Basic Elements of Complexity Theory

Antonio Carzaniga
Faculty of Informatics
Università della Svizzera italiana

May 30, 2023

Outline

- Basic complexity classes
- Polynomial reductions

■ NP-completeness

Polynomial Time

Polynomial Time

■ A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?
$T(n) \quad$ polynomial-time?

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?
$T(n) \quad$ polynomial-time?

$$
T(n)=n^{2}
$$

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes

Polynomial Time

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	

■ A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	Yes

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	Yes
$T(n)=5$	

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	Yes
$T(n)=5$	Yes

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	Yes
$T(n)=5$	Yes
$T(n)=n^{-7} \cdot 2^{n / 7}$	

- A polynomial-time algorithm is one whose worst-case running time $T(n)$, on an input of size n bits, is $O\left(n^{k}\right)$ for some constant k

■ Examples: algorithm A has a running time $T(n)$; is A a polynomial-time algorithm?

$T(n)$	polynomial-time?
$T(n)=n^{2}$	Yes
$T(n)=n^{3}-2 n^{2}-5$	Yes
$T(n)=\sqrt{n!}$	No
$T(n)=n^{7}+7^{n}$	No
$T(n)=n^{7}+7^{-n}$	Yes
$T(n)=5$	Yes
$T(n)=n^{-7} \cdot 2^{n / 7}$	No

Algorithm
worst-case running time

Algorithm
worst-case running time
Find (sequential)

Algorithm
worst-case running time
Find (sequential)
$O(n)$

Algorithm
worst-case running time
Find (sequential)
$O(n)$

Binary-Search

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	

Algorithm worst-case running time

Find (sequential)	$O(n)$
Binary-Search	$O(\log n)$
TREE-Minimum	$O(n)$

Algorithm worst-case running time
Find (sequential)
Binary-SEARCH
$O(n)$

Tree-Minimum
$O(\log n)$

RB-INSERT

Algorithm worst-case running time

Find (sequential)	$O(n)$
BinARY-SeARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	

Algorithm worst-case running time

Find (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	$O(n \log n)$

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	$O(n \log n)$
EDIT-DISTANCE	

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	$O(n \log n)$
EDIT-DISTANCE	$O\left(n^{2}\right)$

Examples of Polynomial-Time Algorithms

Algorithm	worst-case running time
FIND (sequential)	$O(n)$
BINARY-SEARCH	$O(\log n)$
TREE-MINIMUM	$O(n)$
RB-INSERT	$O(\log n)$
INORDER-TREE-WALK	$O(n)$
INSERTION-SORT	$O\left(n^{2}\right)$
HEAPSORT	$O(n \log n)$
EDIT-DISTANCE	$O\left(n^{2}\right)$
\ldots	

Polynomial vs. Super-Polynomial: Examples

Polynomial vs. Super-Polynomial: Examples

■ You have n objects
all pairs

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$
all triples

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets super-polynomial: $\Theta\left(2^{n}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets
super-polynomial: $\Theta\left(2^{n}\right)$
all permutations

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets all permutations super-polynomial: $\Theta\left(2^{n}\right)$ super-polynomial: $\Theta(n!)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets all permutations super-polynomial: $\Theta\left(2^{n}\right)$ super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes all edges

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets all permutations super-polynomial: $\Theta\left(2^{n}\right)$ super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes all edges polynomial: $\Theta\left(n^{2}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets all permutations super-polynomial: $\Theta\left(2^{n}\right)$ super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes all edges polynomial: $\Theta\left(n^{2}\right)$ all trees

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets all permutations
super-polynomial: $\Theta\left(2^{n}\right)$
super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes
all edges polynomial: $\Theta\left(n^{2}\right)$
all trees
super-polynomial: $\Theta\left(n^{n-2}\right)$

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets
all permutations
super-polynomial: $\Theta\left(2^{n}\right)$
super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes
all edges polynomial: $\Theta\left(n^{2}\right)$
all trees
super-polynomial: $\Theta\left(n^{n-2}\right)$
all complete tours

