Greedy Algorithms

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

May 23, 2023

Outline

m Greedy strategy
m Examples
m Activity selection

m Huffman coding

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

m We naturally decompose the problem in a series of choices

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

m We naturally decompose the problem in a series of choices

> ateach point we have a partial solutionAC T

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

m We naturally decompose the problem in a series of choices

> ateach point we have a partial solutionAC T
> we have a number of choices on how to extend A

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

m We naturally decompose the problem in a series of choices

> ateach point we have a partial solutionAC T
> we have a number of choices on how to extend A

> we make a “greedy” choice by selecting the lightest edge that does not violate the
constraints of the MST problem

Recap on MST Algorithms

m Findthe MSTof G = (V,E) withw : E - R

> finda T C E thatis a minimum-weight spanning tree

m We naturally decompose the problem in a series of choices
> ateach point we have a partial solutionAC T
> we have a number of choices on how to extend A

> we make a “greedy” choice by selecting the lightest edge that does not violate the
constraints of the MST problem

GENERIC-MST(G, w)

1 A=9

2 while Ais not a spanning tree

3 find a safe edge e = (u, v) # the lightest that...
4 A=AU {e}

Designing a Greedy Algorithm

Designing a Greedy Algorithm

1. Cast the problem as one where

> we make a greedy choice, and

> we are left with a subproblem

Designing a Greedy Algorithm

1. Cast the problem as one where

> we make a greedy choice, and

> we are left with a subproblem

2. Prove that there is always a solution to the original problem that contains the greedy
choice we make

> i.e,that the greedy choice always leads to an optimal solution

> not necessarily always the same one

Designing a Greedy Algorithm

. Cast the problem as one where

> we make a greedy choice, and

> we are left with a subproblem

. Prove that there is always a solution to the original problem that contains the greedy
choice we make

> i.e,that the greedy choice always leads to an optimal solution

> not necessarily always the same one

. Prove that the remaining subproblem is such that

» combining the greedy choice with the optimal solution of the subproblem gives an optimal
solution to the original problem

The Greedy-Choice Property

m Thefirst key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by mak-
ing a locally optimal choice

The Greedy-Choice Property

The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by mak-
ing a locally optimal choice

At every step, we consider only what is best in the current problem

> not considering the results of the subproblems

Optimal Substructure

m The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it
optimal solutions to subproblems

Optimal Substructure

m The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it
optimal solutions to subproblems

m Itis natural to prove this by induction

> if the solution to the subproblem is optimal, then combining the greedy choice with that
solution yields an optimal solution

Example

m The absolutely trivial gift-selection problem

Example

m The absolutely trivial gift-selection problem

> outofasetX = {xy,x,..., Xn} of valuable objects,
where v(x;) is the value of x;

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;
> you will be given, as a gift, k objects of your choice

> how do you maximize the total value of your gifts?

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

m Decomposition: choice plus subproblem

The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

Decomposition: choice plus subproblem
» greedy choice: pick x; such that v(x;) = maxyex v(x)
> subproblem: X’ = X — {x;}, k' = k — 1 (same value function v)

Example

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

m Decomposition: choice plus subproblem
» greedy choice: pick x; such that v(x;) = maxyex v(x)

> subproblem: X’ = X — {x;}, k' = k — 1 (same value function v)

m Greedy-choice property

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

m Decomposition: choice plus subproblem
» greedy choice: pick x; such that v(x;) = maxyex v(x)
> subproblem: X’ = X — {x;}, k' = k — 1 (same value function v)

m Greedy-choice property
> if v(x;) = maxyex V(X), then there is a globally optimal solution A that contains x;

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

m Decomposition: choice plus subproblem
» greedy choice: pick x; such that v(x;) = maxyex v(x)
> subproblem: X’ = X — {x;}, k' = k — 1 (same value function v)

m Greedy-choice property

> if v(x;) = maxyex V(X), then there is a globally optimal solution A that contains x;

m Optimal-substructure property

Example

m The absolutely trivial gift-selection problem

> outofasetX = {x1,xs,...,x,} of valuable objects,
where v(x;) is the value of x;

> you will be given, as a gift, k objects of your choice
> how do you maximize the total value of your gifts?

m Decomposition: choice plus subproblem
» greedy choice: pick x; such that v(x;) = maxyex v(x)
> subproblem: X’ = X — {x;}, k' = k — 1 (same value function v)

m Greedy-choice property

> if v(x;) = maxyex V(X), then there is a globally optimal solution A that contains x;

m Optimal-substructure property

> if v(x;) = maxyex V(Xx) and A’ is an optimal solution for X’ = X — {x;},then A’ Cc A

Example

Observation

m /nventing a greedy algorithm is easy
> itis easy to come up with greedy choices

Observation

m /nventing a greedy algorithm is easy
> itis easy to come up with greedy choices

m Proving it optimal may be difficult

> requires deep understanding of the structure of the problem

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?

