a globally optimal solution by making a locally optimal choice

#### **The Greedy-Choice Property**

■ The first key ingredient of a greedy strategy is the following

*greedy-choice property:* one can always arrive at a globally optimal solution by making a locally optimal choice

- At every step, we consider only what is best in the current problem
  - not considering the results of the subproblems

#### **Optimal Substructure**

■ The second key ingredient of a greedy strategy is the following

**optimal-substructure property:** an optimal solution to the problem contains within it optimal solutions to subproblems

#### **Optimal Substructure**

The second key ingredient of a greedy strategy is the following

**optimal-substructure property:** an optimal solution to the problem contains within it optimal solutions to subproblems

- It is natural to prove this by induction
  - if the solution to the subproblem is optimal, then combining the greedy choice with that solution yields an optimal solution

■ The absolutely trivial *gift-selection problem* 

- The absolutely trivial *gift-selection problem* 
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>

- The absolutely trivial *gift-selection problem* 
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - ▶ you will be given, as a gift, *k* objects of your choice

- The absolutely trivial gift-selection problem
  - out of a set  $X = \{x_1, x_2, ..., x_n\}$  of valuable objects, where  $v(x_i)$  is the value of  $x_i$
  - ▶ you will be given, as a gift, *k* objects of your choice
  - how do you maximize the total value of your gifts?

- The absolutely trivial gift-selection problem
  - out of a set  $X = \{x_1, x_2, ..., x_n\}$  of valuable objects, where  $v(x_i)$  is the value of  $x_i$
  - you will be given, as a gift, k objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem

- The absolutely trivial gift-selection problem
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - ▶ you will be given, as a gift, *k* objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
  - greedy choice: pick  $x_i$  such that  $v(x_i) = \max_{x \in X} v(x)$
  - **subproblem:**  $X' = X \{x_i\}, k' = k 1$  (same value function *v*)

- The absolutely trivial gift-selection problem
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - ▶ you will be given, as a gift, *k* objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
  - greedy choice: pick  $x_i$  such that  $v(x_i) = \max_{x \in X} v(x)$
  - **subproblem:**  $X' = X \{x_i\}, k' = k 1$  (same value function *v*)
- Greedy-choice property

- The absolutely trivial gift-selection problem
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - ▶ you will be given, as a gift, *k* objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
  - greedy choice: pick  $x_i$  such that  $v(x_i) = \max_{x \in X} v(x)$
  - **subproblem:**  $X' = X \{x_i\}, k' = k 1$  (same value function *v*)

#### Greedy-choice property

• if  $v(x_i) = \max_{x \in X} v(x)$ , then there is a globally optimal solution A that contains  $x_i$ 

- The absolutely trivial gift-selection problem
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - you will be given, as a gift, k objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
  - greedy choice: pick  $x_i$  such that  $v(x_i) = \max_{x \in X} v(x)$
  - **subproblem:**  $X' = X \{x_i\}, k' = k 1$  (same value function *v*)
- Greedy-choice property
  - if  $v(x_i) = \max_{x \in X} v(x)$ , then there is a globally optimal solution A that contains  $x_i$
- Optimal-substructure property

- The absolutely trivial gift-selection problem
  - out of a set X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} of valuable objects, where v(x<sub>i</sub>) is the value of x<sub>i</sub>
  - you will be given, as a gift, k objects of your choice
  - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
  - greedy choice: pick  $x_i$  such that  $v(x_i) = \max_{x \in X} v(x)$
  - **subproblem:**  $X' = X \{x_i\}, k' = k 1$  (same value function *v*)
- Greedy-choice property
  - if  $v(x_i) = \max_{x \in X} v(x)$ , then there is a globally optimal solution A that contains  $x_i$
- Optimal-substructure property
  - ▶ if  $v(x_i) = \max_{x \in X} v(x)$  and A' is an optimal solution for  $X' = X \{x_i\}$ , then  $A' \subset A$

#### **Observation**

- *Inventing* a greedy algorithm is easy
  - it is easy to come up with greedy choices

#### **Observation**

- *Inventing* a greedy algorithm is easy
  - it is easy to come up with greedy choices
- Proving it optimal may be difficult
  - requires deep understanding of the structure of the problem

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

**Solution:**  $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$  (5 coins/bills)

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

**Solution:**  $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$  (5 coins/bills)

■ Is this a greedy problem?