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$ all subsets all permutations
super-polynomial: $\Theta\left(2^{n}\right)$
super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes
all edges polynomial: $\Theta\left(n^{2}\right)$
all trees
super-polynomial: $\Theta\left(n^{n-2}\right)$
all complete tours

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets
all permutations
super-polynomial: $\Theta\left(2^{n}\right)$
super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes
all edges polynomial: $\Theta\left(n^{2}\right)$
all trees
super-polynomial: $\Theta\left(n^{n-2}\right)$
all complete tours super-polynomial: $\Theta(n!)$
all cuts

■ You have n objects
all pairs polynomial: $\Theta\left(n^{2}\right)$ all triples polynomial: $\Theta\left(n^{3}\right)$ all k-tuples for a fixed k polynomial: $\Theta\left(n^{k}\right)$
all subsets
all permutations
super-polynomial: $\Theta\left(2^{n}\right)$
super-polynomial: $\Theta(n!)$

■ You have a graph over n vertexes
all edges polynomial: $\Theta\left(n^{2}\right)$
all trees
super-polynomial: $\Theta\left(n^{n-2}\right)$
all complete tours
all cuts super-polynomial: $\Theta(n!)$
super-polynomial: $\Theta\left(2^{n}\right)$

polynomial \equiv good

super-polynomial \equiv bad

Problems

- A problem Q is a binary relation between a set / of instances and a set S of solutions

■ A problem Q is a binary relation between a set I of instances and a set S of solutions

■ A concrete problem Q is one where I and S are the set of binary strings $\{0,1\}^{*}$

- for all practical purposes, instances and solutions can be encoded as binary strings (i.e., mapped into $\{0,1\}^{*}$)
- we consider only sensible encodings...

Decision Problems

- A decision problem Q is one where the set of solutions is $S=\{0,1\}$
- A decision problem Q is one where the set of solutions is $S=\{0,1\}$

Example:

1	\longrightarrow	0
10	\longrightarrow	1
11	\longrightarrow	1
100	\longrightarrow	0
101	\longrightarrow	1
110	\longrightarrow	0
111	\longrightarrow	1
1000	\longrightarrow	0
1001	\longrightarrow	0
1010	\longrightarrow	0
1011	\longrightarrow	1
1100	\longrightarrow	0
1101	\longrightarrow	1

- A decision problem Q is one where the set of solutions is $S=\{0,1\}$

Example:

1	\longrightarrow	0
10	\longrightarrow	1
11	\longrightarrow	1
100	\longrightarrow	0
101	\longrightarrow	1
110	\longrightarrow	0
111	\longrightarrow	1
1000	\longrightarrow	0
1001	\longrightarrow	0
1010	\longrightarrow	0
1011	\longrightarrow	
1100	\longrightarrow	
1101	\longrightarrow	

Decision vs. Optimization: Example

Decision vs. Optimization: Example

- Shortest path in a graph

$$
G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z \longrightarrow a, c, \ldots, z
$$

■ Shortest path in a graph

$$
V_{\text {instance }}^{G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z} \longrightarrow a, c, \ldots, z
$$

■ Shortest path in a graph

Decision vs. Optimization: Example

■ Shortest path in a graph

- input: a graph G, a source vertex (a), and a destination vertex (z)
- output: a sequence of vertexes a, c, \ldots, z

■ Shortest path in a graph

- input: a graph G, a source vertex (a), and a destination vertex (z)
- output: a sequence of vertexes a, c, \ldots, z
- Shortest path as a decision problem

$$
G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z, 10 \longrightarrow 1
$$

■ Shortest path in a graph

- input: a graph G, a source vertex (a), and a destination vertex (z)
- output: a sequence of vertexes a, c, \ldots, z

■ Shortest path as a decision problem

$$
\frac{G=(V=\{a, b, c, \ldots\}, E=\{(a, c), \ldots\}), a, z, 10}{\text { instance }} \rightarrow 1
$$

Decision vs. Optimization: Example

■ Shortest path in a graph

- input: a graph G, a source vertex (a), and a destination vertex (z)
- output: a sequence of vertexes a, c, \ldots, z