(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?
(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)
Solution: 2 x2+0.5+0.2+0.1 =4.8 (5 coins/bills)

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?
(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)
Solution: 2 x2+0.5+0.2+0.1 =4.8 (5 coins/bills)

B Isthis a greedy problem?

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?
(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)
Solution: 2 x2+0.5+0.2+0.1 =4.8 (5 coins/bills)

B Isthis a greedy problem?

m Suppose you are in the US and need to make $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?
(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)
Solution: 2 x2+0.5+0.2+0.1 =4.8 (5 coins/bills)

B Isthis a greedy problem?

m Suppose you are in the US and need to make $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Greedy: 4 x1+3x0.25+5x0.01 =4.8 (12 coins/bills)

Making Change

m My favorite pasta lunch typically costs Fr. 15.20; | usually pay with a Fr. 20 bill, and get
Fr. 4.80 of change

Question: how can | get the least amount of coins?
(Available denominations: 5, 2,1, 0.5, 0.2, 0.1)
Solution: 2 x2+0.5+0.2+0.1 =4.8 (5 coins/bills)

B Isthis a greedy problem?

m Suppose you are in the US and need to make $4.80 of change; available denominations
are $5, $1, $0.25, $0.1, and $.01 (you are out of “nickels”)

Greedy: 4 x1+3x0.25+5x0.01 =4.8 (12 coins/bills)
Optimal: 4 x1+2x0.25+3%x 0.1 =4.8 (9 coins/bills)

Knapsack Problem

m Athief robbing a store finds n items

> v;isthevalue of itemi
> w;is the weight of item
> W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

Knapsack Problem

m Athief robbing a store finds n items

> v;isthevalue of itemi
> w;is the weight of item
> W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

B Isthis a greedy problem?

Knapsack Problem

m Athief robbing a store finds n items

> v;isthevalue of itemi
> w;is the weight of item
> W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

B Isthis a greedy problem?

m Exercise: 1. formulate a reasonable greedy choice
2. prove thatit doesn’t work with a counter-example
3. gobackto (1) and repeat a couple of times

Fractional Knapsack Problem

Fractional Knapsack Problem

m Athief robbing a store finds n items
> v;isthevalue of itemi
> w;is the weight of item
> W is the maximum weight that the thief can carry
> the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of
the robbery

Fractional Knapsack Problem

m Athief robbing a store finds n items
> v;isthevalue of itemi
> w;is the weight of item
> W is the maximum weight that the thief can carry
> the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of
the robbery

B Isthis a greedy problem?

Fractional Knapsack Problem

m Athief robbing a store finds n items

> v;isthevalue of itemi

> w;is the weight of item

> W is the maximum weight that the thief can carry

> the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of
the robbery

B Isthis a greedy problem?

m Exercise: prove that it is a greedy problem

Activity-Selection Problem

m A conference room is shared among different activities
» S={a1,0,,...,0an}isthe set of proposed activities
> activity a; has a start time s; and a finish time f;
> activities g; and a; are compatible if either f; < sjorf; <'s;

Activity-Selection Problem

m A conference room is shared among different activities
» S={a1,0,,...,0an}isthe set of proposed activities
> activity a; has a start time s; and a finish time f;
> activities g; and a; are compatible if either f; < sjorf; <'s;

Problem: find the largest set of compatible activities

Activity-Selection Problem

m A conference room is shared among different activities

» S={a1,0,,..., an}is the set of proposed activities
> activity a; has a start time s; and a finish time f;
> activities g; and a; are compatible if either f; < sjorf; <'s;

Problem: find the largest set of compatible activities

m Example
activity | a b ¢ d e f g h i j k
Start| 8 0 2 3 5 1 5 3 12 6 8
finish |12 6 13 5 7 4 9 8 14 10 11

m Is there a greedy solution for this problem?

QT N Q D+~ QT . — X

Activity-Selection Problem (2)

—

9 10 11 12 13 14

Activity-Selection Problem (3)

i | s |
c i i
a i i

k e |

J I i

g I i

h i i

e | e |

b | i

d | e |

f]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Greedy choice: earliest finish time

Activity-Selection Problem (3)

Ci I /j:
a i i
l; :/ i

! : —

h _—

b1 a—
AL

;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Greedy choice: earliest finish time

Activity Selection is a Greedy Problem

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Prove: there is an optimal solution OPT* that contains ay

Activity Selection is a Greedy Problem
m Greedy choice: takea, € Ss.t.fy < fiforalla; € S
Prove: there is an optimal solution OPT* that contains ay