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

**Solution:**  $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$  (5 coins/bills)

- Is this a greedy problem?
- Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

**Solution:**  $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$  (5 coins/bills)

■ Is this a greedy problem?

Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

**Greedy:**  $4 \times 1 + 3 \times 0.25 + 5 \times 0.01 = 4.8$  (12 coins/bills)

 My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

**Solution:**  $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$  (5 coins/bills)

- Is this a greedy problem?
- Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

**Greedy:**  $4 \times 1 + 3 \times 0.25 + 5 \times 0.01 = 4.8$  (12 coins/bills)

**Optimal:**  $4 \times 1 + 2 \times 0.25 + 3 \times 0.1 = 4.8$  (9 coins/bills)

#### **Knapsack Problem**

- A thief robbing a store finds *n* items
  - *v<sub>i</sub>* is the value of item *i*
  - *w<sub>i</sub>* is the weight of item *i*
  - ▶ *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery
#### **Knapsack Problem**

- A thief robbing a store finds *n* items
  - *v<sub>i</sub>* is the value of item *i*
  - ► w<sub>i</sub> is the weight of item i
  - ► *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

■ Is this a greedy problem?

## **Knapsack Problem**

- A thief robbing a store finds *n* items
  - v<sub>i</sub> is the value of item i
  - *w<sub>i</sub>* is the weight of item *i*
  - ► *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

- Is this a greedy problem?
- **Exercise:** 1. formulate a reasonable greedy choice
  - 2. prove that it doesn't work with a counter-example
  - 3. go back to (1) and repeat a couple of times

- A thief robbing a store finds *n* items
  - *v<sub>i</sub>* is the value of item *i*
  - ► w<sub>i</sub> is the weight of item i
  - ▶ *W* is the maximum weight that the thief can carry
  - the thief may take any *fraction* of an item (with the corresponding proportional value)

**Problem:** choose which items, or fractions of items to take to maximize the total value of the robbery

- A thief robbing a store finds *n* items
  - *v<sub>i</sub>* is the value of item *i*
  - ► w<sub>i</sub> is the weight of item i
  - ► *W* is the maximum weight that the thief can carry
  - the thief may take any *fraction* of an item (with the corresponding proportional value)

**Problem:** choose which items, or fractions of items to take to maximize the total value of the robbery

Is this a greedy problem?

- A thief robbing a store finds *n* items
  - *v<sub>i</sub>* is the value of item *i*
  - *w<sub>i</sub>* is the weight of item *i*
  - ► *W* is the maximum weight that the thief can carry
  - the thief may take any *fraction* of an item (with the corresponding proportional value)

**Problem:** choose which items, or fractions of items to take to maximize the total value of the robbery

- Is this a greedy problem?
- **Exercise:** prove that it is a greedy problem

## **Activity-Selection Problem**

- A conference room is shared among different activities
  - $S = \{a_1, a_2, \dots, a_n\}$  is the set of proposed activities
  - activity a<sub>i</sub> has a start time s<sub>i</sub> and a finish time f<sub>i</sub>
  - activities  $a_i$  and  $a_j$  are compatible if either  $f_i \leq s_j$  or  $f_j \leq s_i$

## **Activity-Selection Problem**

A conference room is shared among different activities

- $S = \{a_1, a_2, \dots, a_n\}$  is the set of proposed activities
- activity a<sub>i</sub> has a start time s<sub>i</sub> and a finish time f<sub>i</sub>
- activities  $a_i$  and  $a_j$  are compatible if either  $f_i \leq s_j$  or  $f_j \leq s_i$