■ Shortest path as a decision problem

- input: a graph \mathcal{G}, a start vertex (a), an end vertex (z), and a path length (10)
- output: 1 if there is a path of (at most) the given length

Decision vs. Optimization

Decision vs. Optimization

We focus on decision problems only

■ We focus on decision problems only
■ An optimization problem is at least as hard as its corresponding decision problem

- having a solution to the optimization gives an immediate solution to the decision problem

■ We focus on decision problems only
■ An optimization problem is at least as hard as its corresponding decision problem

- having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is not much harder than the corresponding decision problem

Decision vs. Optimization

■ We focus on decision problems only
■ An optimization problem is at least as hard as its corresponding decision problem

- having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is not much harder than the corresponding decision problem
- having a solution to the decision problem does not give an immediate solution to the optimization problem
- but we can typically use the decision problem as a subroutine in some kind of (binary) search to solve the corresponding optimization problem

The Complexity Class P

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples

The Complexity Class P

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

> The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)

The Complexity Class P

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

> The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)—Dijkstra's algorithm

The Complexity Class P

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

> The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)—Dijkstra's algorithm
- primality

The Complexity Class P

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

> The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)-Dijkstra's algorithm
- primality-a relatively recent theoretical result...
- in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
- Neeraj Kayal and Nitin Saxena were Bachelor students!

The Complexity Class \mathbf{P}

■ A concrete decision problem Q is polynomial-time solvable if there is a polynomial-time algorithm A that solves it

> The complexity class \boldsymbol{P} is the set of all concrete decision problems that are polynomial-time solvable

- Examples
- shortest path (decision variant)-Dijkstra's algorithm
- primality-a relatively recent theoretical result...
- in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
- Neeraj Kayal and Nitin Saxena were Bachelor students!
- parsing a Java program
- ...

Verifying is Easy

Verifying is Easy

■ Example: Vertex cover (decision variant)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

Verifying is Easy

■ Example: Vertex cover (decision variant)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

$$
K=7
$$

Verifying is Easy

■ Example: Vertex cover (decision variant)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

$$
K=7
$$

Verifying is Easy

■ Example: Vertex cover (decision variant)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

$$
K=6 ?
$$

Polynomial-Time Verification

- We might not know how to solve a problem in polynomial-time

■ We might not know how to solve a problem in polynomial-time

■ But we might know how to verify a given solution in polynomial-time

■ We might not know how to solve a problem in polynomial-time

■ But we might know how to verify a given solution in polynomial-time

- Examples
- longest path (decision variant)
- knapsack (decision variant)

The Complexity Class NP

The Complexity Class NP

- A concrete decision problem Q is polynomial-time verifiable if
- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$, for some constant c
- such that $A(x, y)=1$

The Complexity Class NP

- A concrete decision problem Q is polynomial-time verifiable if
- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$, for some constant c
- such that $A(x, y)=1$

$$
A(x, y) \text { verifies in polynomial time that } y \text { proves that } Q(x)=1
$$

The Complexity Class NP

- A concrete decision problem Q is polynomial-time verifiable if
- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$, for some constant c
- such that $A(x, y)=1$

$$
A(x, y) \text { verifies in polynomial time that } y \text { proves that } Q(x)=1
$$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if

- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right.$), for some constant c
- such that $A(x, y)=1$

$$
A(x, y) \text { verifies in polynomial time that } y \text { proves that } Q(x)=1
$$

The complexity class NP is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if

- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right.$), for some constant c
- such that $A(x, y)=1$

$$
A(x, y) \text { verifies in polynomial time that } y \text { proves that } Q(x)=1
$$

The complexity class $\boldsymbol{N P}$ is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

- it means "non-deterministic polynomial"

The Complexity Class NP

■ A concrete decision problem Q is polynomial-time verifiable if

- there is a polynomial-time algorithm A
- for each instance $x \in I$ that has a "yes" solution $(Q(x)=1)$
- there is a certificate y of polynomial-size $|y|=O\left(|x|^{c}\right)$, for some constant c
- such that $A(x, y)=1$

$$
A(x, y) \text { verifies in polynomial time that } y \text { proves that } Q(x)=1
$$

The complexity class $\boldsymbol{N P}$ is the set of all concrete decision problems that are polynomial-time verifiable

■ NP does not mean non-polynomial!