Proof: (by contradiction)

> assumeay, ¢ OPT

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Prove: there is an optimal solution OPT* that contains ay

Proof: (by contradiction)

> assumeay, ¢ OPT

> let ay, € OPT be the earliest-finish activity in OPT

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Prove: there is an optimal solution OPT* that contains ay

Proof: (by contradiction)
> assumeay, ¢ OPT
> let ay, € OPT be the earliest-finish activity in OPT
> construct OPT* = OPT \ {am} U {ax}

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Prove: there is an optimal solution OPT* that contains ay

Proof: (by contradiction)

> assumeay, ¢ OPT
> let ay, € OPT be the earliest-finish activity in OPT
> construct OPT* = OPT \ {am} U {ax}

OPT* isvalid
Proof:
> every activity a;j € OPT \ {an} has a starting time s; > f, because ap, is compatible with a; (so
either f; < sy ors; > fy) and f; > f, because apy, is the earliest-finish activity in OPT
> therefore, every activity a; is compatible with ay, because s; > f, > fy

v

Activity Selection is a Greedy Problem

m Greedy choice: takea, € Ss.t.fy < fiforalla; € S

Prove: there is an optimal solution OPT* that contains ay

Proof: (by contradiction)
> assumeay, ¢ OPT
> let ay, € OPT be the earliest-finish activity in OPT
> construct OPT* = OPT \ {am} U {ax}

v

OPT* isvalid
Proof:
> every activity a;j € OPT \ {an} has a starting time s; > f, because ap, is compatible with a; (so
either f; < sy ors; > fy) and f; > f, because apy, is the earliest-finish activity in OPT
> therefore, every activity a; is compatible with ay, because s; > f, > fy

v

thus OPT™ is an optimal solution, because |OPT*| = |OPT]|

Activity Selection is a Greedy Problem (2)

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Proof: (by contradiction)

> assume to the contrary that |OPT*| < |OPT|, and therefore |OPT’| < |OPT| - 1

Activity Selection is a Greedy Problem (2)

Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Proof: (by contradiction)

> assume to the contrary that |OPT*| < |OPT|, and therefore |OPT’| < |OPT| - 1

> let a,, be the earliest-finish activity in OPT, and let S = {a; | 5; > fn}

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Proof: (by contradiction)
> assume to the contrary that |OPT*| < |OPT|, and therefore |OPT’| < |OPT| - 1
> let ay, be the earliest-finish activity in OPT, and letS = {aj|si=fn}

> by construction, OPT \ {an} is a solution for S

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Proof: (by contradiction)
> assume to the contrary that |OPT*| < |OPT|, and therefore |OPT’| < |OPT| - 1
> let ay, be the earliest-finish activity in OPT, and letS = {aj|si=fn}
> by construction, OPT \ {an} is a solution for S

> by construction, S € §’, 50 OPT \ {an} is a solution also for &’

Activity Selection is a Greedy Problem (2)

m Optimal-substructure property: having chosen ay, let S’ c S be the set of activities
compatible with ay, thatis, S’ = {a; | s; > f}

Prove: OPT* = {ay} U OPT’ is optimal for S if OPT’ is optimal for &’

Proof: (by contradiction)
> assume to the contrary that |OPT*| < |OPT|, and therefore |OPT’| < |OPT| - 1
> let ay, be the earliest-finish activity in OPT, and letS = {aj|si=fn}
> by construction, OPT \ {an} is a solution for S

> by construction, S € §’, 50 OPT \ {an} is a solution also for &’

v

which means that there is a solution S’ of size |OPT| — 1, which contradicts the main
assumption that |OPT’| < |OPT| -1

Huffman Coding

m Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

> eg,n=|S| =10°

m What is the most efficient way to store that sequence?

Huffman Coding

m Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

> eg,n=|S| =10°
m What is the most efficient way to store that sequence?

m First approach: compact fixed-width encoding

Huffman Coding

m Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

> eg,n=|S| =10°
m What is the most efficient way to store that sequence?

m First approach: compact fixed-width encoding

> 6 symbols require 3 bits per symbol

Huffman Coding

m Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

> eg,n=|S| =10°
m What is the most efficient way to store that sequence?

m First approach: compact fixed-width encoding

> 6 symbols require 3 bits per symbol

> 3x10°/8 = 3.75 x 108 (a bit less than 400Mb)

Huffman Coding

m Suppose you have a large sequence S of the six characters: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’

> eg,n=|S| =10°
m What is the most efficient way to store that sequence?

m First approach: compact fixed-width encoding

> 6 symbols require 3 bits per symbol

> 3x10°/8 = 3.75 x 108 (a bit less than 400Mb)

m Can we do better?