Problem: find the largest set of compatible activities

## **Activity-Selection Problem**

A conference room is shared among different activities

- $S = \{a_1, a_2, \dots, a_n\}$  is the set of proposed activities
- activity a<sub>i</sub> has a start time s<sub>i</sub> and a finish time f<sub>i</sub>
- activities  $a_i$  and  $a_j$  are compatible if either  $f_i \leq s_j$  or  $f_j \leq s_i$

Problem: find the largest set of compatible activities

Example

| activity | а  | b | С  | d | е | f | g | h | i  | j  | k  |
|----------|----|---|----|---|---|---|---|---|----|----|----|
| start    | 8  | 0 | 2  | 3 | 5 | 1 | 5 | 3 | 12 | 6  | 8  |
| finish   | 12 | 6 | 13 | 5 | 7 | 4 | 9 | 8 | 14 | 10 | 11 |

Is there a greedy solution for this problem?

#### **Activity-Selection Problem (2)**



**Activity-Selection Problem (3)** 



**Activity-Selection Problem (3)** 



**Greedy choice:** take  $a_x \in S$  s.t.  $f_x \leq f_i$  for all  $a_i \in S$ 

#### **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

#### **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

Proof: (by contradiction)

▶ assume  $a_x \notin OPT$ 

**Greedy choice:** take  $a_x \in S$  s.t.  $f_x \leq f_i$  for all  $a_i \in S$ 

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

- ▶ assume  $a_x \notin OPT$
- let  $a_m \in OPT$  be the earliest-finish activity in OPT

**Greedy choice:** take  $a_x \in S$  s.t.  $f_x \leq f_i$  for all  $a_i \in S$ 

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

- ▶ assume  $a_x \notin OPT$
- let  $a_m \in OPT$  be the earliest-finish activity in OPT
- construct  $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$

**Greedy choice:** take  $a_x \in S$  s.t.  $f_x \leq f_i$  for all  $a_i \in S$ 

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

Proof: (by contradiction)

- ▶ assume  $a_x \notin OPT$
- let  $a_m \in OPT$  be the earliest-finish activity in OPT
- construct  $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$

# OPT\* is valid Proof:

- every activity  $a_i \in OPT \setminus \{a_m\}$  has a starting time  $s_i \ge f_m$ , because  $a_m$  is compatible with  $a_i$  (so either  $f_i < s_m$  or  $s_i > f_m$ ) and  $f_i > f_m$ , because  $a_m$  is the earliest-finish activity in OPT
- therefore, every activity  $a_i$  is compatible with  $a_x$ , because  $s_i \ge f_m \ge f_x$

**Greedy choice:** take  $a_x \in S$  s.t.  $f_x \leq f_i$  for all  $a_i \in S$ 

**Prove:** there is an optimal solution  $OPT^*$  that contains  $a_x$ 

- ▶ assume  $a_x \notin OPT$
- let  $a_m \in OPT$  be the earliest-finish activity in OPT
- construct  $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$
- OPT\* is valid
  Proof:
  - every activity  $a_i \in OPT \setminus \{a_m\}$  has a starting time  $s_i \ge f_m$ , because  $a_m$  is compatible with  $a_i$  (so either  $f_i < s_m$  or  $s_i > f_m$ ) and  $f_i > f_m$ , because  $a_m$  is the earliest-finish activity in OPT
  - therefore, every activity  $a_i$  is compatible with  $a_x$ , because  $s_i \ge f_m \ge f_x$
- ▶ thus *OPT*<sup>\*</sup> is an *optimal* solution, because |*OPT*<sup>\*</sup>| = |*OPT*|

■ **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \geq f_x\}$ 

■ **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i | s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$ 

• **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT'$  is optimal for *S* if OPT' is optimal for *S'* 

Proof: (by contradiction)

▶ assume to the contrary that  $|OPT^*| < |OPT|$ , and therefore |OPT'| < |OPT| - 1