- it means "non-deterministic polynomial"

■ polynomial-time solvable \Longrightarrow polynomial-time verifiable

$$
P \subseteq N P
$$

The Big Open Question

The Big Open Question

- polynomial-time verifiable $\xlongequal{?}$ polynomial-time solvable

The Big Open Question

■ polynomial-time verifiable $\xlongequal{?}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

The Big Open Question

■ polynomial-time verifiable $\xlongequal{?}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

The Big Open Question

■ polynomial-time verifiable $\xlongequal{?}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

- Most theoretical computing scientists believe that $P \neq N P$

The Big Open Question

■ polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

■ Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$
P=N P ?
$$

- Most theoretical computing scientists believe that $P \neq N P$

Finding a solution to a problem is believed to be inherently more difficult than verifying a given solution (or a proof of a solution)
... but nobody has been able to prove that this is the case!

Example: SAT

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y)$
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z)$
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT \in NP?

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula

■ Examples

- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT \in NP?

- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable
- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT \in NP?

- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

■ SAT $\in P$?

- Satisfiability problem (SAT)
- Input: a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
- $\neg x \wedge(\neg y \vee \neg z) \wedge \neg z \wedge(x \vee y) \longrightarrow 1 \quad(x=0, y=1, z=0)$
- $(x \vee y \vee z) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg x) \wedge(\neg x \vee \neg y \vee \neg z) \longrightarrow 0$

■ SAT \in NP?

- yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable
- SAT $\in P$?
- we don't know
- Vertex cover (VC)
- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

■ Vertex cover (VC)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

- Vertex cover (VC)
- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

■ $V C \in N P ?$

- Vertex cover (VC)
- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

■ VC \in NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid

- Vertex cover (VC)
- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

■ VC \in NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid
■ VC $\in P$?

■ Vertex cover (VC)

- Input: A graph $G=(V, E)$ and a number K
- Output: 1 , if there is set S of at most k vertices such that for every edge $e=(u, v) \in E, u \in S$ or $v \in S$ (or both); 0 otherwise

■ VC \in NP? Yes: given a vertex cover S, it is easy (poly-time) to verify that S is valid
■ VC $\in P$? We don't know

Reduction

Reduction

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q

- We do that with polynomial-time reductions

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q
■ We do that with polynomial-time reductions

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q

■ We do that with polynomial-time reductions

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q

■ We do that with polynomial-time reductions

- an instance q of Q is transformed into an instance q^{\prime} of Q^{\prime} through a polynomial-time algorithm

■ In our theory of complexity, we want to argue that problem Q^{\prime} is just as hard as problem Q

■ We do that with polynomial-time reductions

- an instance q of Q is transformed into an instance q^{\prime} of Q^{\prime} through a polynomial-time algorithm
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

Reduction (2)

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

Reduction (2)

■ Solution by polynomial-time reductions to a solvable problem

- if A is polynomial-time, then of A_{Q} is also polynomial time

Reduction (2)

- Solution by polynomial-time reductions to a solvable problem

- if A is polynomial-time, then of A_{Q} is also polynomial time
- therefore if $Q^{\prime} \in P$, then $Q \in P$

Example: 2-CNF-SAT

- 2-CNF-SAT problem

Input:

- f is a Boolean formula of n (Boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$
- f is in conjunctive normal form (CNF), so $f=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$
- every clause C_{i} of f contains exactly two literals (a variable or its negation)

