
Greedy Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 23, 2023

Outline

Greedy strategy

Examples

Activity selection

Huffman coding

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

We naturally decompose the problem in a series of choices

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

We naturally decompose the problem in a series of choices

◮ at each point we have a partial solution A ⊆ T

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

We naturally decompose the problem in a series of choices

◮ at each point we have a partial solution A ⊆ T

◮ we have a number of choices on how to extend A

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

We naturally decompose the problem in a series of choices

◮ at each point we have a partial solution A ⊆ T

◮ we have a number of choices on how to extend A

◮ wemake a “greedy” choice by selecting the lightest edge that does not violate the
constraints of the MST problem

Recap onMST Algorithms

Find the MST of G = (V, E) withw : E → Ò

◮ find a T ⊆ E that is aminimum-weight spanning tree

We naturally decompose the problem in a series of choices

◮ at each point we have a partial solution A ⊆ T

◮ we have a number of choices on how to extend A

◮ wemake a “greedy” choice by selecting the lightest edge that does not violate the
constraints of the MST problem

GENERIC-MST(G,w)

1 A = ∅

2 while A is not a spanning tree
3 find a safe edge e = (u, v) // the lightest that. . .
4 A = A ∪ {e}

Designing a Greedy Algorithm

Designing a Greedy Algorithm

1. Cast the problem as one where

◮ wemake a greedy choice, and

◮ we are le� with a subproblem

Designing a Greedy Algorithm

1. Cast the problem as one where

◮ wemake a greedy choice, and

◮ we are le� with a subproblem

2. Prove that there is always a solution to the original problem that contains the greedy
choice we make

◮ i.e., that the greedy choice always leads to an optimal solution

◮ not necessarily always the same one

Designing a Greedy Algorithm

1. Cast the problem as one where

◮ wemake a greedy choice, and

◮ we are le� with a subproblem

2. Prove that there is always a solution to the original problem that contains the greedy
choice we make

◮ i.e., that the greedy choice always leads to an optimal solution

◮ not necessarily always the same one

3. Prove that the remaining subproblem is such that

◮ combining the greedy choice with the optimal solution of the subproblem gives an optimal
solution to the original problem

The Greedy-Choice Property

The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution bymak-

ing a locally optimal choice

The Greedy-Choice Property

The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution bymak-

ing a locally optimal choice

At every step, we consider only what is best in the current problem

◮ not considering the results of the subproblems

Optimal Substructure

The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it

optimal solutions to subproblems

Optimal Substructure

The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it

optimal solutions to subproblems

It is natural to prove this by induction

◮ if the solution to the subproblem is optimal, then combining the greedy choice with that
solution yields an optimal solution

Example

The absolutely trivial gi�-selection problem

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

◮ greedy choice: pick xi such that v(xi) = maxx∈X v(x)

◮ subproblem: X′ = X − {xi}, k
′
= k − 1 (same value function v)

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

◮ greedy choice: pick xi such that v(xi) = maxx∈X v(x)

◮ subproblem: X′ = X − {xi}, k
′
= k − 1 (same value function v)

Greedy-choice property

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

◮ greedy choice: pick xi such that v(xi) = maxx∈X v(x)

◮ subproblem: X′ = X − {xi}, k
′
= k − 1 (same value function v)

Greedy-choice property

◮ if v(xi) = maxx∈X v(x), then there is a globally optimal solution A that contains xi

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

◮ greedy choice: pick xi such that v(xi) = maxx∈X v(x)

◮ subproblem: X′ = X − {xi}, k
′
= k − 1 (same value function v)

Greedy-choice property

◮ if v(xi) = maxx∈X v(x), then there is a globally optimal solution A that contains xi

Optimal-substructure property

Example

The absolutely trivial gi�-selection problem

◮ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

◮ you will be given, as a gi�, k objects of your choice

◮ how do youmaximize the total value of your gi�s?