• **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT'$  is optimal for *S* if OPT' is optimal for *S'* 

- assume to the contrary that  $|OPT^*| < |OPT|$ , and therefore |OPT'| < |OPT| 1
- ▶ let  $a_m$  be the earliest-finish activity in *OPT*, and let  $\overline{S} = \{a_i | s_i \ge f_m\}$

• **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT'$  is optimal for *S* if OPT' is optimal for *S'* 

- ▶ assume to the contrary that  $|OPT^*| < |OPT|$ , and therefore |OPT'| < |OPT| 1
- ▶ let  $a_m$  be the earliest-finish activity in *OPT*, and let  $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction,  $OPT \setminus \{a_m\}$  is a solution for  $\overline{S}$

• **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT'$  is optimal for *S* if OPT' is optimal for *S'* 

- ▶ assume to the contrary that  $|OPT^*| < |OPT|$ , and therefore |OPT'| < |OPT| 1
- ▶ let  $a_m$  be the earliest-finish activity in *OPT*, and let  $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction,  $OPT \setminus \{a_m\}$  is a solution for  $\overline{S}$
- ▶ by construction,  $\overline{S} \subseteq S'$ , so *OPT* \  $\{a_m\}$  is a solution also for *S'*

• **Optimal-substructure property:** having chosen  $a_x$ , let  $S' \subset S$  be the set of activities compatible with  $a_x$ , that is,  $S' = \{a_i \mid s_i \ge f_x\}$ 

**Prove:**  $OPT^* = \{a_x\} \cup OPT'$  is optimal for *S* if OPT' is optimal for *S'* 

- ▶ assume to the contrary that  $|OPT^*| < |OPT|$ , and therefore |OPT'| < |OPT| 1
- ▶ let  $a_m$  be the earliest-finish activity in *OPT*, and let  $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction,  $OPT \setminus \{a_m\}$  is a solution for  $\overline{S}$
- ▶ by construction,  $\overline{S} \subseteq S'$ , so *OPT* \  $\{a_m\}$  is a solution also for S'
- ▶ which means that there is a solution S' of size |OPT| 1, which contradicts the main assumption that |OPT'| < |OPT| 1</p>

Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,  $n = |S| = 10^9$ 

■ What is the most efficient way to store that sequence?

Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,  $n = |S| = 10^9$ 

- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding

Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,  $n = |S| = 10^9$ 

- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
  - 6 symbols require 3 bits per symbol

Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

▶ e.g., *n* = |S| = 10<sup>9</sup>

- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
  - 6 symbols require 3 bits per symbol
  - $3 \times 10^9/8 = 3.75 \times 10^8$  (a bit less than 400Mb)

Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

▶ e.g., *n* = |S| = 10<sup>9</sup>

- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
  - 6 symbols require 3 bits per symbol
  - $3 \times 10^9/8 = 3.75 \times 10^8$  (a bit less than 400Mb)
- Can we do better?

# Huffman Coding (2)

# Huffman Coding (2)

Consider the following encoding table:

| symbol | code |  |  |  |
|--------|------|--|--|--|
| а      | 000  |  |  |  |
| b      | 001  |  |  |  |
| с      | 010  |  |  |  |
| d      | 011  |  |  |  |
| е      | 100  |  |  |  |
| f      | 101  |  |  |  |

# Huffman Coding (2)

Consider the following encoding table:

| symbol | code |  |  |  |
|--------|------|--|--|--|
| а      | 000  |  |  |  |
| b      | 001  |  |  |  |
| С      | 010  |  |  |  |
| d      | 011  |  |  |  |
| е      | 100  |  |  |  |
| f      | 101  |  |  |  |

- Observation: the encoding of 'e' and 'f' is a bit redundant
  - the second bit does not help us in distinguishing 'e' from 'f'
  - in other words, if the first (most significant) bit is 1, then the second bit gives us no information, so it can be removed
## Idea

| symbol | code |
|--------|------|
| а      | 000  |
| b      | 001  |
| с      | 010  |
| d      | 011  |
| е      | 10   |
| f      | 11   |