Huffman Coding (2)

m Consider the following encoding table:

symbol

code

a

-~ D QO N0 T

000
001
010
011
100
101

Huffman Coding (2)

m Consider the following encoding table:

symbol

code

a

-~ D QO N0 T

000
001
010
011
100
101

m Observation: the encoding of ‘e’ and ‘f’ is a bit redundant

> the second bit does not help us in distinguishing ‘e’ from ‘f’

Huffman Coding (2)

> in other words, if the first (most significant) bit is 1, then the second bit gives us no

information, so it can be removed

Idea

m Variable-length code

symbol

code

a

-~ D QO N T

000
001
010
011
10
11

m Encoding and decoding are well-defined and unambiguous

Idea

m Variable-length code

symbol

code

a

-~ D QO N T

000
001
010
011
10
11

m Encoding and decoding are well-defined and unambiguous

m How much space do we save?

Idea

m Variable-length code

symbol

code

a

-~ D QO N T

000
001
010
011
10
11

m Encoding and decoding are well-defined and unambiguous

m How much space do we save?
> not knowing the frequency of ‘e’ and ‘f’, we can’t tell exactly

Idea

m Variable-length code

symbol

code

a

-~ D QO N T

000
001
010
011
10
11

m Encoding and decoding are well-defined and unambiguous

m How much space do we save?
> not knowing the frequency of ‘e’ and ‘f’, we can’t tell exactly

m Given the frequencies f,, fp, fc, . . . of all the symbols in S

M =3n(fg+f, +fc+1fy) +2n(fe +1f)

Idea

Problem Definition

Problem Definition

m Given a set of symbols C and a frequency functionf : C — [0, 1]

m FindacodeE : C — {0, 1}* such that

Problem Definition
m Given a set of symbols C and a frequency functionf : C — [0, 1]
m FindacodeE : C — {0, 1}* such that

m Eis aprefix code

» no codeword E(c;) is the prefix of another codeword E(c;)

Problem Definition

m Given a set of symbols C and a frequency functionf : C — [0, 1]
m FindacodeE : C — {0, 1}* such that

m Eis aprefix code

» no codeword E(c;) is the prefix of another codeword E(c;)

B The average codeword size

B(S) = Y f(Q)IE(0)|

ceC

is minimal

Problem Definition (2)

Problem Definition (2)

m £ : C — {0, 1}* defines binary strings, so we can represent E as a binary tree T

Problem Definition (2)

m £ : C — {0, 1}* defines binary strings, so we can represent E as a binary tree T

sym. | freq. | code
a 45% | 000
b 13% | 001
C 12% | 010
d 16% | 011
e 9% 10
f 5% 11

Problem Definition (2)

m £ : C — {0, 1}* defines binary strings, so we can represent E as a binary tree T

sym. | freq. | code
a 45% | 000
b 13% | 001
C 12% | 010
d 16% | 011
e 9% 10
f 5% 11

0 @ 1
SO§
0 1 0 1

(a:45)(:13)(c:12](d:16)

> leaves represent symbols; internal nodes are prefixes

> the code of a symbol c is the path from the root to ¢
> the weight f(v) of a node v is the frequency of its code/prefix

Problem Definition (2)

m £ : C — {0, 1}* defines binary strings, so we can represent E as a binary tree T

sym. | freq. | code
a 45% | 000
b 13% | 001
C 12% | 010
d 16% | 011
e 9% 10
f 5% 11

0 @ 1
SO§
0 1 0 1

(a:45)(:13)(c:12](d:16)

> leaves represent symbols; internal nodes are prefixes

> the code of a symbol c is the path from the root to ¢
> the weight f(v) of a node v is the frequency of its code/prefix

B(S) =n Z f(c)depth(c):an(v)

veT

HUFFMAN(C)

1 n=|C|

2 Q=C

3 fori=1ton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)

6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

Huffman Algorithm

Huffman Algorithm

HUFFMAN(C)

1 n=|C|

2 Q=C

3 fori=1ton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)

6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

m We build the code bottom-up

Huffman Algorithm

HUFFMAN(C)

1 n=|C|

2 Q=C

3 fori=1ton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)

6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

m We build the code bottom-up

m Each time we make the “greedy” choice of merging the two least frequent nodes
(symbols or prefixes)

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

0. (141

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

) 25)

0

1 0. (141
=

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

0/@
=

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

a:45

Example

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

Example

HUFFMAN(C)

1 n=|C

2 0=C

3 fori=1lton-1

4 create a new node z

5 Z.left = EXTRACT-MIN(Q)
6 z.right = EXTRACT-MIN(Q)
7 f(z) = f(z.left) + f(z.right)
8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q)

sym.

freq.

code

-~ Dd® O N T v

45%
13%
12%
16%
9%
5%

100
101
110
1110
1111

Example