Decomposition: choice plus subproblem

◮ greedy choice: pick xi such that v(xi) = maxx∈X v(x)

◮ subproblem: X′ = X − {xi}, k
′
= k − 1 (same value function v)

Greedy-choice property

◮ if v(xi) = maxx∈X v(x), then there is a globally optimal solution A that contains xi

Optimal-substructure property

◮ if v(xi) = maxx∈X v(x) and A
′ is an optimal solution for X′ = X − {xi}, then A

′ ⊂ A

Observation

Inventing a greedy algorithm is easy
◮ it is easy to come up with greedy choices

Observation

Inventing a greedy algorithm is easy
◮ it is easy to come up with greedy choices

Proving it optimalmay be difficult

◮ requires deep understanding of the structure of the problem

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: 2 × 2 + 0.5 + 0.2 + 0.1 = 4.8 (5 coins/bills)

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: 2 × 2 + 0.5 + 0.2 + 0.1 = 4.8 (5 coins/bills)

Is this a greedy problem?

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: 2 × 2 + 0.5 + 0.2 + 0.1 = 4.8 (5 coins/bills)

Is this a greedy problem?

Suppose you are in the US and need tomake $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: 2 × 2 + 0.5 + 0.2 + 0.1 = 4.8 (5 coins/bills)

Is this a greedy problem?

Suppose you are in the US and need tomake $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Greedy: 4 × 1 + 3 × 0.25 + 5 × 0.01 = 4.8 (12 coins/bills)

Making Change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: 2 × 2 + 0.5 + 0.2 + 0.1 = 4.8 (5 coins/bills)

Is this a greedy problem?

Suppose you are in the US and need tomake $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Greedy: 4 × 1 + 3 × 0.25 + 5 × 0.01 = 4.8 (12 coins/bills)

Optimal: 4 × 1 + 2 × 0.25 + 3 × 0.1 = 4.8 (9 coins/bills)

Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

Problem: choose which items to take tomaximize the total value of the robbery

Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

Problem: choose which items to take tomaximize the total value of the robbery

Is this a greedy problem?

Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

Problem: choose which items to take tomaximize the total value of the robbery

Is this a greedy problem?

Exercise: 1. formulate a reasonable greedy choice
2. prove that it doesn’t work with a counter-example
3. go back to (1) and repeat a couple of times

Fractional Knapsack Problem

Fractional Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

◮ the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take tomaximize the total value of
the robbery

Fractional Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

◮ the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take tomaximize the total value of
the robbery

Is this a greedy problem?

Fractional Knapsack Problem

A thief robbing a store finds n items

◮ vi is the value of item i

◮ wi is the weight of item i

◮ W is the maximumweight that the thief can carry

◮ the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take tomaximize the total value of
the robbery

Is this a greedy problem?

Exercise: prove that it is a greedy problem

Activity-Selection Problem

A conference room is shared among different activities

◮ S = {a1, a2, . . . , an} is the set of proposed activities

◮ activity ai has a start time si and a finish time fi
◮ activities ai and aj are compatible if either fi ≤ sj or fj ≤ si

Activity-Selection Problem

A conference room is shared among different activities

◮ S = {a1, a2, . . . , an} is the set of proposed activities

◮ activity ai has a start time si and a finish time fi
◮ activities ai and aj are compatible if either fi ≤ sj or fj ≤ si

Problem: find the largest set of compatible activities

Activity-Selection Problem

A conference room is shared among different activities

◮ S = {a1, a2, . . . , an} is the set of proposed activities

◮ activity ai has a start time si and a finish time fi
◮ activities ai and aj are compatible if either fi ≤ sj or fj ≤ si

Problem: find the largest set of compatible activities

Example

activity a b c d e f g h i j k

start 8 0 2 3 5 1 5 3 12 6 8
finish 12 6 13 5 7 4 9 8 14 10 11

Is there a greedy solution for this problem?

Activity-Selection Problem (2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a
b

c
d

e
f

g
h

i

j
k

Activity-Selection Problem (3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a

b

c

d

e

f

g

h

i

j
k

Greedy choice: earliest finish time

Activity-Selection Problem (3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a

b

c

d

e

f

g

h

i

j
k

Greedy choice: earliest finish time

Activity Selection is a Greedy Problem

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Proof: (by contradiction)

◮ assume ax < OPT

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Proof: (by contradiction)

◮ assume ax < OPT

◮ let am ∈ OPT be the earliest-finish activity inOPT

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Proof: (by contradiction)

◮ assume ax < OPT

◮ let am ∈ OPT be the earliest-finish activity inOPT

◮ construct OPT∗ = OPT \ {am} ∪ {ax}

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Proof: (by contradiction)