Encoding and decoding are well-defined and unambiguous

| symbol | code |
|--------|------|
| а      | 000  |
| b      | 001  |
| с      | 010  |
| d      | 011  |
| е      | 10   |
| f      | 11   |

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?

| symbol | code |
|--------|------|
| а      | 000  |
| b      | 001  |
| с      | 010  |
| d      | 011  |
| е      | 10   |
| f      | 11   |

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
  - not knowing the frequency of 'e' and 'f', we can't tell exactly

| symbol | code |
|--------|------|
| а      | 000  |
| b      | 001  |
| с      | 010  |
| d      | 011  |
| е      | 10   |
| f      | 11   |

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
  - not knowing the frequency of 'e' and 'f', we can't tell exactly

Given the frequencies  $f_a, f_b, f_c, \ldots$  of all the symbols in S

$$M = 3n(f_a + f_b + f_c + f_d) + 2n(f_e + f_f)$$

- Given a set of symbols C and a frequency function  $f : C \rightarrow [0, 1]$
- Find a code  $E : C \rightarrow \{0, 1\}^*$  such that

- Given a set of symbols C and a frequency function  $f : C \rightarrow [0, 1]$
- Find a code  $E : C \rightarrow \{0, 1\}^*$  such that
- E is a prefix code
  - no codeword  $E(c_1)$  is the prefix of another codeword  $E(c_2)$

- Given a set of symbols C and a frequency function  $f : C \rightarrow [0, 1]$
- Find a code  $E : C \rightarrow \{0, 1\}^*$  such that
- E is a prefix code
  - no codeword  $E(c_1)$  is the prefix of another codeword  $E(c_2)$
- The average codeword size

$$B(S) = \sum_{c \in C} f(c) |E(c)|$$

is minimal

 $\blacksquare$  *E* : *C*  $\rightarrow$  {0, 1}\* defines binary strings, so we can represent *E* as a binary tree *T* 

 $\blacksquare$  *E* : *C*  $\rightarrow$  {0, 1}\* defines binary strings, so we can represent *E* as a binary tree *T* 

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   | 000  |
| b    | 13%   | 001  |
| с    | 12%   | 010  |
| d    | 16%   | 011  |
| е    | 9%    | 10   |
| f    | 5%    | 11   |

 $E: C \rightarrow \{0, 1\}^*$  defines binary strings, so we can represent *E* as a binary tree *T* 

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   | 000  |
| b    | 13%   | 001  |
| с    | 12%   | 010  |
| d    | 16%   | 011  |
| е    | 9%    | 10   |
| f    | 5%    | 11   |
|      |       |      |



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight f(v) of a node v is the frequency of its code/prefix

 $E: C \rightarrow \{0, 1\}^*$  defines binary strings, so we can represent *E* as a binary tree *T* 

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   | 000  |
| b    | 13%   | 001  |
| с    | 12%   | 010  |
| d    | 16%   | 011  |
| е    | 9%    | 10   |
| f    | 5%    | 11   |
|      |       |      |



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight f(v) of a node v is the frequency of its code/prefix

$$B(S) = n \sum_{c \in leaves(T)} f(c) depth(c) = n \sum_{v \in T} f(v)$$

# **Huffman Algorithm**

| 1 | n =  C                          |
|---|---------------------------------|
| 2 | Q = C                           |
| 3 | for $i = 1$ to $n - 1$          |
| 4 | create a new node z             |
| 5 | z.left = Extract-Min(Q)         |
| 6 | z.right = <b>Extract-Min(Q)</b> |
| 7 | f(z) = f(z.left) + f(z.right)   |
| 8 | INSERT(Q, z)                    |
| 9 | return Extract-Min(Q)           |
|   |                                 |