Output: 1 iff f is satisfiable

- there is an assignment of variables that satisfies f

Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

2-CNF-SAT to Implicative Form

2-CNF-SAT to Implicative Form

■ Consider each clause C_{i}

$$
(a \vee b) \equiv(\neg a \Rightarrow b) \equiv(\neg b \Rightarrow a)
$$

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

■ Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)
$$

2-CNF-SAT to Implicative Form

■ Consider each clause C_{i}

$$
(a \vee b) \equiv(\neg a \Rightarrow b) \equiv(\neg b \Rightarrow a)
$$

so we can rewrite a 2-CNF-SAT formula f into another formula in implicative normal form

■ Example:

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)
$$

is equivalent to

$$
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right)
$$

2-CNF-SAT to Graph Reachability

$$
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right)
\end{gathered}\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right) .
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \uparrow \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \sqrt{\left(\neg x_{1} \vee \neg x_{3}\right)} \wedge\left(x_{1} \vee x_{2}\right) \\
\left.\downarrow \Uparrow x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \quad\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

2-CNF-SAT to Graph Reachability

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

not satisfiable if and only if $x_{i} \leadsto \neg x_{i} \leadsto x_{i}$ for some i

$$
\begin{gathered}
\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \\
\Downarrow \Uparrow \\
\left(\neg x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow x_{1}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge\left(\neg x_{3} \Rightarrow \neg x_{2}\right) \wedge \\
\left(x_{1} \Rightarrow \neg x_{3}\right) \wedge\left(x_{3} \Rightarrow \neg x_{1}\right) \wedge\left(\neg x_{1} \Rightarrow x_{2}\right) \wedge\left(\neg x_{2} \Rightarrow x_{1}\right)
\end{gathered}
$$

not satisfiable if and only if $x_{i} \leadsto \neg x_{i} \leadsto x_{i}$ for some i

Reduction of 2-CNF-SAT

- 2-CNF-SAT $\in P$

■ 2-CNF-SAT $\in P$

- 2-CNF-SAT $\in P$

- 2-CNF-SAT $\in P$

NP-Completeness

- A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

■ A problem Q^{\prime} is $\boldsymbol{N P}$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

■ A problem Q^{\prime} is $N P$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q^{\prime} is $\boldsymbol{N P}$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard

■ A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction

- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

■ A problem Q^{\prime} is $N P$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q^{\prime} is $\boldsymbol{N P}$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard
■ If Q^{\prime} is NP-hard and polynomial-time reducible to $Q^{\prime \prime}$, then $Q^{\prime \prime}$ is NP-hard

NP-Completeness

- A problem Q is polynomial-time reducible to another problem Q^{\prime} if there is a polynomial-time reduction
- a polynomial-time algorithm transforms every instance q of Q into an instance q^{\prime} of Q^{\prime}
- the solution to q is 1 if and only if the solution to q^{\prime} is 1

■ A problem Q^{\prime} is $N P$-hard if all problems $Q \in N P$ are polynomial-time reducible to Q^{\prime}

■ A problem Q^{\prime} is $\boldsymbol{N P}$-complete if $Q^{\prime} \in N P$ and Q^{\prime} is NP-hard
■ If Q^{\prime} is NP-hard and polynomial-time reducible to $Q^{\prime \prime}$, then $Q^{\prime \prime}$ is NP-hard

■ If Q^{\prime} is NP-hard and polynomial-time solvable, then $\mathrm{P}=\mathrm{NP}$

- most researchers believe that there is no such Q^{\prime}

The First NP-Complete Problem

The First NP-Complete Problem

■ Is there any NP-complete problem?

The First NP-Complete Problem

■ Is there any NP-complete problem?

■ Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT \in NP, also NP-complete

The First NP-Complete Problem

■ Is there any NP-complete problem?

■ Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT \in NP, also NP-complete

■ Many other problems were then proved NP-complete through polynomial reductions

- e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)
- therefore, Vertex Cover is also NP-complete

The First NP-Complete Problem

■ Is there any NP-complete problem?

■ Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT \in NP, also NP-complete

■ Many other problems were then proved NP-complete through polynomial reductions

- e.g., SAT is polynomial-time reducible to Vertex Cover (and VC is in NP)
- therefore, Vertex Cover is also NP-complete
- If a problem is NP-Hard (or NP-Complete) you should not feel so bad for not finding an efficient solution algorithm