◮ assume ax < OPT

◮ let am ∈ OPT be the earliest-finish activity inOPT

◮ construct OPT∗ = OPT \ {am} ∪ {ax}

◮ OPT∗ is valid
Proof:
◮ every activity ai ∈ OPT \ {am} has a starting time si ≥ fm, because am is compatible with ai (so
either fi < sm or si > fm) and fi > fm, because am is the earliest-finish activity in OPT

◮ therefore, every activity ai is compatible with ax , because si ≥ fm ≥ fx

Activity Selection is a Greedy Problem

Greedy choice: take ax ∈ S s.t. fx ≤ fi for all ai ∈ S

Prove: there is an optimal solution OPT∗ that contains ax

Proof: (by contradiction)

◮ assume ax < OPT

◮ let am ∈ OPT be the earliest-finish activity inOPT

◮ construct OPT∗ = OPT \ {am} ∪ {ax}

◮ OPT∗ is valid
Proof:
◮ every activity ai ∈ OPT \ {am} has a starting time si ≥ fm, because am is compatible with ai (so
either fi < sm or si > fm) and fi > fm, because am is the earliest-finish activity in OPT

◮ therefore, every activity ai is compatible with ax , because si ≥ fm ≥ fx

◮ thus OPT∗ is an optimal solution, because |OPT∗ | = |OPT |

Activity Selection is a Greedy Problem (2)

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Proof: (by contradiction)

◮ assume to the contrary that |OPT∗ | < |OPT |, and therefore |OPT′ | < |OPT | − 1

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Proof: (by contradiction)

◮ assume to the contrary that |OPT∗ | < |OPT |, and therefore |OPT′ | < |OPT | − 1

◮ let am be the earliest-finish activity inOPT, and let S = {ai | si ≥ fm}

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Proof: (by contradiction)

◮ assume to the contrary that |OPT∗ | < |OPT |, and therefore |OPT′ | < |OPT | − 1

◮ let am be the earliest-finish activity inOPT, and let S = {ai | si ≥ fm}

◮ by construction, OPT \ {am} is a solution for S

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Proof: (by contradiction)

◮ assume to the contrary that |OPT∗ | < |OPT |, and therefore |OPT′ | < |OPT | − 1

◮ let am be the earliest-finish activity inOPT, and let S = {ai | si ≥ fm}

◮ by construction, OPT \ {am} is a solution for S

◮ by construction, S ⊆ S′, so OPT \ {am} is a solution also for S
′

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ax, let S
′ ⊂ S be the set of activities

compatible with ax, that is, S
′
= {ai | si ≥ fx}

Prove: OPT∗ = {ax} ∪ OPT
′ is optimal for S if OPT′ is optimal for S′

Proof: (by contradiction)

◮ assume to the contrary that |OPT∗ | < |OPT |, and therefore |OPT′ | < |OPT | − 1

◮ let am be the earliest-finish activity inOPT, and let S = {ai | si ≥ fm}

◮ by construction, OPT \ {am} is a solution for S

◮ by construction, S ⊆ S′, so OPT \ {am} is a solution also for S
′

◮ whichmeans that there is a solution S′ of size |OPT | − 1, which contradicts the main
assumption that |OPT′ | < |OPT | − 1

Huffman Coding

Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

◮ e.g., n = |S| = 109

What is the most efficient way to store that sequence?

Huffman Coding

Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

◮ e.g., n = |S| = 109

What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

Huffman Coding

Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

◮ e.g., n = |S| = 109

What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

◮ 6 symbols require 3 bits per symbol

Huffman Coding

Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

◮ e.g., n = |S| = 109

What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

◮ 6 symbols require 3 bits per symbol

◮ 3 × 109/8 = 3.75 × 108 (a bit less than 400Mb)

Huffman Coding

Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

◮ e.g., n = |S| = 109

What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

◮ 6 symbols require 3 bits per symbol

◮ 3 × 109/8 = 3.75 × 108 (a bit less than 400Mb)

Can we do better?