## **Huffman Algorithm**

### Huffman(C)



We build the code bottom-up

## **Huffman Algorithm**

#### HUFFMAN(C)n = |C|1 2 O = C3 for i = 1 to n - 1create a new node z 4 5 z.left = **Extract-Min(Q)** 6 z.right = Extract-Min(Q)7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z)9 return Extract-Min(Q)

- We build the code bottom-up
- Each time we make the "greedy" choice of merging the two least frequent nodes (symbols or prefixes)

| 1          | <i>n</i> = | C   |
|------------|------------|-----|
| - <b>-</b> | –          | 141 |

- 2 Q = C
- 3 **for** i = 1 **to** n 1
- 4 create a new node z
- 5 z.left = **Extract-Min(Q)**
- 6 z.right = EXTRACT-MIN(Q)
- 7 f(z) = f(z.left) + f(z.right)
- 8 **Insert**(Q, z)
- 9 return EXTRACT-MIN(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| e    | 9%    |      |
| f    | 5%    |      |

- 1 n = |C|
- 2 Q = C
- 3 **for** i = 1 **to** n 1
- 4 create a new node z
- 5 z.left = EXTRACT-MIN(Q)
- 6 z.right = EXTRACT-MIN(Q)
- 7 f(z) = f(z.left) + f(z.right)
- 8 **Insert**(Q, z)
- 9 return Extract-Min(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| е    | 9%    |      |
| f    | 5%    |      |













- 1 n = |C|
- 2 Q = C
- 3 **for** i = 1 **to** n 1
- 4 create a new node *z*
- 5 z.left = EXTRACT-MIN(Q)
- 6 z.right = **EXTRACT-MIN(Q)**
- 7 f(z) = f(z.left) + f(z.right)
- 8 **INSERT**(Q, z)
- 9 return Extract-Min(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| е    | 9%    |      |
| f    | 5%    |      |











- 1 n = |C|
- 2 Q = C
- 3 **for** i = 1 **to** n 1
- 4 create a new node z
- 5 z.left = EXTRACT-MIN(Q)
- 6 z.right = EXTRACT-MIN(Q)
- 7 f(z) = f(z.left) + f(z.right)
- 8 **INSERT**(Q, z)
- 9 return Extract-Min(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| е    | 9%    |      |
| f    | 5%    |      |







- 1 n = |C|
- 2 Q = C
- 3 **for** i = 1 **to** n 1
- 4 create a new node z
- 5 z.left = EXTRACT-MIN(Q)
- 6 z.right = EXTRACT-MIN(Q)
- 7 f(z) = f(z.left) + f(z.right)
- 8 **INSERT**(Q, z)
- 9 return Extract-Min(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| e    | 9%    |      |
| f    | 5%    |      |



#### Huffman(C)n = |C|1 2 Q = C3 **for** i = 1 **to** n - 14 create a new node z 5 z.left = **Extract-Min(Q)** 6 *z.right* = **EXTRACT-MIN(Q)** 7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z)9 return EXTRACT-MIN(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| e    | 9%    |      |
| f    | 5%    |      |



#### Huffman(C)n = |C|1 2 Q = C3 **for** i = 1 **to** n - 14 create a new node z 5 z.left = **Extract-Min(Q)** 6 *z.right* = **EXTRACT-MIN(Q)** 7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z)9 return EXTRACT-MIN(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   |      |
| b    | 13%   |      |
| с    | 12%   |      |
| d    | 16%   |      |
| e    | 9%    |      |
| f    | 5%    |      |



- n = |C|
- Q = C
- **for** i = 1 **to** n 1
- 4 create a new node z
- z.left = EXTRACT-MIN(Q)
- z.right = EXTRACT-MIN(Q)
- f(z) = f(z.left) + f(z.right)
- **INSERT**(Q, z)
- 9 return EXTRACT-MIN(Q)

| sym. | freq. | code |
|------|-------|------|
| а    | 45%   | 0    |
| b    | 13%   | 100  |
| с    | 12%   | 101  |
| d    | 16%   | 110  |
| е    | 9%    | 1110 |
| f    | 5%    | 1111 |