Huffman Coding (2)

Huffman Coding (2)

Consider the following encoding table:

symbol code

a 000
b 001
c 010
d 011
e 100
f 101

Huffman Coding (2)

Consider the following encoding table:

symbol code

a 000
b 001
c 010
d 011
e 100
f 101

Observation: the encoding of ‘e’ and ‘f’ is a bit redundant

◮ the second bit does not help us in distinguishing ‘e’ from ‘f’

◮ in other words, if the first (most significant) bit is 1, then the second bit gives us no
information, so it can be removed

Idea

Idea

Variable-length code

symbol code

a 000
b 001
c 010
d 011
e 10
f 11

Encoding and decoding are well-defined and unambiguous

Idea

Variable-length code

symbol code

a 000
b 001
c 010
d 011
e 10
f 11

Encoding and decoding are well-defined and unambiguous

Howmuch space do we save?

Idea

Variable-length code

symbol code

a 000
b 001
c 010
d 011
e 10
f 11

Encoding and decoding are well-defined and unambiguous

Howmuch space do we save?
◮ not knowing the frequency of ‘e’ and ‘f’, we can’t tell exactly

Idea

Variable-length code

symbol code

a 000
b 001
c 010
d 011
e 10
f 11

Encoding and decoding are well-defined and unambiguous

Howmuch space do we save?
◮ not knowing the frequency of ‘e’ and ‘f’, we can’t tell exactly

Given the frequencies fa, fb, fc, . . . of all the symbols in S

M = 3n(fa + fb + fc + fd) + 2n(fe + ff)

ProblemDefinition

ProblemDefinition

Given a set of symbols C and a frequency function f : C → [0, 1]

Find a code E : C → {0, 1}∗ such that

ProblemDefinition

Given a set of symbols C and a frequency function f : C → [0, 1]

Find a code E : C → {0, 1}∗ such that

E is a prefix code

◮ no codeword E(c1) is the prefix of another codeword E(c2)

ProblemDefinition

Given a set of symbols C and a frequency function f : C → [0, 1]

Find a code E : C → {0, 1}∗ such that

E is a prefix code

◮ no codeword E(c1) is the prefix of another codeword E(c2)

The average codeword size

B(S) =
∑

c∈C

f (c) |E(c) |

is minimal

ProblemDefinition (2)

ProblemDefinition (2)

E : C→ {0, 1}∗ defines binary strings, so we can represent E as a binary tree T

ProblemDefinition (2)

E : C→ {0, 1}∗ defines binary strings, so we can represent E as a binary tree T

sym. freq. code

a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 10
f 5% 11

ProblemDefinition (2)

E : C→ {0, 1}∗ defines binary strings, so we can represent E as a binary tree T

sym. freq. code

a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 10
f 5% 11

10

e:9

0

f:5

10 1

100

1486

2858

b:13

1

a:45

0

d:16

1

c:12

0

◮ leaves represent symbols; internal nodes are prefixes

◮ the code of a symbol c is the path from the root to c

◮ the weight f (v) of a node v is the frequency of its code/prefix

ProblemDefinition (2)

E : C→ {0, 1}∗ defines binary strings, so we can represent E as a binary tree T

sym. freq. code

a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 10
f 5% 11

10

e:9

0

f:5

10 1

100

1486

2858

b:13

1

a:45

0

d:16

1

c:12

0

◮ leaves represent symbols; internal nodes are prefixes

◮ the code of a symbol c is the path from the root to c

◮ the weight f (v) of a node v is the frequency of its code/prefix

B(S) = n
∑

c∈leaves(T)

f (c)depth(c) = n
∑

v∈T

f (v)

Huffman Algorithm

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

Huffman Algorithm

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

We build the code bottom-up

Huffman Algorithm

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

We build the code bottom-up

Each time wemake the “greedy” choice of merging the two least frequent nodes
(symbols or prefixes)

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

140 1

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

140 1250 1

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

140 1250 1

30
0

1

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

140 1250 1

30
0

1

55

0
1

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45 b:13 c:12 d:16 e:9 f:5

140 1250 1

30
0

1

55

0
1

100

0

1

Example

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n − 1
4 create a new node z
5 z. le� = EXTRACT-MIN(Q)

6 z. right = EXTRACT-MIN(Q)

7 f (z) = f (z. le�) + f (z. right)

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

sym. freq. code

a 45% 0
b 13% 100
c 12% 101
d 16% 110
e 9% 1110
f 5% 1111

a:45 b:13 c:12 d:16 e:9 f:5

140 1250 1

30
0

1

55

0
1

100

0

1

